Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

Tl 3: Operating Systems and Computer Networks

Freie Universitat (. Sw |

TI lll: Operating Systems & Computer Networks
/0 and File System |

Created
Preempted
return S enough not enough memor ¥
user 'y S memory, (swapping system only)
~
S
\\
User .
preempt ~

Running
swap out

return reschedule [Ready to Run— » Ready to Run
:h process T swap in s
Prof. Dr.-Ing. Jochen Schiller h e

Computer Systems & Telematics IMNC/ \ ‘n ‘k.

. . P . interrupt return exit
Freie Universitat Berlin, Germany

Asleep in swap out Sleep,
_

b Memory Swapped

6.1

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls
3. Processes

4. Memory

5. Scheduling

6. 1/O and File System

7. Booting, Services, and Security

Tl 3: Operating Systems and Computer Networks

Freie Universitit £

6.2

%ﬁgﬁ? Berlin

LS

Freie Universitat

Operating System Design and I/O

. There are numerous other devices on the market
- but this is the general list of parts

Tl 3: Operating Systems and Computer Networks 6.3

Freie Universitat (.Sl
NG
Ve

Operating System Design and I/O

Efficiency Problems
- I/O (usually) cannot keep up with processor speed
- Use of multiprogramming allows for some processes to be waiting on I/O while another process executes
- Most I/O devices extremely slow compared to main memory
- Swapping is used to bring in additional Ready processes (requires |I/O operations)

Generality

- Desirable to handle all I/O devices in a uniform manner, i.e., provide good abstraction to application
programmer

- Hide most of details of device I/O in lower-level routines
»Processes and upper levels see devices in general terms, e.g., read, write, open, close, lock, unlock

» Conflicting goals motivate focus on API design

Tl 3: Operating Systems and Computer Networks 6.4

Freie Universitit £

Types of I/O Devices

Wide variety of I/O devices
- Human readable, e.g., display, keyboard, mouse
- Machine readable, e.g., disk and tape drives, sensors, controllers, actuators
- Communication, e.g., digital line drivers, modems

Gigabis thernet | S S S
Data rate Graphics disply | S S S S
- Application Fard sk |
(software support, priority) thernet | S S
- Complexity of control e —
- Unit of transfer Scanaer | —
(stream, blocks, characters) N W
aser printer
- Data representation
_ Floppy disk |
- Encoding schemes I
Modem
- Error conditions _
Mouse

1 10?2 108 10+ 105 10¢ 107 10® 10°
Data Rate (bps)

Tl 3: Operating Systems and Computer Networks 6.5

o)

5 2
=1 A
2,

Freie Universitat) Berlin
Y

VST

Alternatives for I/O Organization

Device abstraction

- Character-based I/O

- E.g. input devices like keyboard or mouse
- Block-based 1/0

- E.g. data storage

»Not necessarily related to implementation, e.g. USB

Communication endpoint (socket) abstraction
- Used for networking
»Second part of this lecture

File abstraction
- Structured, persistent storage

- Sometimes with additional semantics, e.g., locking,
transaction support, etc.

Tl 3: Operating Systems and Computer Networks

User
Processes
Y S

Logical
7o)

Device
I/0

Scheduling
& Control

[Hardware]

{a) Local peripheral device

User
Processes
A

Communication
Architecture

Device
/o

Scheduling
& Control

Hardware

(b) Communications port

=
r,(ﬁ\}
VET

User
Processes

Directory
Management

Physical
Organization

Device
/O
Scheduling

& Control

Hardware

(<) File system

6.6

Freie Universitat W)

Evolution of the I/O Function

» Processor directly controls a peripheral device

» A controller or I/O module is added

e Same configuration as step 2, but now interrupts are employed

* The I/O module is given direct control of memory via DMA

* The I/O module is enhanced to become a separate processor,
with a specialized instruction set tailored for 1/0

* The I/O module has a local memory of its own and is, in fact, a
computer in its own right

Tl 3: Operating Systems and Computer Networks 6.7

/O Related Programming Techniques

Programmed I/O
- Process is busy-waiting for the operation to complete

while (*I0_STATUS_ADDR != 10_DONE){}

Interrupt-driven /O
- I/O command is issued
- Processor continues executing instructions
- I/O module sends an interrupt when done

Direct Memory Access (DMA)

- DMA module controls exchange of data between main memory and the I/O device
- Processor interrupted only after entire block has been transferred

Tl 3: Operating Systems and Computer Networks 6.8

Comparison of I/O Techniques

Programmed I/O

LR,

S
=

Freie Universitat E(1.S

- Only when there’s no alternative, e.g., timing with very high accuracy

Interrupt-driven I/O

- Event-based programming, e.g., user input

Direct memory access

- Data transfer, e.g. disk I/O, graphics operations, network packet processing

No Interrupts

Use of Interrupts

L/O-to-memory transfer
through processor

Programmed I'O

Interrupt-driven I'O

Direct I'O-to-memory
transfer

Direct memory access (DMA)

Tl 3: Operating Systems and Computer Networks

A
2 \w s
s
ey
IVERaiES

6.9

ey,

Freie Universitat (.Sl
TR

Direct Memory Access

Moving data between main memory and

. . . . Dat
peripherals is a simple operation, but keeps CPU T coun
busy

Data Lines « » D’fm
»Delegate 1/0O operation to extra hardware: DMA Register
module
R R Address
Address Lines « » Register
DMA module transfers data directly to or from
memaory DMA Reqquest «
- “For-loop in hardware” Dmmmiﬁ:ﬁﬁ) * Control
> Continuous memory regions Read ,| legic
Write »

When complete, DMA module sends interrupt
signal to CPU

Tl 3: Operating Systems and Computer Networks 6.10

Freie Universitat /LS 2

DMA Configurations

a) Single-bus, detached DMA (s) Sioglo s, lefchcd DA
»Simple, but inefficient
»Requires multiple I/O requests to device

b) Single-bus, integrated DMA-I/O o "o

» Efficient, but expensive
»One controller per device (group)

(b} Single-bus, Integrated DMA-1A10

Ez'slem bus

C) I/O bus Processor DMA Memuory
»Efficient and less expensive 10 bus
» Separate bus, one controller
([4] L0 ([4]
() /O bus

Tl 3: Operating Systems and Computer Networks 6.11

Freie Universitat (.Sl
NG
Ve

/O Buffering

Main memory used to temporarily store data
- Mitigates differences in data processing speeds
- Processes must wait for I/0O to complete before proceeding
- Manage pages that must remain in main memory during I/O
- Buffer must be accessible to low-level drivers and hardware

Approaches (with different buffering strategies)

- Block-oriented
- Information is stored in fixed sized blocks
- Transfers are made one block at a time
- Used for disks and tapes

- Stream-oriented (stream of characters)
- Transfer information as a stream of bytes

- Used for terminals, printers, communication ports, mouse and other pointing devices, and most other devices that
are not secondary storage

Tl 3: Operating Systems and Computer Networks 6.12

\S'IIT

£ :-:.vﬁ‘&m
] IU Z)

Freie Universitat Berlin

/O Buffering Implementations
No buffering

Operating System User Process
4 Y
1/0 Device In
> o
(a) No buffering

Tl 3: Operating Systems and Computer Networks 6.13

""""

Freie Universitit ;

/O Buffering Implementations

Single buffering
- Block-oriented: User process can process one fixed-sized block of data while next block is read in
- Stream-oriented: Process one variable-sized and delimited line at time

Operating System User Process
SR

In Move

1/O Device

—

(b) Single buffering

Tl 3: Operating Systems and Computer Networks 6.14

Freie Universitét)E

/O Buffering Implementations

Double buffering
»Process can transfer data to or from one buffer while OS empties or fills other buffer

Operating System User Process
™ ™
In Move
1/0 Device
P
o o
(¢} Double buffering

Tl 3: Operating Systems and Computer Networks 6.15

/O Buffering Implementations

Circular/ring buffering
- Each individual buffer is one unit in circular buffer
»Used when I/O operation must keep up with process

Freie Universitdt

Operating System User Process
1 R
1/O Device In I;I Move M
y
1 »

(d) Circular buffering

Tl 3: Operating Systems and Computer Networks

6.16

Freie Universitit :

TS

Questions & Tasks

- If you want to learn more, please check the hidden slides (i.e. slides not covered in the video/lecture but
available via the PDF)!

