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Content

1. Introduction
- Single Processor Systems
- Historical overview
- Six-level computer architecture

2. Data representation and Computer arithmetic
- Data and number representation
- Basic arithmetic

3. Microarchitecture
- Microprocessor architecture
- Microprogramming
- Pipelining

4. Instruction Set Architecture
- CISC vs. RISC
- Data types, Addressing, Instructions
- Assembler

5. Memories
- Hierarchy, Types
- Physical & Virtual Memory
- Segmentation & Paging
- Caches
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Where are we now?  - The Six-Level-Computer
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Basic architecture of a simple micro processor 
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Basic architecture of a simple microcomputer
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Basic architecture of a simple ALU – see chapter 2
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Internal architecture of a simple and simplified microprocessor
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CONTROL UNIT
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Overview

The control unit controls all the components

The clock generates the system clock for distribution to all components

Opcode registers contain the portion of the instruction that specifies the currently executed operation to be 
performed (and maybe some additional opcodes)

The decoder (often micro-programmable) generates all control signals for the components and uses status 
signals and opcode as input

The control register stores the current status of the control unit
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Clocking / synchronization
Synchronous sequential circuit

- Typically, CPUs use dynamic (clocked) logic
- State is stored in gate capacitances
- Static logic uses flip-flops instead

Minimum clock-speed required
- Otherwise, stored bits are lost due to leakage before the next clock-cycle

Complex clock distribution network on-chip required
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Micro programmable control unit
The processor stores a microprogram for each instruction

- Microprogram: sequence of micro instructions
- Normal users cannot change the microprogram

of a processor
- However, manufacturers can update the microprogram

Pure RISC processors typically do not use microprograms but a
fixed sequential circuit

Example micro instruction: 

Single bits of the micro instruction represent micro operations, thus a setting of the control signals for the 
components
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Phases of instruction execution
Instruction fetch

- Load the next instruction into the opcode register

Instruction decode
- Get the start address of the microprogram representing

the instruction

Execution 
- The microprogram controls the instruction execution by sending 

the appropriate signals to the other components and evaluating the returned signals
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Opcode register
The opcode register consists of several registers because

- different instructions may have different sizes
(1 byte, 2 bytes, 3 bytes …)

- opcode prefetching may speed-up program execution
- while decoding the current instruction the following 

instructions may be prefetched
- this supports pipelining, branch prediction etc. (covered later)
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Control register
The control register stores the current state
of the control unit.

This influences e.g. instruction decoding, operation mode.

The meaning of the bits depend on the processor.

Examples:
- Interrupt enable bit

- determines if the processor reacts to interrupts
- Virtual machine extensions enable

- enable hardware assisted virtualization on x86 CPUs
- User mode instruction prevention

- if set, certain instructions cannot be executed in user level
- see e.g. https://en.wikipedia.org/wiki/Control_register
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Questions & Tasks
- Look at the internal architecture of a simple microprocessor. Where are potential performance bottlenecks?
- Who decides if data flows to an execution or control unit?
- What are advantages / disadvantages of micro programming?
- Name examples of control and status signals to / from the environment!
- Why do we need a reset?
- What limits the clock frequency (min/max)?
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EXECUTION UNIT
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Overview
The execution unit executes all logic and arithmetic
operations controlled by the control unit.

Examples:
- Integer and float arithmetic operations
- Logic operations, shifting, comparisons
- All address related operations
- Speculative operations (covered later)
- Complex memory management, memory protection
- …

Status register informs the control unit about the state of the processor after an operation
- Examples: carry, overflow, zero, sign

Operand registers, accumulators etc.: additional registers for temporary results, fetched operators etc.
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Connection to the control unit
Single bits of a micro instruction directly control e.g. ALU and operand register
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Status register (flag register, Condition Code Register CCR)
Single bits representing the state of the processor after an operation are stored in the status register. 

