
3.1

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

H

Shifter controlShifter

ALU

2

N

A B

B busC bus

6
ALU control

Control signals

Memory
control
registers

Enable onto B bus

Write C bus to register

To
and
from
main
memory

Z

SP

LV

CPP

TOS

OPC

PC

MDR

MAR

MBR

Microprocessor Architecture
Microprogramming
Pipelining (superscalar, multithreaded, hazards,
prediction, vector processing)

TI II: Computer Architecture
Microarchitecture

TI II - Computer Architecture

3.2

Content

1. Introduction
- Single Processor Systems
- Historical overview
- Six-level computer architecture

2. Data representation and Computer arithmetic
- Data and number representation
- Basic arithmetic

3. Microarchitecture
- Microprocessor architecture
- Microprogramming
- Pipelining

4. Instruction Set Architecture
- CISC vs. RISC
- Data types, Addressing, Instructions
- Assembler

5. Memories
- Hierarchy, Types
- Physical & Virtual Memory
- Segmentation & Paging
- Caches

TI II - Computer Architecture

3.3

Where are we now? - The Six-Level-Computer

TI II - Computer Architecture

Level 5

Level 3

Level 4

Level 1

Level 0

Level 2

Operating system machine level

ISA (Instruction Set Architecture) level

Microarchitecture level

Assembly language level

Problem-oriented language level

Digital logic level

Translation (Compiler)

Translation (Assembler)

Partial interpretation (operating system)

Hardware

Interpretation (microprogram) or direct execution

Java, C#, C++, C, Haskell, Cobol, …

Java Byte Code, MSIL/CIL

Unix, Windows, iOS

x64, x86, PPC, ARM, …

Netburst, ISSE, ASX, <none>, …

Core i7-3960X, ARM9, PPC620, …

Javac,
VS .NET

JVM, CLR;
JIT/Interpreter

JVM, CLR;
JIT/Interpreter

microprogram/
none

hardware

3.4

Basic architecture of a simple micro processor

TI II - Computer Architecture

register

ALU

bus interface

control unit

control
signals

control signals

data

data

data

instructions

data and address bus

data
(opt.)(opt.)

external
control signals

3.5

Basic architecture of a simple microcomputer

TI II - Computer Architecture

Central processing unit (CPU)

Control
unit

Arithmetic
logical unit

(ALU)

Registers
Main

memory Disk Printer

Bus

I/O devices

… …

3.6

Basic architecture of a simple ALU – see chapter 2

TI II - Computer Architecture

register X register Y

multiplexer

ALU1 ALU2
arithmetic logic

circuit
ALU3

shifter

register Z

cout

over-
flow

sign
zero

s7

s6

s5

s4

s3

s2

s1

cin

s1 s2 ALU1 ALU2
0 0 X Y
0 1 X 0
1 0 Y 0
1 1 Y X

s6 s7 Z
0 0 ALU3
0 1 ALU3 ÷ 2
1 0 ALU3 × 2
1 1 store Z

s3 s4 s5 ALU3
0 0 0 ALU1 + ALU2 +cin

0 0 1 ALU1 – ALU2 – Not(cin)
0 1 0 ALU2 – ALU1 – Not(cin)
0 1 1 ALU1 ∨ ALU2
1 0 0 ALU1 ∧ ALU2
1 0 1 Not(ALU1) ∧ ALU2
1 1 0 ALU1 ⊕ALU2
1 1 1 ALU1 ↔ALU2

3.7

Internal architecture of a simple and simplified microprocessor

TI II - Computer Architecture

registers

execution unit

control unit

system
bus
interface

execution unit
address generation, load
store, branch execution,
memory management

arithmetic logic unit
floating point unit

data bus buffer address bus buffer

controller, decoder

control register

status register

operand register

opcode
registers

clock

address busdata bus control bus

status signals

control signals

system clock

reset

VCC
GND

3.8

CONTROL UNIT

TI II - Computer Architecture

control unit
controller, decoder

control register
opcode
registers

clock status signals

control signals

system clock

reset

3.9

Overview

The control unit controls all the components

The clock generates the system clock for distribution to all components

Opcode registers contain the portion of the instruction that specifies the currently executed operation to be
performed (and maybe some additional opcodes)

The decoder (often micro-programmable) generates all control signals for the components and uses status
signals and opcode as input

The control register stores the current status of the control unit

TI II - Computer Architecture

control unit
controller, decoder

control register
opcode
registers

clock status signals

control signals

system clock

reset

3.10

Clocking / synchronization
Synchronous sequential circuit

- Typically, CPUs use dynamic (clocked) logic
- State is stored in gate capacitances
- Static logic uses flip-flops instead

Minimum clock-speed required
- Otherwise, stored bits are lost due to leakage before the next clock-cycle

Complex clock distribution network on-chip required

TI II - Computer Architecture

control unit
controller, decoder

control register
opcode
registers

clock status signals

control signals

system clock

reset

3.11

Micro programmable control unit
The processor stores a microprogram for each instruction

- Microprogram: sequence of micro instructions
- Normal users cannot change the microprogram

of a processor
- However, manufacturers can update the microprogram

Pure RISC processors typically do not use microprograms but a
fixed sequential circuit

Example micro instruction:

Single bits of the micro instruction represent micro operations, thus a setting of the control signals for the
components

TI II - Computer Architecture

control unit
controller, decoder

control register
opcode
registers

clock status signals

control signals

system clock

reset

next address registers ALU operation ALU operands interface control address generation external control signals

3.12

Phases of instruction execution
Instruction fetch

- Load the next instruction into the opcode register

Instruction decode
- Get the start address of the microprogram representing

the instruction

Execution
- The microprogram controls the instruction execution by sending

the appropriate signals to the other components and evaluating the returned signals

TI II - Computer Architecture

control unit
controller, decoder

control register
opcode
registers

clock status signals

control signals

system clock

reset

3.13

Opcode register
The opcode register consists of several registers because

- different instructions may have different sizes
(1 byte, 2 bytes, 3 bytes …)

- opcode prefetching may speed-up program execution
- while decoding the current instruction the following

instructions may be prefetched
- this supports pipelining, branch prediction etc. (covered later)

TI II - Computer Architecture

control unit
controller, decoder

control register
opcode
registers

clock status signals

control signals

system clock

reset

3.14

Control register
The control register stores the current state
of the control unit.

This influences e.g. instruction decoding, operation mode.

The meaning of the bits depend on the processor.

Examples:
- Interrupt enable bit

- determines if the processor reacts to interrupts
- Virtual machine extensions enable

- enable hardware assisted virtualization on x86 CPUs
- User mode instruction prevention

- if set, certain instructions cannot be executed in user level
- see e.g. https://en.wikipedia.org/wiki/Control_register

TI II - Computer Architecture

control unit
controller, decoder

control register
opcode
registers

clock status signals

control signals

system clock

reset

https://en.wikipedia.org/wiki/Control_register

3.15

Questions & Tasks
- Look at the internal architecture of a simple microprocessor. Where are potential performance bottlenecks?
- Who decides if data flows to an execution or control unit?
- What are advantages / disadvantages of micro programming?
- Name examples of control and status signals to / from the environment!
- Why do we need a reset?
- What limits the clock frequency (min/max)?

TI II - Computer Architecture

3.16

EXECUTION UNIT

TI II - Computer Architecture

execution unit

arithmetic logic unit
floating point unit

status register

operand register

execution unit
address generation, load
store, branch execution,
memory management

3.17

Overview
The execution unit executes all logic and arithmetic
operations controlled by the control unit.

Examples:
- Integer and float arithmetic operations
- Logic operations, shifting, comparisons
- All address related operations
- Speculative operations (covered later)
- Complex memory management, memory protection
- …

Status register informs the control unit about the state of the processor after an operation
- Examples: carry, overflow, zero, sign

Operand registers, accumulators etc.: additional registers for temporary results, fetched operators etc.

TI II - Computer Architecture

execution unit

arithmetic logic unit
floating point unit

status register

operand register

execution unit
address generation, load
store, branch execution,
memory management

3.18

Connection to the control unit
Single bits of a micro instruction directly control e.g. ALU and operand register

TI II - Computer Architecture

execution unit

arithmetic logic unit
floating point unit

status register

operand register

next address registers ALU operation ALU operands interface control address generation external control signals

ALU1 ALU2
arithmetic logic

circuit
ALU3

s3 s4 s5 ALU3
0 0 0 ALU1 + ALU2 +cin
0 0 1 ALU1 – ALU2 – Not(cin)
0 1 0 ALU2 – ALU1 – Not(cin)
0 1 1 ALU1 ∨ ALU2
1 0 0 ALU1 ∧ ALU2
1 0 1 Not(ALU1) ∧ ALU2
1 1 0 ALU1 ⊕ ALU2
1 1 1 ALU1 ↔ ALU2

s3
s4
s5

3.19

Status register (flag register, Condition Code Register CCR)
Single bits representing the state of the processor after an operation are stored in the status register.