- Programmed I/O (P10O) looks pretty inefficient — but are there also situations where P1O has advantages over
DMA?

- Point out bottlenecks in the DMA configurations! Are you aware of more efficient solutions? (Hint: check current
PC architectures, PCle etc.)

TI 11l - Operating Systems and Computer Networks 6.17

s 2

Freie Universitat

N

e

Disk Drive as Mass Storage

Read/write head (1 per surface) Direction of

arm meotion

—.
—

Surface 9

Plattey —— >

Surface 8

Surface 7

Surface 6

Surface 5

Surface 4

Surface 3

Surface 2

Surface 1

Surface 0

Boom

Tl 3: Operating Systems and Computer Networks 6.18

Freie Universitat (1.8

Disk Drive as Mass Storage

Sectors Tracks
Inter-sector gap ‘ /
|
<6 v . Inter-track gap
v [
<o y °
%
g
B 2
&

\\’

Tl 3: Operating Systems and Computer Networks 6.19

Freie Universitat ({18

/O Scheduling

For a single resource there will be a number of 1/O requests
- From one or several processes
- Some devices keep internal state, so ordering of I/O requests matters

Example: Disk access

Wait for Wait for Seek Rotational Data

Device Channel Delay Transfer
IR RN f-mmmee- +—
« Device Busy >

- Access time

- Sum of seek time and rotational delay
- Time it takes to get in position to read or write
»Seek time is the reason for differences in performance

- Data transfer occurs as the sector moves under the head
»Reorder 1/O requests according to current state of disk

Tl 3: Operating Systems and Computer Networks 6.20

Positioning the Read/Write Heads

When the disk drive is operating, the disk is rotating at constant speed

To read or write the head must be positioned at the desired track and at the beginning of the desired sector on
that track

Track selection involves moving the head in a movable-head system or electronically selecting one head on a
fixed-head system

On a movable-head system the time it takes to position the head at the track is known as seek time
The time it takes for the beginning of the sector to reach the head is known as rotational delay

The sum of the seek time and the rotational delay equals the access time

Tl 3: Operating Systems and Computer Networks 6.21

Disk Scheduling Algorithms

Freie Universitit

Name Description Remarks
Selection according to requestor

RSS Random scheduling For analysis and simulation

FIFO First in first out Fairest of them all

PRI Priority by process Control outside of disk queue
management

LIFO Last in first out Maximize locality and
resource utilization

Selection according to requested item

SSTF Shortest service time first High utilization, small queues

SCAN Back and forth over disk Better service distribution

C-SCAN One way with fast return Lower service variability

N-step-SCAN SCAN of N records at a time | Service guarantee

FSCAN N-step-SCAN with N = queue | Load sensitive

size at beginning of SCAN
cycle

Tl 3: Operating Systems and Computer Networks

6.22

		Name

		Description

		Remarks

		Selection according to requestor

			RSS

		Random scheduling

		For analysis and simulation

			FIFO

		First in first out

		Fairest of them all

			PRI

		Priority by process

		Control outside of disk queue management

			LIFO

		Last in first out

		Maximize locality and resource utilization

		Selection according to requested item

			SSTF

		Shortest service time first

		High utilization, small queues

			SCAN

		Back and forth over disk

		Better service distribution

			C-SCAN

		One way with fast return

		Lower service variability

			N-step-SCAN

		SCAN of N records at a time

		Service guarantee

			FSCAN

		N-step-SCAN with N = queue size at beginning of SCAN cycle

		Load sensitive

Disk I/0O Scheduling Policies

Example
- Disk with 200 tracks
- Disk request queue has random requests
- Order of requests

55, 58, 39, 18, 90, 160, 150, 38, 184

Tl 3: Operating Systems and Computer Networks 6.23

Freie Universitat (LS

First-In, First-Out (FIFO)

Processes in sequential order
Fair to all processes
Approximates random scheduling in performance if there are many processes competing for the disk

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184

-1 'n I
n o

100
125
150
175

199 -
(a) FIFO Time

track number

Tl 3: Operating Systems and Computer Networks 6.24

Freie Universitat)

Shortest Service Time First (SSTF)

Select the disk 1/0 request that requires the least movement of the disk arm from its current position
Always choose the minimum seek time

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184
Service order: 90, 58, 55, 39, 38, 18, 150, 160, 184

25
50
75
100
125
150
175

199 -
(b) SSTF Time

track number

Tl 3: Operating Systems and Computer Networks 6.25

Freie Universitét ({1

TS

SCAN

Also known as the elevator algorithm
Arm moves in one direction only

- satisfies all outstanding requests until it reaches the last track in that direction then the direction is reversed
Favors jobs whose requests are for tracks nearest to both innermost and outermost tracks

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184
Service order: 150, 160, 184, 90, 58, 55, 39, 38, 18

25
50
75
100
125
150
175

199 —
(¢) SCAN Time

track number

Tl 3: Operating Systems and Computer Networks 6.26

Freie Universitat (.S} Berlin

C-SCAN (Circular SCAN)

Restricts scanning to one direction only

When the last track has been visited in one direction, the arm is returned to the opposite end of the disk and the
scan begins again

Requests: 55, 58, 39, 18, 90, 160, 150, 38, 184
Service order: 150, 160, 184, 18, 38, 39, 55, 58

track number
-1
n

(d) C-SCAN Time

Tl 3: Operating Systems and Computer Networks 6.27

TSIy
&3
(S

Freie Universitat G| Sy
e

N-Step-SCAN

Segments the disk request queue into subqueues of length N

Subqueues are processed one at a time, using SCAN
While a queue is being processed new requests must be added to some other queue

If fewer than N requests are available at the end of a scan, all of them are processed with the next scan

Tl 3: Operating Systems and Computer Networks 6.28

FSCAN

Uses two subqueues
When a scan begins, all of the requests are in one of the queues, with the other empty

During scan, all new requests are put into the other queue
Service of new requests is deferred until all of the old requests have been processed