Common bits in the status register (often called flags):
- Auxiliary Carry, AF
- Carry Flag, CF
- Zero Flag, ZF
- Even Flag, EF
- Sign Flag, SF
- Parity Flag, PF
- Overflow Flag, OF
- …
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Description of the status flags 1
Auxiliary Carry (AF)

- Indicates a carry between the nibbles (4 bit halves of a byte)
- Used for BCD (binary coded digit) arithmetic
- Also called half-carry flag, digit carry, decimal adjust flag

Carry Flag (CF)
- Indicates a carry produced by the MSBs
- Allows for addition/subtraction of numbers larger than a single word by sequential additions/subtractions 

taking the carry into account

Zero Flag (ZF)
- Indicates that the result of an operation was zero
- Used for conditional branches or loops (e.g. if x=y then… is translated into SUB x,y,z; BZ…)
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Description of the status flags 2
Even Flag (EV) 

- Indicates if the result is even or odd (LSB)

Sign Flag (SF)
- Indicates if the result is negative (MSB = 1) in two’s complement 
- Used e.g. for conditional branches (if x > y then … is translated into SUB y,x,z; BNP…)

Parity Flag (PF)
- Indicates if the number of set bits is even or odd
- Used e.g. for error detection

Overflow Flag (OF)
- Indicates that the result of an operation is too large to be represented (e.g. during addition or subtraction)
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Program Status Word (PSW)
Status register plus control register determine the current state of a processor

- Result of an operation
- Privilege level
- …

Together with the program counter (address of the current or next instruction) these registers determine the state 
of the processor at a certain instruction of a program (or process, task, …).

The PSW combines the registers and program counter for simpler manipulation.
- Pushed to stack before context switch (e.g. switch to another process)
- Pulled from stack to continue execution of an interrupted process

Different names and semantics depending on processor architecture…
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Typical (simple) operations of an ALU

Arithmetic
- Addition with/without carry
- Subtraction with/without carry
- Increment/decrement
- Multiplication with/without sign
- Division with/without sign 
- Two’s complement

Logical
- NOT
- AND
- OR
- XOR

Shift and rotation
- Shift left
- Shift right
- Rotate right without carry
- Rotate right with carry
- Rotate left without carry
- Rotate left with carry

Memory
- Transfer
- Load, store 
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Questions & Tasks
- What do we need a status register for?
- What is the idea behind the PSW? When and why do we have to save it?
- How can we add very, very long integers (that do not fit into the operand registers of the ALU)?
- When do we typically use the flags?
- How do we know when the ALU finished its calculations?
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REGISTERS
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Registers
Extend the registers of the 
execution unit

Storage of frequently used 
operands

Much faster than the main 
storage
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Registers
Very fast memory with very low access time (< 1 ns)

Direct selection of single registers via dedicated control lines
- No address decoder / decoding necessary

All registers are on-chip
- No external access necessary with delays due to run-time, multiplexing, buffering etc.

Can offer additional functions
- Increment/decrement
- Shift
- Set to zero, hardwired to zero

Several independent input/output port
- Simultaneous writing and reading of several (different) registers possible
- Today’s superscalar processors are able to write 4 registers and read 8 registers in one clock cycle

TI II - Computer Architecture

registers

registers



3.28

Register file – example 
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Register file – example: Intel 8086 (first generation personal computers)
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http://www.righto.com/2020/07/
the-intel-8086-processors-registers.html

The 8086 Family User‘s Manual, Intel, October 1979
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Register file – example: x86-64 (current Intel/AMD processors)
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Special registers: base pointer and index
The base pointer contains the start address of a memory 
region

- The memory could e.g. represent an array

The index represents the offset relative to the base pointer
- Selection of a single element e.g. of an array

Base pointer + index gives the absolute address of an 
element

Programming can be done relative to the base pointer
- This allows for e.g. moving or copying the array without 

changing the relative addressing
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Special functions of index registers
Post-increment

- Automatic increment of the register by n after addressing the memory

Pre-decrement
- Automatic decrement of the register by n before addressing the memory

Auto-increment / auto-decrement

Auto-scaling by factor n (1, 2, 4, 8 etc.)
- Used to access memory in bytes/words/…

Saves time as the ALU is freed from this additional operation when using the index!
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The (runtime-) stack 
Part of the memory (typically in the main memory) that is organized as stack following the LIFO (Last-In-First-Out) 
principle.