Common bits in the status register (often called flags):
- Auxiliary Carry, AF
- Carry Flag, CF
- Zero Flag, ZF
- Even Flag, EF
- Sign Flag, SF
- Parity Flag, PF
- Overflow Flag, OF
- …

TI II - Computer Architecture

execution unit

arithmetic logic unit
floating point unit

status register

operand register

AF CF ZF EF SF PF OF …

3.20

Description of the status flags 1
Auxiliary Carry (AF)

- Indicates a carry between the nibbles (4 bit halves of a byte)
- Used for BCD (binary coded digit) arithmetic
- Also called half-carry flag, digit carry, decimal adjust flag

Carry Flag (CF)
- Indicates a carry produced by the MSBs
- Allows for addition/subtraction of numbers larger than a single word by sequential additions/subtractions

taking the carry into account

Zero Flag (ZF)
- Indicates that the result of an operation was zero
- Used for conditional branches or loops (e.g. if x=y then… is translated into SUB x,y,z; BZ…)

TI II - Computer Architecture

3.21

Description of the status flags 2
Even Flag (EV)

- Indicates if the result is even or odd (LSB)

Sign Flag (SF)
- Indicates if the result is negative (MSB = 1) in two’s complement
- Used e.g. for conditional branches (if x > y then … is translated into SUB y,x,z; BNP…)

Parity Flag (PF)
- Indicates if the number of set bits is even or odd
- Used e.g. for error detection

Overflow Flag (OF)
- Indicates that the result of an operation is too large to be represented (e.g. during addition or subtraction)

TI II - Computer Architecture

3.22

Program Status Word (PSW)
Status register plus control register determine the current state of a processor

- Result of an operation
- Privilege level
- …

Together with the program counter (address of the current or next instruction) these registers determine the state
of the processor at a certain instruction of a program (or process, task, …).

The PSW combines the registers and program counter for simpler manipulation.
- Pushed to stack before context switch (e.g. switch to another process)
- Pulled from stack to continue execution of an interrupted process

Different names and semantics depending on processor architecture…

TI II - Computer Architecture

3.23

Typical (simple) operations of an ALU

Arithmetic
- Addition with/without carry
- Subtraction with/without carry
- Increment/decrement
- Multiplication with/without sign
- Division with/without sign
- Two’s complement

Logical
- NOT
- AND
- OR
- XOR

Shift and rotation
- Shift left
- Shift right
- Rotate right without carry
- Rotate right with carry
- Rotate left without carry
- Rotate left with carry

Memory
- Transfer
- Load, store

TI II - Computer Architecture

3.24

Questions & Tasks
- What do we need a status register for?
- What is the idea behind the PSW? When and why do we have to save it?
- How can we add very, very long integers (that do not fit into the operand registers of the ALU)?
- When do we typically use the flags?
- How do we know when the ALU finished its calculations?

TI II - Computer Architecture

3.25

REGISTERS

TI II - Computer Architecture

3.26

Registers
Extend the registers of the
execution unit

Storage of frequently used
operands

Much faster than the main
storage

TI II - Computer Architecture

registers

execution unit

control unit

system
bus
interface

execution unit
address generation, load
store, branch execution,
memory management

arithmetic logic unit
floating point unit

data bus buffer address bus buffer

controller, decoder

control register

status register

operand register

opcode
registers

clock

address busdata bus control bus

status signals

control signals

system clock

reset

VCC
GND

3.27

Registers
Very fast memory with very low access time (< 1 ns)

Direct selection of single registers via dedicated control lines
- No address decoder / decoding necessary

All registers are on-chip
- No external access necessary with delays due to run-time, multiplexing, buffering etc.

Can offer additional functions
- Increment/decrement
- Shift
- Set to zero, hardwired to zero

Several independent input/output port
- Simultaneous writing and reading of several (different) registers possible
- Today’s superscalar processors are able to write 4 registers and read 8 registers in one clock cycle

TI II - Computer Architecture

registers

registers

3.28

Register file – example

TI II - Computer Architecture

R0

R1

Rn

general purpose registers

(operands, addresses)

USP
SSP
FB
BP
VB
PC program counter

user stackpointer
supervisor stackpointer
frame pointer
base pointer
vectorbase register

status register

register file

special purpose registers

control register
PSW

3.29

Register file – example: Intel 8086 (first generation personal computers)

TI II - Computer Architecture

http://www.righto.com/2020/07/
the-intel-8086-processors-registers.html

The 8086 Family User‘s Manual, Intel, October 1979

http://www.righto.com/2020/07/the-intel-8086-processors-registers.html

3.30

Register file – example: x86-64 (current Intel/AMD processors)

TI II - Computer Architecture

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

3.31

Special registers: base pointer and index
The base pointer contains the start address of a memory
region

- The memory could e.g. represent an array

The index represents the offset relative to the base pointer
- Selection of a single element e.g. of an array

Base pointer + index gives the absolute address of an
element

Programming can be done relative to the base pointer
- This allows for e.g. moving or copying the array without

changing the relative addressing

TI II - Computer Architecture

index register

base pointer

memory

elementi

element0

3.32

Special functions of index registers
Post-increment

- Automatic increment of the register by n after addressing the memory

Pre-decrement
- Automatic decrement of the register by n before addressing the memory

Auto-increment / auto-decrement

Auto-scaling by factor n (1, 2, 4, 8 etc.)
- Used to access memory in bytes/words/…

Saves time as the ALU is freed from this additional operation when using the index!

TI II - Computer Architecture

3.33

The (runtime-) stack
Part of the memory (typically in the main memory) that is organized as stack following the LIFO (Last-In-First-Out)
principle.

Purpose
- Stores the PSW (status of processor, program counter) during subroutine call / interrupt processing
- Parameter passing
- Storage of temporary results

Processors often come with several stacks for different purposes: system stack, user stack, data stack, …

Hardware support
- special register: stack pointer – address of the newest data on the stack

Special instructions to transfer data to/from the stack
- PUSH: transfer the value of a register on top of the stack
- POP (PULL): load a register with the value on top of the stack and remove this element

TI II - Computer Architecture

3.34

Management of a stack pointer
The stack pointer always points to the
address of the element on top of the stack.

Stacks quite often grow from “top-to-bottom”,
i.e., from higher to lower addresses.

PUSH x: decrement the stack pointer, then
load the value of register x on top of the
stack (i.e. into the memory at the address
the stack pointer points to)

POP x: load the value stored at the address
the stack pointer points to into register x,
then increment the stack pointer (i.e. reduce
the size of the stack by one element)

Here we can use index registers with pre-
decrement and post-increment.

TI II - Computer Architecture

PU
SH

: s
ta

ck
 g

ro
w

s

PO
P:

 s
ta

ck
 s

hr
in

ks

nSP n+2

n+1

n

n-1

n-2

memory address

n-1SP n+2

n+1

n

n-1

n-2

PUSH

value of register x

n+1SP n+2

n+1

n

n-1

n-2

POP

value for register x

3.35

ADDRESS GENERATION UNIT

TI II - Computer Architecture

execution unit
address generation, load
store, branch execution,
memory management

3.36

Address generation unit
Specialized part of the execution unit

Basic operation: calculate an address based on control signals from the
control unit and possibly additional content of registers

- e.g. base pointer + index = address

Can be very simple, but also very complex
- MMU (memory management unit)
- many different modes, memory protection, virtual address space
- cache optimization, branch prediction, speculative loading etc.
- covered later!