Tl 3: Operating Systems and Computer Networks

LR,

S
=

Freie Universitat E(1.S

2 \W s
3
[=
VBRI

6.29

Comparison of Disk Scheduling Algorithms

Freie Universitat ({18

(a) FIFO (b) SSTF (c) SCAN (d) C-SCAN
(starting at track (starting at track (starting at track 100, | (starting at track 100,
100) 100) in the direction of in the direction of
increasing track increasing track
number) number)
Next Number | Next Number | Next Number | Next Number
track of tracks | track of tracks | track of tracks | track of tracks

accessed traversed

55 45
58 3
39 19
18 21
90 72
160 70
150 10
38 112
184 146
Average 553
seek
length

accessed traversed

90 10
58 32
55 3
39 16
38 1
18 20
150 132
160 10
184 24
Average 27.5
seek
length

accessed traversed

accessed traversed

150
160
184
90
58
55
39
38
18

Average
seek
length

50

10
24

94
32
3
16
1
20

2738

150
160
184
18
38
39
55
58
90

Average

seek
length

50

10
24

166
20
1
16
3
32

35.8

Tl 3: Operating Systems and Computer Networks

6.30

Disk Cache

Main memory buffer for disk sectors

- Contains copy of subset of sectors on disk
»Speeds up I/O requests to these sectors

Policies:
- Least Recently Used

Total Memory

Physical Memory

Freie Universitat G(LS

Swap Space

Total Free Memory 60%

1,77 GB free

- Block longest in cache with no reference to it is replaced

- Least Frequently Used
- Block with fewest references is replaced

»Reference count is misleading for bursty access patterns

Tl 3: Operating Systems and Computer Networks

35,23 MB free

Free Swap 90%

Used Swap 9%

1,74 GB free

6.31

RAID
Redundant Array of Independent Disks

Set of physical disk drives viewed by the operating system as a single logical drive
Data are distributed across the physical drives of an array

Redundant disk capacity is used to store parity information

Tl 3: Operating Systems and Computer Networks

Freie Universitat (.Sl 1\
SN
TR

6.32

RAID Levels

Freie Universitit .

distributed parity

alternatives

RAID 5 for write

Category Level | Description Dmk? Data availability Large /O dat? Small I/O request rate
required transfer capacity
. Lower than single . Very high for both read
Striping 0 Nonredundant N disk Very high and write
. Higher than single Up to twice that of a
Mirrorin | Mirrored N ;h§hzr ;l:asn) El{o}?vleDr disk for read: similar | single disk for read:
£ th'an, R:'\ID’G to single disk for similar to single disk for
write write
Much higher than
) Redundant via Hamming N+m single disk; Highest of all listed | Approximately twice that
code comparable to alternatives of a single disk
RAID 3,4, 0r5
Parallel access
Much higher than
3 Bitinterleaved parity N+l single disk; Highest of all listed | Approximately twice that
comparable to alternatives of a single disk
RAID 2,4, 0r5
. Similar to RAID 0
zlnucll; }‘;Ell:cr L for read; Similar to RAID 0 for
4 Block-interleaved parity N+1 con% arablé o significantly lower | read; significantly lower
RAIII)) 2 3 or 5 than single disk for | than single disk for write
T write
Independent Much higher than . -
access Block-interleaved distributed single disk; — FO Sl Slml_[ar AL Dl
5 arit N+1 arable t for read; lower than | read; generally lower
partty :;T:%dr; ;0;’4 single disk for write | than single disk for write
.)) Lt i) e Similar to RAID 0 Similar to RAID 0 for
6 Block-interleaved dual N+2 Highest of all listed for read; lower than | read: significantly lower

than RAID 5 for write

N = number of data disks:

Tl 3: Operating Systems and Computer Networks

m proportional to log N

1 Berlin

6.33

Freie Universitit

RAID Level O

Not a true RAID because it does not include redundancy to improve performance or provide data protection
User and system data are distributed across all of the disks in the array
Logical disk is divided into strips

AT Ty ST Ty AT T ST Ty
strip O strip 1 strip 2 strip 3
]] i I
strip 4 strip 5 strip 6 strip 7
strip 8 strip 9 strip 10 strip 11
strip 12 strip 13 strip 14 strip 15
R P e o e R

- - - - - - -

[T — [

(a) RATD O {non-reduondant)

Tl 3: Operating Systems and Computer Networks 6.34

Freie Universitit

RAID Level 1

Redundancy is achieved by the simple expedient of duplicating all the data
There is no “write penalty”

When a drive fails the data may still be accessed from the second drive
Principal disadvantage is the cost

by RAID 1 (mirrored)

Tl 3: Operating Systems and Computer Networks

T T AT T, AR TR
strip 0 strip 1 strip 2 strip 3 strip 0 strip 1 strip 2 strip 3
e
strip 4 strip 5 strip 6 strip 7 strip 4 strip 3 strip 6 strip 7
e Mo] e e e] ey] o]
strip 8 strip 9 strip 10 strip 11 strip 8 strip 9 strip 10 strip 11
I e T o]
strip 12 strip 13 strip 14 strip 15 strip 12 strip 13 strip 14 strip 15
1 |“-\-|__H_,_,_.-r" I e S |"‘|-|_,_'__,_,_.-"II |L"|-|__H_,_,_.-r“‘ I

6.35

RAID Level 2

Makes use of a parallel access technique

Data striping is used

Typically a Hamming code is used

Effective choice in an environment in which many disk errors occur

| T T AT T AT T,

<u T < T < T < T < R <
by by b, b, fob) £,(b)

Il'\'"‘--—._,.,_,_.—'-"""l II\.'\""--—-_._._.—'-"""I |I\'""‘--—-_._,_.—-—"""I ‘""‘--—-___,_.—'-""'.l Il'""'-—-___._.—""""‘I II‘""‘--—-_._._.—--"""l

ic) RAID 2 (redundancy through Hamming code}

Tl 3: Operating Systems and Computer Networks

Freie Universitat C(.8

)l Berlin

6.36

RAID Level 3

Requires only a single redundant disk, no matter how large the disk array
Employs parallel access, with data distributed in small strips
Can achieve very high data transfer rates

by by by bj
— — — —

(d) RAID 3 (bit-interleaved parity)

Tl 3: Operating Systems and Computer Networks

Freie Universitit

6.37

RAID Level 4

Makes use of an independent access technique

A bit-by-bit parity strip is calculated across corresponding strips on each data disk, and the parity bits are stored in
the corresponding strip on the parity disk

Involves a write penalty when an I/O write request of small size is performed

Tl 3: Operating Systems and Computer Networks

T T,
M

block 0
"“-.___________..--"'
block 4
h""--_____--""—

block 8§
M]

T,
S

block 1
"'-.___________..--"
block 5
.“"'----_____----""'I

block 9
e—]

block 12

(e) RAID 4 (block-level parity)

— T,
P

block 2
"'-..___________..--"'
block 6
—

block 10
P

block 13

T T,
e A

block 3
"'-..___________..-"
block 7
"“‘"‘-——_—_—-—"—J

block 11
e

block 14

R
e

P(0-3)
P4-7)

P(8-11)
—]

block 15

Freie Universitit

P(12-15)

6.38

RAID Level 5

Similar to RAID-4 but distributes the parity bits across all disks

Typical allocation is a round-robin scheme
Has the characteristic that the loss of any one disk does not result in data loss

Tl 3: Operating Systems and Computer Networks

e
S

block 0
"‘-.__________.-"
block 4
e,
block 8
M]
block 12
"'-..__________...--“
P(16-19)

T,
R

block 1
""-..__________..-"
block 5
Iy

block 9

P(12-15)
—

block 16

R —_

e
S

block 2
"‘-..___________..-"‘
block 6
ey
Pi(s-11)
M—]
block 13
‘-..______________...-‘
block 17

- - -

(f) RAID 5 (block-level distributed parity)

T,
o A

block 3
"‘-.._________...-"'
P(4-7)
Iy
block 10
Mo———]
block 14
\-..______________..r‘

block 18

AT T
"h-..___________..-"'
P(0-3)
"‘--..________...--"II
block 7
M]
block 11
]
block 15
‘-..______________...-"

block 19

Freie Universitt £

WELT Y,

6.39

RAID Level 6

Two different parity calculations are carried out and stored in separate blocks on different disks

Provides extremely high data availability

Incurs a substantial write penalty because each write affects two parity blocks

Tl 3: Operating Systems and Computer Networks

T
Iy

block 0
N
block 4
S

block 8
A

block 12

- s e

(g) RAID 6 (dual redundancy)

T,
e
block 1

I‘.‘l"""I-—_——-""'I-"

block 5
A

block 9

—]
P(12-15)
|"'--._.__________...-""!