Purpose
- Stores the PSW (status of processor, program counter) during subroutine call / interrupt processing
- Parameter passing
- Storage of temporary results

Processors often come with several stacks for different purposes: system stack, user stack, data stack, …

Hardware support
- special register: stack pointer – address of the newest data on the stack

Special instructions to transfer data to/from the stack
- PUSH: transfer the value of a register on top of the stack
- POP (PULL): load a register with the value on top of the stack and remove this element
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Management of a stack pointer
The stack pointer always points to the 
address of the element on top of the stack.

Stacks quite often grow from “top-to-bottom”, 
i.e., from higher to lower addresses.

PUSH x: decrement the stack pointer, then 
load the value of register x on top of the 
stack (i.e. into the memory at the address 
the stack pointer points to)

POP x: load the value stored at the address 
the stack pointer points to into register x, 
then increment the stack pointer (i.e. reduce 
the size of the stack by one element)

Here we can use index registers with pre-
decrement and post-increment.

TI II - Computer Architecture

PU
SH

: s
ta

ck
 g

ro
w

s

PO
P:

 s
ta

ck
 s

hr
in

ks

nSP n+2

n+1

n

n-1

n-2

memory address

n-1SP n+2

n+1

n

n-1

n-2

PUSH

value of register x

n+1SP n+2

n+1

n

n-1

n-2

POP

value for register x



3.35

ADDRESS GENERATION UNIT
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Address generation unit
Specialized part of the execution unit

Basic operation: calculate an address based on control signals from the 
control unit and possibly additional content of registers

- e.g. base pointer + index = address

Can be very simple, but also very complex 
- MMU (memory management unit)
- many different modes, memory protection, virtual address space
- cache optimization, branch prediction, speculative loading etc. 
- covered later!
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SYSTEM BUS INTERFACE
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System bus interface
The system bus interface (Bus Interface Unit, BIU) is the connection of the microprocessor to its environment (all 
the other components of a micro computer)

Purpose
- Buffering of addresses and data (operands and instructions)
- Adaptation of clock cycles, bus width, voltages
- Tristate: detaching the processor from the external bus
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Internal bus system 
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Internal bus system - optimized
Example 

- prefetch Bus
- two operand buses
- result bus
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Additional components of a microprocessor
Current microprocessors can comprise:

- Cache memory (fast memory for instructions and operands, covered later)

- Vector processing unit

- Graphics processor

- Signal processing unit

- Neural networks, AI support

- Interrupt controller

- ...
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Questions & Tasks
- Why are registers faster than the main memory?
- How can special purpose registers speed-up the processor?
- What is the purpose of a stack? Why not using a “normal” memory?
- What is the purpose of a base pointer + index? Can’t we directly address elements?
- How can we speed-up the internal processing in micro processors?
- Check the layout of current processors, GPUs, AI processors etc.! Can you find some of the components?
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PERFORMANCE ENHANCEMENT
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Performance enhancements in computer systems
How to enhance the performance of a computer system?

Technology
- Faster technologies, new materials, higher clock frequencies often require redesigns
- Expensive plus physical limitations

Architecture
- Increase parallelism (increased number of transistors, larger bus widths, replicated functional units)
- Multi-core processors go this way in basically all computer systems 
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Technological progress
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STRUCTURAL ENHANCEMENTS
Performance enhancement
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Structural enhancements
Classification of computer architectures according to Flynn

Be aware: historical classification, does not really fit anymore…

Considers parallelism in instructions and data (operands)

SISD (Single Instruction Single Data)
- A single serial stream of instructions operates on data (classical von-Neumann principle)
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Structural enhancements
SIMD (Single Instruction Multiple Data)

- All processors perform the same instructions on different data (array processor)
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Structural enhancements
MIMD (Multiple Instruction Multiple Data) 

- All processors perform different instructions on different data
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Structural enhancements
MISD (Multiple Instruction Single Data) 

- Several instructions operate on the same data
- Uncommon, but why not: for fault tolerance the same computation can be done in parallel, then the results 

compared 

Many authors leave this class empty – we can discuss this!