TI II - Computer Architecture

execution unit
address generation, load
store, branch execution,
memory management

3.37

SYSTEM BUS INTERFACE

TI II - Computer Architecture

system
bus
interface

data bus buffer address bus buffer

address busdata bus control bus

3.38

System bus interface
The system bus interface (Bus Interface Unit, BIU) is the connection of the microprocessor to its environment (all
the other components of a micro computer)

Purpose
- Buffering of addresses and data (operands and instructions)
- Adaptation of clock cycles, bus width, voltages
- Tristate: detaching the processor from the external bus

TI II - Computer Architecture

system
bus
interface

data bus buffer address bus buffer

address busdata bus control bus

3.39

Internal bus system

TI II - Computer Architecture

registers

execution unit

control unit

system
bus
interface

execution unit
address generation, load
store, branch execution,
memory management

arithmetic logic unit
floating point unit

data bus buffer address bus buffer

controller, decoder

control register

status register

operand register

opcode
registers

clock

address busdata bus control bus

status signals

control signals

system clock

reset

VCC
GND

3.40

Internal bus system - optimized
Example

- prefetch Bus
- two operand buses
- result bus

TI II - Computer Architecture

registers

execution unit

control unit

system
bus
interface

execution unit
address generation, load
store, branch execution,
memory management

arithmetic logic unit
floating point unit

data bus buffer address bus buffer

controller, decoder

control register

status register

operand register

opcode
registers

clock

address busdata bus control bus

status signals

control signals

system clock

reset

VCC
GND

3.41

Additional components of a microprocessor
Current microprocessors can comprise:

- Cache memory (fast memory for instructions and operands, covered later)

- Vector processing unit

- Graphics processor

- Signal processing unit

- Neural networks, AI support

- Interrupt controller

- ...

TI II - Computer Architecture

3.42

Questions & Tasks
- Why are registers faster than the main memory?
- How can special purpose registers speed-up the processor?
- What is the purpose of a stack? Why not using a “normal” memory?
- What is the purpose of a base pointer + index? Can’t we directly address elements?
- How can we speed-up the internal processing in micro processors?
- Check the layout of current processors, GPUs, AI processors etc.! Can you find some of the components?

TI II - Computer Architecture

3.43

PERFORMANCE ENHANCEMENT

TI II - Computer Architecture

3.44

Performance enhancements in computer systems
How to enhance the performance of a computer system?

Technology
- Faster technologies, new materials, higher clock frequencies often require redesigns
- Expensive plus physical limitations

Architecture
- Increase parallelism (increased number of transistors, larger bus widths, replicated functional units)
- Multi-core processors go this way in basically all computer systems

TI II - Computer Architecture

3.45

Technological progress

TI II - Computer Architecture

https://www.semiconductor-digest.com/2020/03/10/transistor-count-trends-continue-to-track-with-moores-law/
https://en.wikipedia.org/wiki/Moore%27s_law

https://www.semiconductor-digest.com/2020/03/10/transistor-count-trends-continue-to-track-with-moores-law/
https://en.wikipedia.org/wiki/Moore%27s_law

3.46

STRUCTURAL ENHANCEMENTS
Performance enhancement

TI II - Computer Architecture

3.47

Structural enhancements
Classification of computer architectures according to Flynn

Be aware: historical classification, does not really fit anymore…

Considers parallelism in instructions and data (operands)

SISD (Single Instruction Single Data)
- A single serial stream of instructions operates on data (classical von-Neumann principle)

TI II - Computer Architecture

memory CPUdata

instructions Classical:
IBM-PC, IBM 370,
DEC Micro-VAX,…

3.48

Structural enhancements
SIMD (Single Instruction Multiple Data)

- All processors perform the same instructions on different data (array processor)

TI II - Computer Architecture

memory

data

instructions

data

data

CPU n

CPU 0

CPU 1

Example image processing:
each processor operates on a
part of the picture

3.49

Structural enhancements
MIMD (Multiple Instruction Multiple Data)

- All processors perform different instructions on different data

TI II - Computer Architecture

data

data

data

CPU n

CPU 0

CPU 1

instructions

instructions

instructions

memory

Classical:
IBM 3084, Cray-2,

Today:

Most computer systems
are many core processors,
have specialized
components operating in
parallel etc.

3.50

Structural enhancements
MISD (Multiple Instruction Single Data)

- Several instructions operate on the same data
- Uncommon, but why not: for fault tolerance the same computation can be done in parallel, then the results

compared

Many authors leave this class empty – we can discuss this!

To summarize: this taxonomy does not really help today any longer as almost all of today’s computer systems fall
into the MIMD class…

TI II - Computer Architecture

3.51

PIPELINE PROCESSING

Performance enhancement

TI II - Computer Architecture

3.52

Pipeline processing
Processing of 3 similar jobs with 4 identical sub tasks each.

TI II - Computer Architecture

Serial processing

Job 1

1 2 3 4

Job 3

1 2 3 4

Job 2

1 2 3 4

Pipeline processing

Job 2
1 2 3 4

Job 1
1 2 3 4

Job 3
1 2 3 4

3.53

Example: laundry pipelining
Doing the laundry can be split into 4 separate tasks:

- Put the dirty laundry into the washing machine and start the program
- Put the wet clothes into the tumbler
- Iron, smooth out creases, pleat, fold …
- Put the clothes into the closet

TI II - Computer Architecture

3.54

Laundry pipelining

TI II - Computer Architecture

Jobs 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00

A
B
C
D

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00

A
B
C
D

very realistic …

3.55

Pipelining I
Pipelining

- Subdivision of an operation into several phases or sub operations
- Synchronous execution of the sub operations in different functional units
- Each functional unit is responsible for a single function

All functional units together plus their interconnection is called pipeline.

Instruction pipelining
- The pipeline principle is applied to processor instructions
- Successive instructions are executed one after another with a delay of a single cycle

TI II - Computer Architecture

3.56

Pipelining II
Each stage of a pipeline is called pipeline stage or pipeline segment.

The whole pipeline is clocked in a way that each cycle an instruction can be shifted one step further through the
pipeline.

In an ideal scenario, an instruction is executed in a k stage pipeline within k cycles by k stages (…we will see
problems due to hazards later).

If every clock cycle a new instruction is loaded into the pipeline, then k instructions are executed simultaneously
and each instruction needs k cycles in the pipeline.

TI II - Computer Architecture

3.57

Pipelining III
Latency: Duration of the complete processing of an instruction. This is the time an instruction needs to go through
all k stages of the pipeline.

Throughput: Number of instructions leaving the pipeline per clock cycle. This number should be close to 1 for a
scalar processor.

TI II - Computer Architecture

3.58

Speed-up of Instruction execution
Hypothetical processor without pipeline: n×k cycles
(k stage pipeline, n instructions)

Pipelined processor with a k stage pipeline: k+(n-1) cycles
(under ideal conditions: k cycles latency, throughput of 1)

This results in a speed-up of:

Assuming an infinite number of instructions (n∞) the speed-up of a processor with a k stage pipeline equals k.

TI II - Computer Architecture

nn
k

k
nk

nkS
111 −+

=
−+

=

3.59

Pipelining

TI II - Computer Architecture

1. Instruction
instruction
fetch execution write back

result
instruction
decode

operand
fetch

Sequential execution:

instruction
fetch

instruction
decode . . .

2. Instruction

instruction
fetch execution write back

result
instruction
decode

operand
fetch1. Instruction

Pipelining:

instruction
fetch execution write back

result
instruction
decode

operand
fetch2. Instruction

instruction
fetch execution write back

result
instruction
decode

operand
fetch3. Instruction

3.60

Architecture of a 5-stage pipeline I
Instruction Fetch (IF)

- Load the opcode of the instruction from memory (or instruction cache) into the opcode register
- Increment the program counter

Instruction Decode (ID)
- Generate internal signals based on the opcode or jump to the appropriate microprogram

Operand Fetch (OF)
- Load the operands from the registers into the operand registers of the ALU
- Calculate the effective address using the address generating unit for load/store or branch instructions

TI II - Computer Architecture

3.61

Architecture of a 5-stage pipeline I
Execution (EXE, ALU operation)

- The execution unit performs the requested operation

Result Write Back (WB)
- Write back the result into a register or memory
- Instructions without a result do nothing
- Load/store instructions put the address on the address bus and transfer the data between register and

memory

TI II - Computer Architecture

3.62

Performance enhancement: two pipelines

TI II - Computer Architecture

S1 S2 S3 S4 S5

Instruction
fetch

unit

Instruction
decode
unit

Operand
fetch

unit

Instruction
execution

unit

Write
back

unit

Instruction
decode
unit

Operand
fetch

unit

Instruction
execution

unit

Write
back

unit

3.63

Performance enhancement: specialized EXE-units

TI II - Computer Architecture

S2 S3 S5

Instruction
decode
unit

Operand
fetch

unit
LOAD

Write
back

unit

S1

Instruction
fetch

unit

S4

Floating
point

STORE

ALU

ALU

3.64

Questions & Tasks
- Do you know some more examples for pipelining in your life?
- How much can a pipeline speed-up a single instruction?
- What determines the clock speed of a pipeline?
- What could be bottlenecks in pipeline processing? Think of the tasks of the different stages!

TI II - Computer Architecture

3.65

PIPELINING - TYPES OF PIPELINE HAZARDS

Performance enhancement

TI II - Computer Architecture

3.66

Pipeline Hazards
Pipeline hazards: phenomena that disrupt the smooth execution of a pipeline.