- -
- =

AT T
e

block 2
\.,____________,.J

block 6
M]
P(8-11)
—

Q(12-15)
|'"h-._.____'_____,_.--*"I

AT,
l""‘----_____----""‘

block 3
~e—

P4-7)
M]
Q(8-11)
Mo

block 13

AT T,
e Ry

P(0-3)
\"“'—-___--"-#
Q4-7
—

block 10
A

block 14

Freie Universitt £

6.40

Freie Universitat g%

UNIX SVR4 1/0O

Each individual device is associated with a special

file: ‘ I
© _ File Subsystem
- /dev/dspO: First sound card

- /dev/hda: IDE, primary master
- /dev/hdal: First partition on
/devihda 170 Buffer Fl':a;lvl:l'me
- /devi/tty: Controlling terminal L—‘—.
Cha[:;l{!tﬁ‘:r Blu::k
Two types of 1/O: Device Drivers

- Buffered (default)
- Unbuffered (raw)

Tl 3: Operating Systems and Computer Networks 6.41

ey,

Freie Universitat (.Sl 1\
TR

Questions & Tasks

- Compare an SSD with an HD when it comes to I1/O scheduling. What are the differences?
- What determines the performance of the different disk scheduling algorithms?
- What are disadvantages of RAID-systems? Where do they have their single point of failure?

TI 11l - Operating Systems and Computer Networks 6.42

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls
3. Processes

4. Memory

5. Scheduling

6. 1/O and File System

7. Booting, Services, and Security

Tl 3: Operating Systems and Computer Networks

Freie Universitit £

6.43

File System Overview

= | ThisPC

Computer View

« v 4 H 5 ThisPC

st Quick access

[Desktop
Folien
Folien

& Nexcloud

[This PC
[Desktop
Documents
J Downloads
b Music
[&] Pictures
I8 videos
i Windows (C)
== jhs6T (\\mi-home.imp.fu-berlin.de) (Z:)

o Network

Fitems

L1 =
[LTI EOFE

M Symiem

o o

% Gl Lain

Ersonmes &

s b G Begrarm I
1 Gb Fwwmilnm

-:_r’l-dn (RIS o

) L

il s

Lt

il widen

| T ety

“Lriten" seproed jmordsiwng] Eeread

Tl 3: Operating Systems and Computer Networks

v D Search This PC p:l

~ Folders (6)

|:k
n

4 ¥

Desktop Documents Downloads

J 14

Music Pictures Videos

i

~ Devices and drives (2}

~

Windows (C:) DVD RW Drive
[{2] v

Piilaaws Hidida

iB

[eamzes

TRV
Zl Magintosh WD

Commeried av uppiesens
share Scresn

Connact A

o Jane Appheieed
| £ Joha Apclesead
£ Magimtosh HD

rLACES
T Soeve
| R
o Applcations
7 Decumants

» SEARCH 0K
{“) Today
I ¥evterday
Al Images
Gl Al Meries
AN Documents

1 Jann Apphiand

B Doweiloads
i Library

B Movies

- Muyic

& Pictures
= Pubbc

i Sives

e
-

e

e |

African Safas pdf
Among the Great Wales odf
Amrse's Tt Bethiday oy
Appleseed Revume. pad

Asttic Adventares.pd!

Acttic Fapedition.pdf

Aelay - Hewaiepd

Bedd & Breaklaan Brochure pet
Berinley Campus Mag.pdf

Bobogy Faperdoc

Hatel in Botewana & Chavargo pdf
Pt af Lsapard 5§

Quarterty Expanie Repon. s
School - Stanford bt pf
Sehosd - Yale Col_of Studies. sdf
Sehood - You and_of Chicaga pdf
Sidleshow - Film Creats key
Sanoma County ..uide and Map. odt
Stanferd Lisesrien pef

Sumemar Suling.nil

Semmer Vacabion. ey

Sundoerer « ALK paf

Sundowner - New for 2007 pof
Sendowras - Nine Wonders pal
Tech Specs for idac.pdf

Town Marker Trands key

The Stanfard Arsa i

Traiming Guide - _ing Started pdf
Traiming Guide - . Crand Teurpdi
UC Appication 07 -08. pdf

UC Applieasion fo. Adwiyiien pdf
Usbvmrsity of Mic_extion 2007 pat

University of Mic,tral Camput.pal |

STITLT
& B

Freie Universitat ﬁ,@ 1

6.44

File System Overview

Goals
- Meet data management needs and requirements of user
- Guarantee that data in file is valid (over time)
- Optimize performance
- Provide 1/O support for variety of storage device types
- Minimize or eliminate the potential for lost or destroyed data (redundancy)
- Provide a standardized set of 1/O interface routines
- Provide 1/O support for multiple users
- Concurrency, access control, etc.

Tl 3: Operating Systems and Computer Networks

Freie Universitit :

TS

6.45

File System Overview
Types of File Systems

Disk File Systems
- Windows: FAT, FAT16, FAT32, NTFS
- Linux: ext, ext2, ext3
- UNIX: UFS, ...
- MAC OS X: HFS, HFS+

Distributed File Systems
- NFS, AFS, SMB

Special Purpose File Systems

Tl 3: Operating Systems and Computer Networks 6.46

Freie Universitat (.Sl
TR

File System Overview

Properties
- Long-term existence
- Sharable between processes
- Structure (internal /organizational)

Typical File Operations

- Create Create new file

- Delete Delete existing file

- Open Open new/existing file

- Close Close open file

- Read Read data from open file
- Write Write data to open file

Tl 3: Operating Systems and Computer Networks 6.47

Freie Universitét Berlin

Minimal User Requirements

Each user ...

» should be able to create, delete, read, write and modify files

* may have controlled access to other users’ files

* may control what type of accesses are allowed to the files

» should be able to restructure the files in a form appropriate to the problem

* should be able to move data between files

» should be able to back up and recover files in case of damage

» should be able to access his or her files by name rather than by numeric identifier

J

Tl 3: Operating Systems and Computer Networks 6.48

File System Architecture

Access Method (API)

- Reflect different file structures

- Different ways to access data
Logical I/0

- Enables users to access records

- General-purpose record 1/0O capability

- Maintains basic data about file
Basic 1/0O Supervisor

- /O initiation and termination

- Selection of the I/O device

- Scheduling to optimize performance
Basic File System

- Physical 1/0

- Placement of blocks

- Buffers blocks in main memory
Device Drivers

- Communicate with peripheral devices

- Responsible for starting 1/0 operations on a device

- Processes completion of 1/0 request

Tl 3: Operating Systems and Computer Networks

IIIII

$ it £
oy

Y —
fi; : lv 4

Freie Universitat Berlin

[User Program]

Pile Sequential SI"d Emd Indexed Hashed
equential

Logical I/O

Basic 1/O Supervisor

Basic File System

Disk Device Driver Tape Device Driver

6.49

Elements of File Management

Freie Universitat £) Berlin

Physical blocks Physical blocks
Records in main memory in secondary

buffers storage (disk)

Blocking scheduling

File
Structure
Directory Access
management method
User & program
comands Operation, File

File name manipulation

A functions

User access
control

N

]

oooog

File
allocation

‘ Free storage
management

File management concerns

Tl 3: Operating Systems and Computer Networks

'y

Operating system concerns

6.50

File Organization Types

The direct, or
hashed, file

The
Indexed
file

Tl 3: Operating Systems and Computer Networks

The pile

Five of the common
file organizations
are.

Freie Universitit &

The
sequential
file

The indexed
sequential
file

6.51

The Pile

Least complicated form of file organization
Data are collected in the order they arrive
Each record consists of one burst of data

Purpose is simply to accumulate the mass of
data and save it

Record access is by exhaustive search

Tl 3: Operating Systems and Computer Networks

Freie Universitat (.Sl
TR

-

Variable-length records
Variable set of fields
Chronological order

ia) Pile File

ey,

6.52

The Sequential File

Most common form of file structure

A fixed format is used for records

Key field uniquely identifies the record
Typically used in batch applications

Only organization that is easily stored on tape
as well as disk

Tl 3: Operating Systems and Computer Networks

Freie Universitat (| Sl)

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

(b} Sequential File

Berlin

6.53

Indexed Sequential File

Adds an index to the file to support random
access

Adds an overflow file

Greatly reduces the time required to access a
single record

Multiple levels of indexing can be used to
provide greater efficiency in access

Tl 3: Operating Systems and Computer Networks

Index
levels

Freie Universitat ({18

||||L

Main File

Overflow
File

(c) Indexed Sequential File

6.54

ey,

Freie Universitat (.Sl
TR

Indexed File

Exhansuve Exhaustive Partial

index index mdex
Records are accessed only through their

Indexes /
Variable-length records can be employed ==

Exhaustive index contains one entry for every
record in the main file

Partial index contains entries to records where
the field of interest exists

Used mostly in applications where timeliness of
Information is critical Primary File

- . (vanable-length records)
Examples would be airline reservation systems -
and inventory control systems

{d) Indexed File

Tl 3: Operating Systems and Computer Networks 6.55

Direct or Hashed File

Access directly any block of a known address

Makes use of hashing on the key value Examples are:

Often used where: e directories
- very rapid access is required o pricing tables
- fixed-length records are used e schedules

- records are always accessed one at a time

name lists

Tl 3: Operating Systems and Computer Networks 6.56

Freie Universitat

Grades of Performance

Table 12.1 Grades of Performance for Five Basic File Organizations [WIEDS7]

A = Excellent. well suited to this purpose =0}
B = Good =0{o =7}
C = Adeguate = 0(rlog n)
D = FEequires some extra effort =0
E = Possible with extreme effort =0O(r = n)
F = MNotreasonable for this purpose =00
where

= size of the result

o = number of records that overflow

n = number of records in file

Freie Universita

Operations Performed on a Directory

To understand the requirements for a file structure, it is helpful to consider the types of operations that may be
performed on the directory:

Tl 3: Operating Systems and Computer Networks 6.58

File Directories

Contains information about files
- Attributes, e.g., read/write/executable bits, access time
- Ownership, e.g., user/group or Access Control List (ACL)
- Location with regard to logical structure of medium

Directory itself may be implemented as file owned by operating system

Provides mapping between file names and files themselves
- “inodes” in Unix
»One file can have multiple names (“hard links”)

Structure
- List of entries, one for each file
- Sequential file with name of file serving as key
- Initially no support for organizing files (except for naming)
- Forces user to be careful not to use the same name for two different files

Tl 3: Operating Systems and Computer Networks

6.59

Freie Universitat ({18

Multi-Level Directories

Two-level Scheme (historical)
- One directory for each user and a master directory
- Master directory contains entry for each user
- Each user directory is a simple list of files for that user
» Provides no help in structuring collections of files

Master Directory

Subirectory Subirectory Subirectory

Tl 3: Operating Systems and Computer Networks 6.60

Freie Universitat ({18

Multi-Level Directories

Hierarchical / Tree-Structure
- Master directory with user directories underneath it
- Each user directory may have subdirectories and files as entries
- Some operating systems use multiple trees with own identifiers, e.g., drive letters (A:, C:)

Master Directory

Subirectory Subirectory Subirectory

TR

Subirectory Subirectory File

TR

File File File

Tl 3: Operating Systems and Computer Networks 6.61

Hierarchical/Tree-Structured Directory

Files are located by following path from root
(master) directory down various branches

»Pathname of file

Supports several files with same file name as long
as path names differ

Per-process current directory is working directory

Files are referenced relative to current working
directory (CWD)

Tl 3: Operating Systems and Computer Networks

Master Directory

System

User A

Freie Universitat g
@

User_ B

User C

Directory
"User C"

—

Directory "User B”

-

Draw

— Word

Directory
"User A"

]

Directory "Draw"

h 4

.
File Pathname: /User RDraw/ABC
" ABCII
athmame: User B/Word/Unit_A/ABC

L]
ABC

A4

File
HABC"

4

JELLLIT)

(o)
=4 EREA
=11 AT

{VERST

) Berlin

6.62

Freie Universitat (1.8 5

File Sharing

Ry TwoO ISSues arise
¢ when allowing files
to be shared among

a number of users

Management of
Access rights simultaneous
access

Tl 3: Operating Systems and Computer Networks 6.63

Ry,

Freie Universitét (| Sl /¥

Access Rights

None Updating
- User may not know of existence of file - User can modify, delete and add to file’s data
- User is not allowed to read user directory that includes file - Includes creating file, rewriting it and removing all or part of
Knowledge its data |
- User can only determine that file exists and who its owner is Changing protection |
Execution - User can change access rights granted to other users
- User can load and execute program but cannot copy it Deletion _
Reading - User can delete a file
- User can read file for any purpose, including copying and Owner _ _
execution - All rights previously listed
Appending - Grant rights to others using classes of users:
- User can add data to file but cannot modify or delete any of - Specific user
ItS contents - User groups
- Everybody

® Complex access policies implemented with Access Control Lists (ACLS)
» Watch out for semantic differences between files and directories!

Tl 3: Operating Systems and Computer Networks 6.64

Freie Universitat

User Access Rights

Access Matrix

The basic elements are
- subject: an entity capable of accessing objects
- object: anything to which access is controlled
- access right: the way in which an object is accessed by a subject

File 1 File 2 File 3 File4d Accountl Account 2

Own Own o
User A R R quiry
W W Credit
Own I . I .
User B R R W R nqury nqury

Debit Credat

W
R 01: H Inquiry
W W Debit

(a) Access matrix

User C

Tl 3: Operating Systems and Computer Networks

Freie Universitat /LS 2

6.66

Freie Universitat /LS 2

Access Control Lists

File I——»] A > *» C
[};{n R R
A matrix may be decomposed by columns, W "
yielding access control lists
File 2——»] B >
[};{n R
The access control list lists users and their W
permitted access rights '
File 3——» A > B
Own
R W
W
Filed——» B *» C
Own
R R
Al

(b) Access control lists for files of part (a)

Tl 3: Operating Systems and Computer Networks 6.67

Freie Universitit D

Capability Lists

User A—>{File 1 File 3
Decomposition by rows yields capability tickets s i
W W
A capablllt)_/ ticket specifies authorized objects User B ——>Fic] =1 o]
and operations for a user Own
R R W R
W
User C —>{File 1 File 2 > File 4
R R R
W W

(¢) Capability lists for files of part (a)

Tl 3: Operating Systems and Computer Networks 6.68

Freie Universitit :

TS

Questions & Tasks

- Check out the file system on your computer — on the command line and using a window-based Ul! How do you
set certain access rights? Encryption?