Example:
- If we assume a unified cache with a single read port (instead of separate I- and D-caches)
 a memory read conflict appears among IF and OF stages.

- The pipeline has to stall one of the accesses until the required memory port is available.

A stall is also called a pipeline bubble.

TI II - Computer Architecture

3.67

Three types of pipeline hazards
Data hazards arise because of the unavailability of an operand

- For example, an instruction may require an operand that will be the result of a preceding, still uncompleted
instruction.

Structural hazards may arise from some combinations of instructions that cannot be accommodated because of
resource conflicts

- For example, if the processor has only one register file write port and two instructions want to write in the
register file at the same time.

Control hazards arise from branch, jump, and other control flow instructions
- For example, a taken branch interrupts the flow of instructions into the pipeline

 the branch target must be fetched before the pipeline can resume execution.

Common solution is to stall the pipeline until the hazard is resolved, inserting one or more “bubbles” in the
pipeline.

TI II - Computer Architecture

3.68

DATA HAZARDS

Types of Pipeline Hazards

TI II - Computer Architecture

3.69

Pipeline hazards due to data dependence
After a load instruction the loaded value is not available to the following instruction in the next cycle.

If an instruction needs the result of a preceding instruction it has to wait.

Example:
ADD R1,R2,R1; R1R1+R2
ADD R3,R1,R3; R3R3+R1

TI II - Computer Architecture

3.70

Pipeline hazards due to data dependence
After a load instruction the loaded value is not available to the following instruction in the next cycle.

If an instruction needs the result of a preceding instruction it has to wait.

Example:
ADD R1,R2,R1; R1R1+R2
ADD R3,R1,R3; R3R3+R1

TI II - Computer Architecture

3.71

Data hazards
Dependencies between instructions may cause data hazards when Instr1 and Instr2 are so close that their
overlapping within the pipeline would change their access order to registers.

Three types of data hazards
- Read After Write (RAW)

- Instr2 tries to read operand before Instr1 writes it

- Write After Read (WAR)
- Instr2 tries to write operand before Instr1 reads it

- Write After Write (WAW)
- Instr2 tries to write operand before Instr1 writes it

TI II - Computer Architecture

Instruction
fetch Execution Operand

write back
Instruction

decode
Operand

fetch

Instruction
fetch Execution Operand

write back
Instruction

decode
Operand

fetch

Instr1

Instr2

3.72

Read-after-Write-Conflict (True Dependence)
Using a simple 5 stage pipeline this example shows that the operand fetch phase of the 2nd instruction comes
before the 1st instruction writes back its result
- Delaying the pipeline is necessary!

TI II - Computer Architecture

Instruction
fetch Execution Operand

write back
Instruction

decode
Operand

fetch

1. instruction

Instruction
fetch

Instruction
decode Execution Operand

write back
Operand

fetch

2. instruction

register

Pipeline – bubble
(delay)

time

3.73

Pipeline conflict due to a data hazard

TI II - Computer Architecture

add Reg2,Reg1,Reg2

mul Reg1,Reg2,Reg1

IF ID EX MEM

IF ID EX MEM WB

WB

timecycle time

Reg2 old Reg2 new

wrong register read!

add Reg2,Reg1,Reg2; Reg2  Reg1 + Reg2
mul Reg1,Reg2,Reg1; Reg1  Reg1 * Reg2

3.74

Data hazards in an instruction pipeline

TI II - Computer Architecture

IF ID EX MEM

load Reg1,A

load Reg2,B

add Reg2,Reg1,Reg2

mul Reg1,Reg2,Reg1

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM WB

WB

WB

WB

timecycle time

3.75

Data hazards in an instruction pipeline

TI II - Computer Architecture

IF ID EX MEM

load Reg1,A

load Reg2,B

add Reg2,Reg1,Reg2

mul Reg1,Reg2,Reg1

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM WB

WB

WB

WB

timecycle time

3.76

WAR and WAW - Can they happen in our simple pipeline?
WAR and WAW can’t happen in the simple 5 stage pipeline, because:

- All instructions take 5 stages
- Register reads are always in stage 2
- Register writes are always in stage 5

WAR and WAW may happen e.g. in superscalar pipes.

TI II - Computer Architecture

3.77

Solutions for data hazards from true data dependences
Software solution (Compiler scheduling)

- putting no-op (NOP) instructions after each instruction that may cause a hazard

- instruction scheduling
 rearrange code to reduce no-ops

TI II - Computer Architecture

3.78

Software solutions
Insertion of NOP instructions by the compiler

TI II - Computer Architecture

LOAD

NOP . . .LOAD . . .

ADD . . .NOP LOAD

instr 4 NOPSUB ADD

. . . SUBinstr 5 instr 4

SUB -- -- --ADD NOP

instr 5 ADDinstr 4 SUB

LOAD R1, <addr>
NOP
ADD R1, R2, R3
SUB R4, R5, R6

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution

3.79

Software solutions
Reordering of instructions by the compiler

TI II - Computer Architecture

LOAD

SUB . . .LOAD . . .

ADD . . .SUB LOAD

instr 4 -- -- --ADD SUB

. . . ADDinstr 5 instr 4

instr 5 SUBinstr 4 ADD

LOAD R1, <addr>
SUB R4, R5, R6
ADD R1, R2, R3

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution

3.80

Hardware solutions
Hardware solutions: Hazard detection logic necessary!

Delay Insertion
- Stalling/Interlocking: stall pipeline for one or more cycles

Bypass techniques
- Forwarding:

- Result Forwarding
Example: The result in ALU output of Instr1 in EX stage can immediately be forwarded back to ALU input of
the EX stage as an operand for Instr2

- Load Forwarding
Example: The load memory data register from MEM stage can be forwarded to ALU input of EX stage

- Forwarding with interlocking: Assuming that Instr2 is data dependent on the load instruction Instr1 then Instr2
has to be stalled until the data loaded by Instr1 becomes available in the load memory data register in MEM
stage.

- Even when forwarding is implemented from MEM back to EX, one bubble occurs that cannot be removed.

TI II - Computer Architecture

3.81

Questions & Tasks
- Are hazards rather rare events or common? Think of typical programs, processes, operating systems, tasks of

a computer etc.!
- Can we remove a true dependence? What can we do?
- Why is result forwarding really helpful? Think of typical program sequences!
- WAR and WAW sound strange. Find examples when they may happen!

TI II - Computer Architecture

3.82

Side Note: The MIPS Pipeline
As defined in Patterson & Hennessy, Computer Organization and Design – The Hardware/Software Interface, Section 4.5
Instruction Fetch (IF)

- Fetch instruction from memory. [ main memory!]

Instruction Decode (ID)
- Read registers while decoding the instruction. The regular format of MIPS instructions allows reading and

decoding to occur simultaneously.

Execution (EXE)
- Execute the operation [all arithmetical and logical operations] or calculate an address [load and store].

Memory Access (MEM)
- Access an operand in data memory. [Only relevant for load/store instructions, otherwise passive stage]

Write Back (WB)
- Write the result into a register.

TI II - Computer Architecture

3.83

Side Note: The MIPS Pipeline

Source: Ben Juurlink, TU Berlin, lecture slides for „Advanced Computer Architectures“, 2015

Write affected register during first half of write back stage
 Read operand registers during second half of instruction decode stage

TI II - Computer Architecture

3.84

Data hazard: Hardware solution by stalling

TI II - Computer Architecture

ADD R2,R1,R2

time

MUL R1,R2,R1

3.85

Data hazard: Hardware solution by stalling

TI II - Computer Architecture

ADD R2,R1,R2

time

MUL R1,R2,R1

HW-”bubbles”

3.86

Data hazard: Hardware solution by forwarding

TI II - Computer Architecture

ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

OR R8,R1,R9

3.87

Data hazard: Hardware solution by forwarding

TI II - Computer Architecture

ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

OR R8,R1,R9

3.88

Data hazard: Hardware solution by forwarding

TI II - Computer Architecture

ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

OR R8,R1,R9

3.89

Data hazard: Hardware solution by forwarding

TI II - Computer Architecture

ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

 Solution: Don’t wait until result is written back to register, but forward it to the next stage immediately

OR R8,R1,R9

3.90

Data hazard: Hardware solution by forwarding

TI II - Computer Architecture

ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

 Result Forwarding from EX to EX

OR R8,R1,R9

3.91

Result forwarding

Example:

The result in ALU output of Instr1 in EX stage can immediately be forwarded back to ALU input of EX stage as an
operand for Instr2

TI II - Computer Architecture

3.92

Data hazard: Hardware solution by forwarding

TI II - Computer Architecture

ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

 Forward from MEM to EXE

OR R8,R1,R9

3.93

Load forwarding

Example:

The load memory data register from MEM stage can be forwarded to ALU input of EX stage.