- Can a computer use different file systems at the same time for different storage devices?

- We are typically very much used to tree-structures for file systems. Are there alternatives? What are
advantages/disadvantages?

- What is a link/shortcut?

TI 11l - Operating Systems and Computer Networks 6.69

Freie Universitat Berlin

Secondary Storage Management

Secondary storage space must be allocated to files
Must keep track of space available for allocation

Tl 3: Operating Systems and Computer Networks 6.70

Freie Universitit :

TS

File Allocation

On secondary storage, a file consists of a collection of blocks

The operating system or file management system is responsible for allocating blocks to files

The approach taken for file allocation may influence the approach taken for free space management
Space is allocated to a file as one or more portions (contiguous set of allocated blocks)

File allocation table (FAT)
- data structure used to keep track of the portions assigned to a file

Tl 3: Operating Systems and Computer Networks 6.71

Freie Universitét ({1

TS

Preallocation vs Dynamic Allocation

A preallocation policy requires that the maximum size of a file be declared at the time of the file creation request

For many applications it is difficult to estimate reliably the maximum potential size of the file
- Tends to be wasteful because users and application programmers tend to overestimate size

Dynamic allocation allocates space to a file in portions as needed

Tl 3: Operating Systems and Computer Networks 6.72

Secondary Storage Management
File Allocation Methods

Contiguous allocation
- Single set of blocks is allocated to a file at time of creation
- Single entry in file allocation table (starting block, length of file)
»Incurs fragmentation; changing size of a file is expensive

Chained allocation
- Allocation on basis of individual block
- Each block contains a pointer to next block in chain
- Single entry in file allocation table (starting block, length of file)
» Seeking within file (random access) is expensive

Indexed allocation

- File allocation table contains a separate one-level index for each file

- The index has one entry for each portion allocated to file
- The file allocation table contains block number for index

»Avoids problems mentioned above, incurs some storage overhead

Tl 3: Operating Systems and Computer Networks

Freie Universitat G| Sy
e

6.73

Methods of File Allocation

Contiguous File Allocation

- A single contiguous set of blocks is allocated to a file at the time of file creation

- Preallocation strategy using variable-size portions
- Is the best from the point of view of the individual sequential file

— TN
— A
File A

U VI T NN B NN NN

sl el 17 | sl | of]
File B

0| | e e g R E

5[Jws[][] v
File C

2w 2177 200 231 27
File E

NZZ eI I R I

File D

File Allocation Table

File Name Start Block Length
File A 2 3
File B 9 5
File C 18 8
File D 30 2
File E 26 3

3R 3R 32 33]3¢]

»External fragmentation on disk

Tl 3: Operating Systems and Computer Networks

Freie Universitat &

6.74

Freie Universitét (S) Berlin

Methods of File Allocation

-~ N
M— e File Allocation Table
Fil e A File Name Start Block Length
R 1 R] File A 0 3
Fl]E‘ B File B 3 5
- .._.._:._.:::.::: Fil’E C S- S-
sl sl 7l s oF.
sl ol a5 File D 19 2
i 3
1w 11 11 1 077 14 FileE 16

F]]E‘ E

NZZ YRt
2RI [22[]2

25 |26 271 |28
3o |3 |32 |33
R“-—__

Contiguous File Allocation (After Compaction)

Tl 3: Operating Systems and Computer Networks 6.75

Freie Universitt

Methods of File Allocation

Chained Allocation
- Allocation is on an individual block basis
- Each block contains a pointer to the next block in the chain
- The file allocation table needs just a single entry for each file
- No external fragmentation to worry about

- Best for sequential files L)
S— File Allocation Table
File B File Name Start Block Length
o] 1 R a[]
File B 1 5

Sl | ﬁl] TI I 8 9|:| oo oo G500
| || 12 |13 |14

15| |1e]l |17l s8] flio] |

20 |21 f22f f23] ff24] |

5[26]27]] zsi 29[|

30 [|32 |33 a3 |

»Low random access performance ~—

Tl 3: Operating Systems and Computer Networks 6.76

Methods of File Allocation

Tl 3: Operating Systems and Computer Networks

Freie Universitit

File Allocation Table

File Name 5Start Block

Length

File B 0

Chained Allocation After Consolidation

)4 Berlin

6.77

Freie Universitat ﬁk

Methods of File Allocation

Indexed Allocation with Block Portions Index Allocation with Variable-Length Portions
- File Allocation Table - File Allocation Table
File B File Name Index Block File B File Name Index Block
DIZI 1! F;l.e‘B 24 DD IE 2- 3- 4|:| F;lie.B 24
s 1 e[] s[] o[| 7l
||| [u[[z
s | 16| 15[| 16|17
] 1 - Start Block Length
20 |2[|2 h) 20|22 ; -
2526] 7] | [2ol] 7 14 1
I ETE-
~— ___._....----"‘l ‘Shl-____il- 32'
»Indexing overhead »(Good compromise

Tl 3: Operating Systems and Computer Networks 6.78

File Allocation Methods

Freie Universitat

Contiguous Chained Indexed
Preallocation? Necessary Possible Possible
Fixed or variable | Variable Fixed blocks Fixed blocks Variable
size portions?
Portion size Large Small Small Medium
Allocation Once Low to high High Low
frequency
Time to allocate Medium Long Short Medium
File allocation One entry One entry Large Medium
table size

Tl 3: Operating Systems and Computer Networks

6.79

		

		Contiguous

		Chained

		Indexed

		Preallocation?

		Necessary

		Possible

		Possible

		Fixed or variable size portions?

		Variable

		Fixed blocks

		Fixed blocks

		Variable

		Portion size

		Large

		Small

		Small

		Medium

		Allocation frequency

		Once

		Low to high

		High

		Low

		Time to allocate

		Medium

		Long

		Short

		Medium

		File allocation table size

		One entry

		One entry

		Large

		Medium

STIT) 7
5.‘ \T

l)\ Berlin

Freie Universitat

Free Space Management

Just as allocated space must be managed, so must the unallocated space
To perform file allocation, it is necessary to know which blocks are available
A disk allocation table is needed in addition to a file allocation table

Tl 3: Operating Systems and Computer Networks 6.80

Bit Tables

This method uses a vector containing one bit for each block on the disk

Each entry of a O corresponds to a free block, and each 1 corresponds to a block in use

Advantages
- works well with any file allocation method
- it is as small as possible

Tl 3: Operating Systems and Computer Networks

TSIy

&
A

Freie Universitat (1.8

=
N
e
VT

6.81

Freie Universitit :

TS

Chained Free Portions

The free portions may be chained together by using a pointer and length value in each free portion
Negligible space overhead because there is no need for a disk allocation table
Suited to all file allocation methods

Disadvantages
- leads to fragmentation

- every time you allocate a block you need to read the block first to recover the pointer to the new first free block
before writing data to that block