TI II - Computer Architecture

3.94

Load-use data hazard

TI II - Computer Architecture

LW R1,$0

time

SUB R4,R1,R3

3.95

Load-use data hazard

TI II - Computer Architecture

LW R1,$0

time

SUB R4,R1,R3

 Data hazard even with forwarding!

3.96

Load-use data hazard

TI II - Computer Architecture

LW R1,$0

time

SUB R4,R1,R3

 Need stalling AND forwarding

3.97

Forwarding with interlocking
Assuming that Instr2 is data dependent on the load instruction Instr1.

Then, Instr2 has to be stalled until the data loaded by Instr1 becomes available in the load memory data register in
MEM stage.

 Even when forwarding is implemented from MEM back to EX, one bubble occurs that cannot be removed.

TI II - Computer Architecture

3.98

Bypass techniques

TI II - Computer Architecture

Operand register BOperand register A

ALU

Result register In
te

rn
al

 D
at

a
bu

s

Control lines from
the control unit

Bypass 1

Registers

Bypass 2 Load forwarding

from cache or main memory

Result forwarding

3.99

Example

TI II - Computer Architecture

LOAD <Address>, R1 R1  (<Address>)
ADD R1, R2, R3 R3  R1 + R2
SUB R4, R5, R6 R6  R4 - R5

During the execution phase
of the ADD instruction the
result of the LOAD is written
into the register and, thus,
the bypass is needed to
provide the result early
enough.

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution

LOAD

ADD . . .LOAD . . .

SUB . . .ADD LOAD

instr 1 -- -- --SUB ADD

. . . ADDinstr 1 SUB

. . . SUB. . . instr 1

Bypass

Yet another (simple) pipeline…

3.100

Questions & Tasks
- Bypassing looks fine – what is the price to pay?
- What is an assumption for load forwarding to work? Think of memory access times!

TI II - Computer Architecture

3.101

STRUCTURAL HAZARDS

Types of Pipeline Hazards

TI II - Computer Architecture

3.102

Three types of pipeline hazards
Data hazards arise because of the unavailability of an operand

- For example, an instruction may require an operand that will be the result of a preceding, still uncompleted
instruction.

Structural hazards may arise from some combinations of instructions that cannot be accommodated because of
resource conflicts

- For example, if the processor has only one register file write port and two instructions want to write in the
register file at the same time.

Control hazards arise from branch, jump, and other control flow instructions
- For example, a taken branch interrupts the flow of instructions into the pipeline

 the branch target must be fetched before the pipeline can resume execution.

Common solution is to stall the pipeline until the hazard is resolved, inserting one or more “bubbles” in the
pipeline.

TI II - Computer Architecture



3.103

Pipeline bubble due to a structural hazard

TI II - Computer Architecture

load Reg2,A

mul Reg3,Reg4,Reg5

IF ID EX MEM

IF ID EX MEM WB

WB

timecycle time

Register file

WB

WB

3.104

Solutions to the structural hazard
Arbitration with interlocking: hardware that performs resource conflict arbitration and interlocks one of the
competing instructions

Resource replication: In the example a register file with multiple write ports would enable simultaneous writes.

- However, now output dependencies may arise!
- Therefore, additional arbitration and interlocking necessary
- or the first (in program flow) value is discarded and the second used.

TI II - Computer Architecture

3.105

CONTROL HAZARDS

Types of Pipeline Hazards

TI II - Computer Architecture

3.106

Three types of pipeline hazards
Data hazards arise because of the unavailability of an operand

- For example, an instruction may require an operand that will be the result of a preceding, still uncompleted
instruction.

Structural hazards may arise from some combinations of instructions that cannot be accommodated because of
resource conflicts

- For example, if the processor has only one register file write port and two instructions want to write in the
register file at the same time.

Control hazards arise from branch, jump, and other control flow instructions
- For example, a taken branch interrupts the flow of instructions into the pipeline

 the branch target must be fetched before the pipeline can resume execution.

Common solution is to stall the pipeline until the hazard is resolved, inserting one or more “bubbles” in the
pipeline.

TI II - Computer Architecture





3.107

Hazards due to control dependence
Conditional Jumps and branches stop linear program execution, program might continue elsewhere

Jump instruction normally detected in the Instruction Decode stage of the pipeline
- If a jump is detected, the pipeline already contains instructions, that are immediately behind this instruction

TI II - Computer Architecture

3.108

Hazards due to control dependence
Jumps are very common in programs

TI II - Computer Architecture

C Syntax

n=10
s=0
for(i=0; i<n; i++) {

s = s + i;
}
…

MMIX Syntax
LOC #100

s IS $1
i IS $2
test IS $3
n IS 10

Main SETL s,0
SETL i,0

For ADD s,s,i
ADD i,i,1
SUB test,i,n
BNZ test,For
...
TRAP 0,Halt,0

3.109

Example

TI II - Computer Architecture

ADC R4,R5,R4 ; R4  R4 + R5 + C

CMP R1,R2 ; R1 = R2 ?

BEQ Label ; PC  <Label Adresse>

ADD R3,R1,R2 ; R3  R1 + R2

Label: SUB R6,R4,R5 ; R6  R4 - R5

SLL R0 ; R0  shift_left(R0)

3.110

Example

TI II - Computer Architecture

The ADD instruction is still in the pipeline and therefore
executed before the jump is realized!

ADC

BEQ . . .ADC . . .

ADD . . .BEQ ADC

SLL -- -- --SUB ADD

. . . SUB. . . SLL

SUB ADCADD -- -- --

. . . ADDSLL SUB

CMP R1,R2
ADC R4,R5,R4
BEQ Label
ADD R3,R1,R2

Label: SUB R6,R4,R5
SLL R0

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution

3.111

Solutions
Hardware Solutions

Pipeline Flushing
- Flush (empty) pipeline before realizing the jump

Speculative Branch
- In case of a conditional jump: Estimate result of condition and load pipeline (speculative)
- Wrong speculation: Pipeline Flushing
- Branch prediction used in most modern processors

TI II - Computer Architecture

3.112

Simple solutions
Hardware Interlocking

- This is the simplest way to deal with control hazards: the hardware must detect the branch and apply
hardware interlocking to stall the next instruction(s).

Software Solutions
- Insertion of NOP instructions by the compiler after every branch
- Re-Ordering of instructions by the compiler
- Instead of NOPs, instructions that will be executed anyway and that do not influence the branch condition will

be put into the pipeline immediately after the branch instruction (early days of RISC processors)

TI II - Computer Architecture

3.113

Solution: Decide branch direction earlier
Flushing or Locking is often not acceptable

Reordering is often not possible

Calculation of the branch direction and of the branch target address should be done in the pipeline as early as
possible.

Best solution
- Already in ID stage after the instruction has become recognized as branch instruction.
- or even earlier: if history shows that address contains a branch

TI II - Computer Architecture

3.114

Branch Prediction
Branch prediction foretells the outcome of conditional branch instructions, excellent branch handling techniques
are essential for today's and for future microprocessors.

IF stage finds a branch instruction
- predict branch direction

The branch delay slots are speculatively filled with instruction
- of the consecutively following path
- of the path at the target address

After resolving of the branch direction
- decide upon correctness of prediction

In case of misprediction  discard wrongly fetched instructions
- rerolling when a branch is mispredicted is expensive:

- 9 cycles on Itanium
- 11 or more cycles in the Pentium II

TI II - Computer Architecture

3.115

Branch-Target Buffer or Branch-Target Address Cache
The Branch Target Buffer (BTB) or Branch-Target Address Cache (BTAC) stores branch and jump target
addresses.

It should be known already in the IF stage whether the as-yet-undecoded instruction is a jump or branch.

The BTB is accessed during the IF stage.

The BTB consists of a table with branch addresses, the corresponding target addresses, and prediction
information.

Variations
- Branch Target Cache (BTC): stores one or more target instructions additionally.
- Return Address Stack (RAS): a small stack of return addresses for procedure calls and returns is used

additional to and independent of a BTB.

TI II - Computer Architecture

3.116

Branch-Target Buffer or Branch-Target Address Cache

TI II - Computer Architecture

Branch address Target address Prediction Bits

3.117

Two Basic Techniques of Branch Prediction
Static Branch Prediction

- The prediction direction for an individual branch remains always the same.

Dynamic Branch Prediction
- The prediction direction depends upon previous (the “history” of) branch executions.