Tl 3: Operating Systems and Computer Networks 6.82

Freie Universitat (.Sl
NG
Ve

Indexing

Treats free space as a file and uses an index table as it would for file allocation
For efficiency, the index should be on the basis of variable-size portions rather than blocks

This approach provides efficient support for all of the file allocation methods

6.83

Tl 3: Operating Systems and Computer Networks

Freie Universitat

Free Block List

- There are two effective
techniques for storing a
small part of the free

Depending on the size of
the disk, either 24 or 32
bits will be needed to
store a single block

Each block is assigned a

number sequentially block list in main

number memory:
(the list of the numbers\ (the size of the free h (the list can be treated\
of all free blocks is block list is 24 or 32 as a push-down stack
maintained in a times the size of the with the first few
reserved portion of the corresponding bit table thousand elements of
gisk and must be stored on the stack kept in main
L y L disk y L memory y

(" the list can be treated)

as a FIFO queue, with

a few thousand entries
from both the head
and the tail of the

| queue in main memory

Tl 3: Operating Systems and Computer Networks 6.84

Freie Universitat (.Sl
TR

Questions & Tasks

- Is secondary storage management only needed for hard disks? What about an SSD?
- What are advantages and disadvantages of contiguous allocation? When/where can it be used?
- What happens with indexed allocation when the index does not fit into a block?

TI 11l - Operating Systems and Computer Networks

6.85

IIIII

$ it £
oy

Y —
fi; : lv 4

Freie Universitat Berlin

UNIX File Management

In the UNIX file system, six types of files are distinguished:

ggg Regular, orordinary
* contains arbitrary data in zero or more data blocks
gm Orecoy
« contains a list of file names plus pointers to associated inodes
gm oPeca
e contains no data but provides a mechanism to map physical devices to file

names

ggg Namedpipes
* an interprocess communications facility

—
« an alternative file name for an existing file

ggg Symbolic finks

» a data file that contains the name of the file it is linked to

Tl 3: Operating Systems and Computer Networks 6.86

Inodes

All types of UNIX files are administered by the OS by
means of inodes

An inode (index node) is a control structure that
contains the key information needed by the operating
system for a particular file

Several file names may be associated with a single
inode

- an active inode is associated with exactly one file
- each file is controlled by exactly one inode

Tl 3: Operating Systems and Computer Networks

Freie Universitat (.S V2 Berlin

File Mode

Link Count
Owner ID
Group ID

File Size

File Addresses
Last Accessed
Last Modified

Inode Modified

16-bit flag that stores access and execution permissions associated with

the file.

12-14 File type (regular, directory, character or block special, FIFO pipe
8-11 Execution flags

2 Owner read permission
Onwher write permission
Owner execute permission
Group read permission
Group write permission
Group execute permission
Other read permission
Other write permission
Other execute permission

[T (N W R T S |

Number of directory references to this inode
Individual owner of file

Group owner associated with this file
Number of bytes in file

39 bytes of address information

Time of last file access

Time of last file modification

Time of last inode modification

6.87

FreeBSD Inode and File Structure

Tl 3: Operating Systems and Computer Networks

mode

owners (2)

timestamps (4)

size

Data

Data

—

direct(0)

Data

direct (1)

Pointers

—

direci{12)

single indirect

double imdirect

triple indirect

block count

reference count

flags (2)

gemeration number

blocksize

extended atty size

extended
atiribute
blocks

Imode

Pointers

Data

Data

Data

Data

Data

Data

Pointers

Data

Data

»
*

Pointers

h J

Pointers

Data

Data

Pointers

Pointers

Data

Pointers

h

Data

Pointers

Pointers

Data

Pointers

Data

Freie Universitat (f

)2 Berlin

6.88

Freie Universitét ({1

S

File Allocation

File allocation is done on a block basis
Allocation is dynamic, as needed, rather than using preallocation
An indexed method is used to keep track of each file, with part of the index stored in the inode for the file

In all UNIX implementations the inode includes a number of direct pointers and three indirect pointers (single,
double, triple)

Tl 3: Operating Systems and Computer Networks 6.89

UNIX Directories and Inodes

Directories are structured in a hierarchical tree

Each directory can contain files and/or other
directories

A directory that is inside another directory is
referred to as a subdirectory

Tl 3: Operating Systems and Computer Networks

Freie Universitit (i

Inode table Directory
il Namel
¢ / .
i2 Name2
i3 Namel
id4 Named

Figure 12.15 UNIX Directories and Inodes

Berlin

6.90

Freie Universitat

Volume Structure

A UNIX file system resides on a single logical disk or disk partition and is laid out with the
following elements:

UNIX File Access Control

=) o
S S >
A
4 QQ *QQ}
ot & X
rw—- | r——| ———

user: tru- €1 T

group::r—— <«

other::-——- =

(a) Traditional UNIX approach (minimal access control list)

Tl 3: Operating Systems and Computer Networks

masked
entries

Freie Universitat

%’

& & 3
c“\‘b SR
& & ¢
\ < Y
rw—- | rw= | ===

user: :rw-
user:joe:rw-
group: :r--—

mask: : rw- -

other::—--- <%

(b) Extended access control list

i ‘% .

6.92

Freie Universitat (| S,

UNIX File Access Control

permissions user group size date file/directory

[|
Idrwxr—xr—xl 2 paul users 1024 Jan 2 Z3:50
drwxr-xr-x 6 root root 1024 Jan 2 22:51 ..
drwxr-xr-x 3 paul users 1024 Jan 8 11:42 grassdata
1rwHIWHEIwx 1 paul users 13 May 6 1998 latex -» /d2/1t
drwx-—----= 2 paul users 1024 Mar & 17:30 mail
drwx——-—-—-— 2 paul users 1024 Feb 4 01:09% projects
—rW= ==Y == 1 paunl users £44344 Dec 9 1998 nations.ps
—I'W=Iw-I-- 1 paul users 21438 Mar 2 21:47 psdmf.txt

| Ny SN iy I S

L other (world) permissions r :read permission
group permissions w : write permission
*

: execute permission (programm)
- : permission not set

user permissions

d :directory
— . file
1 :link {to other file/directory)

Tl 3: Operating Systems and Computer Networks 6.93

ey,

Freie Universitat (.Sl
TR

Access Control Lists in UNIX
FreeBSD allows the administrator to assign a list of UNIX user IDs and groups to a file

Any number of users and groups can be associated with a file, each with three protection bits (read, write,
execute)

A file may be protected solely by the traditional UNIX file access mechanism

FreeBSD files include an additional protection bit that indicates whether the file has
an extended ACL

Tl 3: Operating Systems and Computer Networks 6.94

Freie Universitit (
@

Linux Virtual File System (VFS) [Ceer Proces]
l System call
Presents a single, uniform file system interface System calls i“‘ﬂ‘f"“‘T
to user processes ——
irtnal File

System (VFS)

Defines a common file model that is capable of / l \
Linux Kernel

representing any conceivable file system’s msrs | [poses| [wres | [eners |
general feature and behavior \ //

Page Cache
Assumes files are objects that share basic /
properties regardless of the target file system or Device drivers
the underlying processor hardware
/O request

Y Hardware
Disk controller

Tl 3: Operating Systems and Computer Networks 6.95

The Role of VFS within the Kernel

System calls
using VF5
user interface

User

Tl 3: Operating Systems and Computer Networks

Linux
Virtual

System

VES
system
calls

Mapping
function
to file

system X

System calls
using file
system X
interface

DS

File
System X

Dizk I/O
calls

Files on secondary
storage maintained
by file system X

Freie Universitat (1.8

6.96

Freie Universitit

Example: Linux VFS/Ext2

USER PROCESS‘

The virtual file system is a layer between the / I \
kernel and the file system code SYSTEM CALL INTERFACE
Manages all the different file systems that are VFS

mounted

The real file systems are either built into the
kernel itself or are built as loadable modules