TI II - Computer Architecture

3.118

Static Branch Prediction
The prediction direction for an individual branch remains always the same!

- The machine cannot dynamically alter the branch prediction (in contrast to dynamic branch prediction which is
based on previous branch executions).

Static branch prediction comprises
- machine-fixed prediction (e.g. always predict taken)
- compiler-driven prediction.

If the prediction followed the wrong instruction path, then the wrongly fetched instructions must be squashed from
the pipeline.

TI II - Computer Architecture

3.119

Static Branch Prediction - machine-fixed
Wired taken/not-taken prediction

- The static branch prediction can be wired into the processor by predicting that all branches will be taken (or all
not taken).

Direction based prediction
- Backward branches are predicted to be taken and forward branches are predicted to be not taken
 helps for loops

TI II - Computer Architecture

3.120

Static Branch Prediction - compiler-based
Opcode bit in branch instruction allows the compiler to reverse the hardware prediction.

There are two approaches the compiler can use to statically predict which way a branch will go:
- it can examine the program code, or
- it can use profile information (collected from earlier runs)

TI II - Computer Architecture

3.121

Dynamic Branch Prediction
In dynamic branch prediction the prediction is decided on the computation history of the program execution.

In general, dynamic branch prediction gives better results than static branch prediction, but at the cost of
increased hardware complexity.

Example: One-bit predictor

TI II - Computer Architecture

Formerly used: Alpha 21064 (1bit in instruction cache), Motorola PowerPC 604

Not Taken

Not Taken

Taken

Taken

Predict
Taken

Predict
Not

Taken

3.122

One-bit vs. Two-bit Predictors
A one-bit predictor correctly predicts a branch at the end of a loop iteration, as long as the loop does not exit.

In nested loops, a one-bit prediction scheme will cause two mispredictions for the inner loop:
- One at the end of the loop, when the iteration exits the loop instead of looping again, and
- One when executing the first loop iteration, when it predicts exit instead of looping.

Such a double misprediction in nested loops is avoided by a two-bit predictor scheme.

Two-bit Prediction: A prediction must miss twice before it is changed when a two-bit prediction scheme is applied.

TI II - Computer Architecture

3.123

Two-bit Predictors
(Hysteresis Scheme)

TI II - Computer Architecture

Predict
Strongly
Not Taken

00

Predict
Weakly

Not Taken
01

Predict
Weakly
Taken

10

Predict
Strongly
Taken

11

Taken

Not Taken

Taken

Not Taken

Taken
Not Taken

Taken

Not Taken

Realization: Intel XScale, Sun UltraSPARC IIi

3.124

Two-bit Predictors
(Saturation Counter Scheme)

TI II - Computer Architecture

Predict
Strongly
Not Taken

00

Predict
Weakly

Not Taken
01

Predict
Weakly
Taken

10

Predict
Strongly
Taken

11

Taken

Not Taken

Taken

Not Taken

Taken
Not Taken

Taken

Not Taken

3.125

Predicated Instructions
Provide predicated or conditional instructions and one or more predicate registers.

Predicated instructions use a predicate register as additional input operand.

The Boolean result of a condition testing is recorded in a (one-bit) predicate register.

Predicated instructions are fetched, decoded, and placed in the instruction window like non predicated
instructions.

TI II - Computer Architecture

3.126

Predication Example
if (x == 0) { /* branch b1 */

a = b + c;
d = e - f;

}
g = h * i; /* instruction independent of branch b1 */

(Pred = (x == 0)) /* branch b1: Pred is set to true if x equals 0 */

if Pred then a = b + c; /* The operations are only performed */

if Pred then d = e - f; /* if Pred is set to true */

g = h * i;

TI II - Computer Architecture

3.127

Predication
Pro

- Able to eliminate a branch and therefore the associated branch prediction  increasing the distance between
mispredictions.

- The run length of a code block is increased  better compiler scheduling.

Contra
- Predication affects the instruction set, adds a port to the register file, and complicates instruction execution.
- Predicated instructions that are discarded still consume processor resources; especially the fetch bandwidth.

Predication is most effective when control dependencies can be completely eliminated, such as in an
if-then with a small then body.

The use of predicated instructions is limited when the control flow involves more than a simple
alternative sequence.

TI II - Computer Architecture

3.128

Branch handling techniques and implementations

TI II - Computer Architecture

Technique Implementation examples

No branch prediction Intel 8086

Static prediction

always not taken Intel i486

always taken Sun SuperSPARC

backward taken, forward not taken HP PA-7x00

semistatic with profiling early PowerPCs

Dynamic prediction

1-bit DEC Alpha 21064, AMD K5

2-bit PowerPC 604, MIPS R10000, Cyrix 6x86 and M2,
NexGen 586

two-level adaptive Intel PentiumPro, Pentium II, AMD K6

Hybrid prediction DEC Alpha 21264

Predication Intel/HP Merced, most DSPs, ARM processors, TI
TMS320C6201, …

Eager execution (limited) IBM mainframes: IBM 360/91, IBM 3090

Disjoint eager execution none yet

3.129

Performance of branch handling techniques

TI II - Computer Architecture

Class Technique Rough Accuracy (Spec 89)

Static always not taken 40%

always taken 60%

backward taken, forward not taken 65%

Software Static analysis 70%

Profiling 75%

Dynamic 1-bit 80%

2-bit 93%

two-level adaptive 95 – 97.5%

Adapted from: Dave Archer, Branch
Prediction: Introduction and Survey, 2007

3.130

Pipelining basics: Summary
Hazards limit performance

- Structural hazards: need more HW resources
- Data hazards: need detection and forwarding
- Control hazards: early evaluation, delayed branch, prediction

Compilers may reduce cost of data and control hazards
- Compiler Scheduling
- Branch delay slots
- Static branch prediction

Increasing length of pipe increases impact of hazards

Pipelining helps instruction bandwidth, not latency

Multi-cycle operations (floating-point) and interrupts make pipelining harder

TI II - Computer Architecture

3.131

Questions & Tasks
- How can we resolve structural hazards?
- What are the limits of branch prediction? Think of multi-tasking, interrupts, multi-user etc.
- Why can compilers sometimes optimize branches better than the processor?
- A k-stage pipeline can result in a speed-up of k. So why not having very long pipelines?

TI II - Computer Architecture

3.132

VECTOR PIPELINING

Pipelining

TI II - Computer Architecture

3.133

Vektor Pipelining
Vector processor: a processor operating on a one-dimensional array of floating point numbers using a vector
pipeline in the execution unit following the SIMD principle (single instruction, multiple data)

Vector = Array of floating point numbers (≠ math. vector!)

Operation on single values often called scalar processing.

Vector computers often contain scalar units besides many vector processing units – or CPUs may contain several
vector units operating in parallel to scalar units.

Today, this approach is common in graphic processors but also standard CPUs (MMX, SSE, AVX, AltiVec, …)

TI II - Computer Architecture

3.134

Example: Addition
A(J) = B(J) + C(J), J = 1,2,...,N

Component wise addition of the vectors B and C, i.e. the single floating point numbers of the arrays B(1),...,B(N)
and C(1),...,C(N), with a single instruction and storing the result in the result vector A.

The execution of the operation is overlapping, i.e. first the operation of B(1)+C(1) starts, then B(2)+C(2)etc.

Typical stages in the vector pipeline:
- Operand fetch
- Exponent alignment
- Shift of significand
- Addition
- Normalization
- Rounding
- Write back

TI II - Computer Architecture

stage 1

stage 2

stage 3

stage 4

cycle

time

3.135

Characteristics of vector pipelines
A single vector instruction allows the processing of two arrays of floating point numbers using this pipeline.

No separate address calculations for each operand needed (as this is the case for scalar units) – special
hardware fetches the elements of an array from registers/memory.

Useful only for “longer” vectors as the pipeline need some time to fill before it produces a result per cycle.
- “long” depends on the architecture

No dependency checking needed between the operations as they are independent by definition (different
elements of an array).

One can think of an enhanced EXE stage for floating point operations in CPUs.

TI II - Computer Architecture

3.136

Chaining of vector pipelines
Chaining

- Apply the pipelining idea to a sequence of vector instructions.
- Forward the results of each element to the next pipeline immediately.

TI II - Computer Architecture

B(J)*C(J)+D(J), J=1,2,...,N B*C->V

V+D

cycle

time

3.137

History: chaining of 4 pipelines (Cray 1, 1976)

TI II - Computer Architecture

Register file
V2

Register file
V3

Register file
V4

Main memory Register file
V0

Register file
V1

Register file
V5

Shifting
(4 stages)

AND
(2 stages)

Addition
(3 stages)

Memory
access

(7 stages)

https://en.wikipedia.org/wiki/Cray-1

https://en.wikipedia.org/wiki/Cray-1

3.138

Simple Example
Component-wise multiplication of vectors
- A(i)= B(i) * C(i), i = 1, …, 100

Standard processor
i = 1
b = b(i)
c = c(i)
a = b * c
a(i) = a
i++
if i<101

TI II - Computer Architecture

Vector processor
vload b, 1, 100
vload c, 1, 100
vmult a, b, c
vstore a, 1, 100

3.139

SUPERSCALAR PROCESSORS

Pipelining

TI II - Computer Architecture

3.140

Superscalar processors
Definition

- Superscalar machines are distinguished by their ability to (dynamically) issue multiple instructions each clock
cycle from a conventional linear instruction stream.

Consequence
- value of CPI (cycles per instructions) << 1.0 possible!

TI II - Computer Architecture

3.141

Superscalar Pipeline
Instructions in the instruction window are free from control dependences due to branch prediction, and free from
name dependences due to register renaming.

So, only (true) data dependencies and structural conflicts remain to be solved.

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

In
st

ru
ct

io
n

W
in

do
w

Issue

R
es

er
va

tio
n

St
at

io
ns

Execution

R
es

er
va

tio
n

St
at

io
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.142

Sections of a Superscalar Pipeline
The ability to issue and execute instructions out-of-order partitions a superscalar pipeline in three distinct sections

- in-order section with the instruction fetch, decode and rename stages - the issue is also part of the in-order
section in case of an in-order issue,

- out-of-order section starting with the issue in case of an out-of-order issue processor, the execution stage,
and usually the completion stage, and again an

- in-order section that comprises the retirement and write-back stages.

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

Ins
tru

cti
on

 W
ind

ow

Issue

Re
ser

vat
ion

Sta

tio
ns

Execution

Re
ser

vat
ion

Sta

tio
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.143

Fetch, decode, rename
Fetch
- Get a bunch of commands

Decode
- Decode the new instruction

Rename
- Externally visible register are mapped to internal shadow registers
 Avoid WAW/WAR-conflicts
 Mapping stored in a rename map (Intel: alias table)
 core execution units free from name dependencies due to register renaming.

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

Ins
tru

cti
on

 W
ind

ow

Issue

Re
ser

vat
ion

Sta

tio
ns

Execution

Re
ser

vat
ion

Sta

tio
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.144

Issue
The issue logic examines the waiting instructions in the instruction window and simultaneously assigns (issues,
dispatches) a number of instructions to the functional units (FUs) up to a maximum issue bandwidth.

Several instructions can be issued simultaneously (the issue bandwidth).

The program order of the issued instructions is stored in the reorder buffer.

Instruction issue from the instruction buffer can be:
- in-order (only in program order) or out-of-order

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

Ins
tru

cti
on

 W
ind

ow

Issue

Re
ser

vat
ion

Sta

tio
ns

Execution

Re
ser

vat
ion

Sta

tio
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.145

Reservation Station(s)
A reservation station is a buffer for a single instruction with its operands.

Reservation stations can be central to a number of FUs
or each FU has one or more own reservation stations.

Instructions await their operands in reservation stations.

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

Ins
tru

cti
on

 W
ind

ow

Issue

Re
ser

vat
ion

Sta

tio
ns

Execution

Re
ser

vat
ion

Sta

tio
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.146

Dispatch
An instruction is said to be dispatched from a reservation station to the FU when all operands are available, and
execution starts.

If all its operands are available during issue and the FU is not busy, an instruction is immediately dispatched,
starting execution in the next cycle after the issue.

So, the dispatch is usually not a pipeline stage.

An issued instruction may stay in the reservation station for zero to several cycles.

Dispatch and execution is performed out of program order.

Other authors interchange the meaning of issue and dispatch or use different semantic.

TI II - Computer Architecture

3.147

Completion
When the FU finishes the execution of an instruction and the result is ready for forwarding and buffering, the
instruction is said to complete.

Instruction completion is out of program order.

During completion the reservation station is freed and the state of the execution is noted in the reorder buffer.

The state of the reorder buffer entry can denote an interrupt occurrence.

The instruction can be completed and still be speculatively assigned, which is also monitored in the reorder buffer.

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

Ins
tru

cti
on

 W
ind

ow
Issue

Re
ser

vat
ion

Sta

tio
ns

Execution

Re
ser

vat
ion

Sta

tio
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.148

Commitment
After completion, operations are committed in-order.

An instruction can be committed:
- if all previous instructions due to the program order are already committed or can be committed in the same

cycle,
- if no interrupt occurred before and during instruction execution, and
- if the instruction is no more on a speculative path.

By or after commitment, the result of an instruction is made permanent in the architectural register set,
- usually by writing the result back from the rename register to the architectural register.

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

Ins
tru

cti
on

 W
ind

ow
Issue

Re
ser

vat
ion

Sta

tio
ns

Execution

Re
ser

vat
ion

Sta

tio
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.149

Precise Interrupt / Precise Exception
If an interrupt occurred, all instructions that are in program order before the interrupt signaling instruction are
committed, and all later instructions are removed.

Precise exception means that all instructions before the faulting instruction are committed and those after it can
be restarted from scratch.

Depending on the architecture and the type of exception, the faulting instruction should be committed or removed
without any lasting effect.

TI II - Computer Architecture

3.150

Retirement
An instruction retires when the reorder buffer slot of an instruction is freed either

- because the instruction commits (the result is made permanent) or
- because the instruction is removed (without making permanent changes).

A result is made permanent by copying the result value from the rename register to the architectural register.
- This is often done in an own stage after the commitment of the instruction with the effect that the rename

register is freed one cycle after commitment.

TI II - Computer Architecture

Instruction
Fetch

. . .

Instruction
Decode

and
Rename

. . .

Ins
tru

cti
on

 W
ind

ow

Issue

Re
ser

vat
ion

Sta

tio
ns

Execution

Re
ser

vat
ion

Sta

tio
ns

Execution

. . .

Retire
and

Write
Back

functional units

Instruction
Fetch

3.151

Questions & Tasks
- Where do we have vector pipelines today?
- What makes vector pipelines so efficient?
- How do super scalar pipelines avoid WAR and WAW hazards?
- What does the programmer or compiler see from the super scalar pipeline or renaming registers? How is the

ISA affected?
- Where does the vector pipeline fit into a super scalar pipeline?

TI II - Computer Architecture

3.152

Example: Dynamic Scheduling for an FP-Unit using Tomasulo’s Algorithm
Roberto Tomasulo, IBM, 1967 (https://en.wikipedia.org/wiki/Tomasulo_algorithm)

Key features: hardware support for register renaming, all EXE units have a reservation station, a common data
bus (CDB) broadcasts results to all reservation stations

Common in many of today’s processors

Simplifications in the following example:
- Single Issue Processor (in-order)
- Instruction Queue can hold 4 instructions from ID-Unit
- up to 3 instructions can be fetched and decoded in parallel
- 1 FP Adder with 3 Reservation Stations
- 1 FP Multiplier with 2 Reservation Stations
- no speculative execution ( no Reorder Buffer needed)

- only 4 FP registers

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Tomasulo_algorithm

3.153

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit FP Registers

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

Source: Ben Juurlink, TU Berlin, lecture slides for „Advanced Computer Architectures“, 2015

ID RS Value

F0

F1

F2

F3

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

3.154

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit FP Registers

FP Adder FP Multiplier

FP Operation Bus

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

ID RS Value

F0

F1

F2

F3

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

3.155

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit FP Registers

FP Adder FP Multiplier

FP Operation Bus

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

Operand
Busses

ID RS Value

F0

F1

F2

F3

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

3.156

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit FP Registers

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

ID RS Value

F0

F1

F2

F3

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

Operand
Busses

3.157

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit FP Registers

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

ID RS Value

F0 0.0

F1 1.0

F2 2.0

F3 3.0

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

Operand
Busses

3.158

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

SUB.D F0,F1,F2

ADD.D F3,F0,F2

MUL.D F0,F1,F2

Instruction
Queue

from ID Unit FP Registers

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

ID RS Value

F0 0.0

F1 1.0

F2 2.0

F3 3.0

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

Operand
Busses

3.159

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

SUB.D F0,F1,F2

ADD.D F3,F0,F2

Instruction
Queue

from ID Unit

ID RS Value

F0 Mul1 0.0

F1 1.0

F2 2.0

F3 3.0

FP Registers

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 * 0 1.0 0 2.0 1

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

Operand
Busses

3.160

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

SUB.D F0,F1,F2

Instruction
Queue

from ID Unit

ID RS Value

F0 Mul1 0.0

F1 1.0

F2 2.0

F3 Add1 3.0

FP Registers

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 + Mul1 n/a 0 2.0 1

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 * 0 1.0 0 2.0 1

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

Operand
Busses

3.161

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit

ID RS Value

F0 Add2 0.0

F1 1.0

F2 2.0

F3 Add1 3.0

FP Registers

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 - 0 1.0 0 2.0 1

Add1 + Mul1 n/a 0 2.0 1

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 * 0 1.0 0 2.0 1

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

Operand
Busses

3.162

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit

ID RS Value

F0 -1.0

F1 1.0

F2 2.0

F3 Add1 3.0

FP Registers

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 + Mul1 n/a 0 2.0 1

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 * 0 1.0 0 2.0 1

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

Operand
Busses

3.163

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit

ID RS Value

F0 -1.0

F1 1.0

F2 2.0

F3 Add1 3.0

FP Registers

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 + 0 2.0 0 2.0 1

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

Operand
Busses

3.164

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
Queue

from ID Unit

ID RS Value

F0 -1.0

F1 1.0

F2 2.0

F3 4.0

FP Registers

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

FP Operation Bus

Common Data Bus (CDB)