\ Buffer Cache \

v

‘ Device driver
\ LINUX KERNEL/

\i
L | DISK CONTROLLER | ‘

HARDWARE

6.97

Tl 3: Operating Systems and Computer Networks

Freie Universitat (LS Berlin
N /.'»i,'

Ext2: Inodes

Basic concept of the Ext2 system (and of all Unix file systems) is the structure called inode (index

node)
A file is represented by one inode
The length of files is variable but all inodes are of the same length (128 Byte)

g

Smaller files are more quickly accessed than larger files

INODE

12 DIRECT
POINTERS
TO DATA BLOCKS

INDIRECT POINTER
DOUBLE INDIRECT
TRIBLE INDIRECT

VIS

Tl 3: Operating Systems and Computer Networks 6.98

Ext2: Directories

A directory is a file which is formatted with a special format - a list of directory entries

»Also a directory has an inode

55

WELY,

A
=
. ‘F

Freie Universitat

&

)

Directory entries are of variable length 51161 51 fitel li6

40

14

very long_name

12

02

T2

»File names of varying length are supported *

An entry consists of
- Inode number

i7

- Entry length
- Name length

- File name

INODE

TABLE

The first two entries for every directory are always the standard “.” and “..” (“this directory” and “the

parent directory”)

The inode number of the root directory is stored in the super block so the system can access it directly

at any time

Tl 3: Operating Systems and Computer Networks

Ext2: Blocks and Block Groups

A block is the smallest unit that can be allocated on an Ext2 partition

The blocks are grouped into block groups of the same size

BOOT
SECTOR

BLOCK
GROUP ©

BLOCK
GROUP 1

BLOCK
GROUP 2

BLOCK
GROUP N

If possible, data blocks for a file are allocated in the same group as its inode
» Related data is kept physically close, seek time is reduced

Each group stores a copy of critical administrative information

» Data security is increased

All block groups have the same size and are stored sequentially
»The location of a block group can be derived from its index

Tl 3: Operating Systems and Computer Networks

Freie Universitét ({1

ey,

TS

6.100

Freie Universitit L

Ext2: Block Groups

Super block
- Description of basic size and shape of the file system
- Information that allows to use and maintain the system

Group descriptors
- Position of block bitmap, inode bitmap and inode table, number of free data blocks, inodes and
directories
- information used when new data blocks are allocated

Copies in all block groups

»Only super block and group descriptors in block group 0 are actually used, the remaining copies are only used in case of file
system corruption

BOOT BLOCK BLOCK BLOCK BLOCK
SECTOR GROUP © GROUP 1 GROUP 2 GROUP N

DATA
BLOCKS

Tl 3: Operating Systems and Computer Networks

6.101

Ext2: Block Groups

BOOT BLOCK BLOCK BLOCK BLOCK
SECTOR GROUP 0 GROUP 1 GROUP 2 GROUP N

SUPER GROUP

Block bitmap/ One bit per block/inode, indicates whether the block/inode is used or

inode bitmap free
» to keep track of allocated blocks and inodes

Inode table A predefined number of inodes

Data blocks Blocks storing the actual data

Tl 3: Operating Systems and Computer Networks 6.102

S

Freie Universitat LE ‘;{3 Berlin

Related System Calls (Linux)

int open(const char *pathname, 1nt flags)

- Open file at pathname with options ¥lags and return file descriptor
int close(int fd)

- Close file desciptor ¥d

ssize_t read(int fd, void *buf, size t count)
ssize_t write(int fd, const void *buf, size_t count)
- Read/write data at buf with count bytes from/to file descriptor ¥d

off_t Iseek(int fd, off _t offset, Int whence)

- Seek, i.e. change current “cursor position”, in file descriptor ¥d by offset bytes in relation to whence (SEEK SET,
SEEK CUR, SEEK END)

int fentl(int fd, 1nt cmd)
int fecntl(int fd, int cmd, long arg)

int fentl(int fd, int cmd, struct flock *lock)

- Performs operation cmd on file descriptor ¥d, e.g. locking to protects against concurrent access, signaling on /O, ...
»>|s this a well-designed interface?

Tl 3: Operating Systems and Computer Networks 6.103

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls
3. Processes

4. Memory

5. Scheduling

6. 1/O and File System

7. Booting, Services, and Security

Tl 3: Operating Systems and Computer Networks

Freie Universitit £

6.104

	TI III: Operating Systems & Computer Networks �I/O and File System
	Content
	Operating System Design and I/O
	Operating System Design and I/O
	Types of I/O Devices
	Alternatives for I/O Organization
	Evolution of the I/O Function
	I/O Related Programming Techniques
	Comparison of I/O Techniques
	Direct Memory Access
	DMA Configurations
	I/O Buffering
	I/O Buffering Implementations
	I/O Buffering Implementations
	I/O Buffering Implementations
	I/O Buffering Implementations
	Questions & Tasks
	Disk Drive as Mass Storage
	Disk Drive as Mass Storage
	I/O Scheduling
	Positioning the Read/Write Heads
	Disk Scheduling Algorithms
	Disk I/O Scheduling Policies
	First-In, First-Out (FIFO)
	Shortest Service Time First (SSTF)
	SCAN
	C-SCAN (Circular SCAN)
	N-Step-SCAN
	FSCAN
	Comparison of Disk Scheduling Algorithms
	Disk Cache
	RAID
	RAID Levels
	RAID Level 0
	RAID Level 1
	RAID Level 2
	RAID Level 3
	RAID Level 4
	RAID Level 5
	RAID Level 6
	UNIX SVR4 I/O
	Questions & Tasks
	Content
	File System Overview
	File System Overview
	File System Overview
	File System Overview
	Minimal User Requirements
	File System Architecture
	Elements of File Management
	File Organization Types
	The Pile
	The Sequential File
	Indexed Sequential File
	Indexed File
	Direct or Hashed File
	Grades of Performance
	Operations Performed on a Directory
	File Directories
	Multi-Level Directories
	Multi-Level Directories
	Hierarchical/Tree-Structured Directory
	File Sharing
	Access Rights
	User Access Rights
	Access Matrix
	Access Control Lists
	Capability Lists
	Questions & Tasks
	Secondary Storage Management
	File Allocation
	Preallocation vs Dynamic Allocation
	Secondary Storage Management
	Methods of File Allocation
	Methods of File Allocation
	Methods of File Allocation
	Methods of File Allocation
	Methods of File Allocation
	File Allocation Methods
	Free Space Management
	Bit Tables
	Chained Free Portions
	Indexing
	Free Block List
	Questions & Tasks
	UNIX File Management
	Inodes
	FreeBSD Inode and File Structure
	File Allocation
	UNIX Directories and Inodes
	Volume Structure
	UNIX File Access Control
	UNIX File Access Control
	�Access Control Lists in UNIX
	Linux Virtual File System (VFS)
	The Role of VFS within the Kernel
	�Example: Linux VFS/Ext2
	Ext2: Inodes
	Ext2: Directories
	Ext2: Blocks and Block Groups
	Ext2: Block Groups
	Ext2: Block Groups
	Related System Calls (Linux)
	Content