MUL.D F0,F1,F2
ADD.D F3,F0,F2
SUB.D F0,F1,F2

with MUL.D F0,F1,F2
 F0=F1*F2

Operand
Busses

3.165

Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
Possible Extensions:
- out-of-order Issuing
- Multiple-Issue
- Speculative Execution using the Reorder Buffer

 Out of scope for this Bachelor’s module

TI II - Computer Architecture

3.166

Example Components of a Superscalar Processor

TI II - Computer Architecture

I-cache

D-cache

Bus
Inter-
face
Unit

Branch
Unit

Instruction Fetch Unit

Reorder Buffer

Instruction
Issue Unit

Retire
Unit

Load/
Store
Unit

Integer
Unit(s)

Floating-
Point
Unit(s)

Rename
Registers

General
Purpose
Registers

Floating-
Point
Registers

BTACBHT

MMU

MMU
32 (64)

Data
Bus

32 (64)

Address
Bus

Control
Bus

Instruction Buffer

Instruction Decode and
Register Rename Unit

3.167

Floor plan of the PowerPC 604

TI II - Computer Architecture

Data
Caches

Load/Store
Unit

General
Purpose
Register

Integer
Unit

Integer
Unit

Floating
Point
Unit

Instruction
Cache

Fetch and
Branch Unit

Floating
Point

Registers

Bus
Interface

Unit

Dispatch and
Completion

Unit
Integer

Unit

D
at

a
Ta

gs

3.168

Example: Intel Core 2 Architecture

TI II - Computer Architecture

3.169

(Future) Processor Architecture Principles
Speed-up of a single-threaded application
- Simultaneous Multithreading
- Advanced superscalar
- Superspeculative
- Multiscalar processors

Speed-up of multi-threaded applications
- Chip multiprocessors (CMPs)
- Simultaneous multithreading

TI II - Computer Architecture

3.170

Example: Intel Sandy Bridge

TI II - Computer Architecture

3.171

Example: Power8

TI II - Computer Architecture

3.172

Questions & Tasks
- Check the architecture of your favorite CPU and try to find the different stages of the pipeline!
- What are the key features of Tomasulo’s algorithm?
- What is the role of the Common Data Bus?

TI II - Computer Architecture

3.173

Summary
Architecture of a microprocessor

- Control unit, execution unit, registers, interfaces, busses

Performance enhancement of computers
- Technology
- Structures

Pipelining
- Methods
- Hazards
- Branch prediction
- Vector pipelining

Superscalar processors
- Tomasulo

TI II - Computer Architecture

	TI II: Computer Architecture�Microarchitecture
	Content
	Where are we now? - The Six-Level-Computer
	Basic architecture of a simple micro processor
	Basic architecture of a simple microcomputer
	Basic architecture of a simple ALU – see chapter 2
	Internal architecture of a simple and simplified microprocessor
	Control Unit
	Overview
	Clocking / synchronization
	Micro programmable control unit
	Phases of instruction execution
	Opcode register
	Control register
	Questions & Tasks
	Execution unit
	Overview
	Connection to the control unit
	Status register (flag register, Condition Code Register CCR)
	Description of the status flags 1
	Description of the status flags 2
	Program Status Word (PSW)
	Typical (simple) operations of an ALU
	Questions & Tasks
	Registers
	Registers
	Registers
	Register file – example
	Register file – example: Intel 8086 (first generation personal computers)
	Register file – example: x86-64 (current Intel/AMD processors)
	Special registers: base pointer and index
	Special functions of index registers
	The (runtime-) stack
	Management of a stack pointer
	Address generation unit
	Address generation unit
	System bus interface
	System bus interface
	Internal bus system
	Internal bus system - optimized
	Additional components of a microprocessor
	Questions & Tasks
	Performance enhancement�
	Performance enhancements in computer systems
	Technological progress
	Structural enhancements
	Structural enhancements
	Structural enhancements
	Structural enhancements
	Structural enhancements
	Pipeline processing
	Pipeline processing
	Example: laundry pipelining
	Laundry pipelining
	Pipelining I
	Pipelining II
	Pipelining III
	Speed-up of Instruction execution
	Pipelining
	Architecture of a 5-stage pipeline I
	Architecture of a 5-stage pipeline I
	Performance enhancement: two pipelines
	Performance enhancement: specialized EXE-units
	Questions & Tasks
	Pipelining - Types of Pipeline Hazards
	Pipeline Hazards
	Three types of pipeline hazards
	Data hazards
	Pipeline hazards due to data dependence
	Pipeline hazards due to data dependence
	Data hazards
	Read-after-Write-Conflict (True Dependence)
	Pipeline conflict due to a data hazard
	Data hazards in an instruction pipeline
	Data hazards in an instruction pipeline
	WAR and WAW - Can they happen in our simple pipeline?
	Solutions for data hazards from true data dependences
	Software solutions
	Software solutions
	Hardware solutions
	Questions & Tasks
	Side Note: The MIPS Pipeline
	Side Note: The MIPS Pipeline
	Data hazard: Hardware solution by stalling
	Data hazard: Hardware solution by stalling
	Data hazard: Hardware solution by forwarding
	Data hazard: Hardware solution by forwarding
	Data hazard: Hardware solution by forwarding
	Data hazard: Hardware solution by forwarding
	Data hazard: Hardware solution by forwarding
	Result forwarding
	Data hazard: Hardware solution by forwarding
	Load forwarding
	Load-use data hazard
	Load-use data hazard
	Load-use data hazard
	Forwarding with interlocking
	Bypass techniques
	Example
	Questions & Tasks
	Structural hazards
	Three types of pipeline hazards
	Pipeline bubble due to a structural hazard
	Solutions to the structural hazard
	Control hazards
	Three types of pipeline hazards
	Hazards due to control dependence
	Hazards due to control dependence
	Example
	Example
	Solutions
	Simple solutions
	Solution: Decide branch direction earlier
	Branch Prediction
	Branch-Target Buffer or Branch-Target Address Cache
	Branch-Target Buffer or Branch-Target Address Cache
	Two Basic Techniques of Branch Prediction
	Static Branch Prediction
	Static Branch Prediction - machine-fixed
	Static Branch Prediction - compiler-based
	Dynamic Branch Prediction
	One-bit vs. Two-bit Predictors
	Two-bit Predictors�(Hysteresis Scheme)
	Two-bit Predictors� (Saturation Counter Scheme)
	Predicated Instructions
	Predication Example
	Predication
	Branch handling techniques and implementations
	Performance of branch handling techniques
	Pipelining basics: Summary
	Questions & Tasks
	Vector Pipelining
	Vektor Pipelining
	Example: Addition
	Characteristics of vector pipelines
	Chaining of vector pipelines
	History: chaining of 4 pipelines (Cray 1, 1976)
	Simple Example
	Superscalar processors
	Superscalar processors
	Superscalar Pipeline
	Sections of a Superscalar Pipeline
	Fetch, decode, rename
	Issue
	Reservation Station(s)
	Dispatch
	Completion
	Commitment
	Precise Interrupt / Precise Exception
	Retirement
	Questions & Tasks
	Example: Dynamic Scheduling for an FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
	Example Components of a Superscalar Processor
	Floor plan of the PowerPC 604
	Example: Intel Core 2 Architecture
	(Future) Processor Architecture Principles
	Example: Intel Sandy Bridge
	Example: Power8
	Questions & Tasks
	Summary