To summarize: this taxonomy does not really help today any longer as almost all of today’s computer systems fall 
into the MIMD class…
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PIPELINE PROCESSING

Performance enhancement
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Pipeline processing
Processing of 3 similar jobs with 4 identical sub tasks each.
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Example: laundry pipelining
Doing the laundry can be split into 4 separate tasks: 

- Put the dirty laundry into the washing machine and start the program
- Put the wet clothes into the tumbler
- Iron, smooth out creases, pleat, fold …  
- Put the clothes into the closet
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Laundry pipelining
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Pipelining I
Pipelining 

- Subdivision of an operation into several phases or sub operations
- Synchronous execution of the sub operations in different functional units
- Each functional unit is responsible for a single function 

All functional units together plus their interconnection is called pipeline.

Instruction pipelining
- The pipeline principle is applied to processor instructions
- Successive instructions are executed one after another with a delay of a single cycle
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Pipelining II
Each stage of a pipeline is called pipeline stage or pipeline segment. 

The whole pipeline is clocked in a way that each cycle an instruction can be shifted one step further through the 
pipeline. 

In an ideal scenario, an instruction is executed in a k stage pipeline within k cycles by k stages (…we will see 
problems due to hazards later). 

If every clock cycle a new instruction is loaded into the pipeline, then k instructions are executed simultaneously
and each instruction needs k cycles in the pipeline. 
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Pipelining III
Latency: Duration of the complete processing of an instruction. This is the time an instruction needs to go through 
all k stages of the pipeline.  

Throughput: Number of instructions leaving the pipeline per clock cycle. This number should be close to 1 for a 
scalar processor. 
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Speed-up of Instruction execution
Hypothetical processor without pipeline: n×k cycles 
(k stage pipeline, n instructions)

Pipelined processor with a k stage pipeline:  k+(n-1) cycles 
(under ideal conditions: k cycles latency, throughput of 1)

This results in a speed-up of:

Assuming an infinite number of instructions (n∞) the speed-up of a processor with a k stage pipeline equals k. 
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Pipelining
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Architecture of a 5-stage pipeline I
Instruction Fetch (IF)

- Load the opcode of the instruction from memory (or instruction cache) into the opcode register
- Increment the program counter

Instruction Decode (ID)
- Generate internal signals based on the opcode or jump to the appropriate microprogram 

Operand Fetch (OF)
- Load the operands from the registers into the operand registers of the ALU
- Calculate the effective address using the address generating unit for load/store or branch instructions
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Architecture of a 5-stage pipeline I
Execution (EXE, ALU operation)

- The execution unit performs the requested operation

Result Write Back (WB)
- Write back the result into a register or memory
- Instructions without a result do nothing
- Load/store instructions put the address on the address bus and transfer the data between register and 

memory
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Performance enhancement: two pipelines
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Performance enhancement: specialized EXE-units
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Questions & Tasks
- Do you know some more examples for pipelining in your life?
- How much can a pipeline speed-up a single instruction?
- What determines the clock speed of a pipeline?
- What could be bottlenecks in pipeline processing? Think of the tasks of the different stages!
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PIPELINING - TYPES OF PIPELINE HAZARDS

Performance enhancement
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Pipeline Hazards
Pipeline hazards: phenomena that disrupt the smooth execution of a pipeline.

Example: 
- If we assume a unified cache with a single read port (instead of separate I- and D-caches) 
 a memory read conflict appears among IF and OF stages. 

- The pipeline has to stall one of the accesses until the required memory port is available. 

A stall is also called a pipeline bubble.
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Three types of pipeline hazards
Data hazards arise because of the unavailability of an operand 

- For example, an instruction may require an operand that will be the result of a preceding, still uncompleted 
instruction.

Structural hazards may arise from some combinations of instructions that cannot be accommodated because of 
resource conflicts

- For example, if the processor has only one register file write port and two instructions want to write in the 
register file at the same time.

Control hazards arise from branch, jump, and other control flow instructions 
- For example, a taken branch interrupts the flow of instructions into the pipeline

 the branch target must be fetched before the pipeline can resume execution.

Common solution is to stall the pipeline until the hazard is resolved, inserting one or more “bubbles” in the 
pipeline.
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DATA HAZARDS

Types of Pipeline Hazards
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Pipeline hazards due to data dependence
After a load instruction the loaded value is not available to the following instruction in the next cycle. 

If an instruction needs the result of a preceding instruction it has to wait.

Example:
ADD R1,R2,R1; R1R1+R2
ADD R3,R1,R3; R3R3+R1
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Pipeline hazards due to data dependence
After a load instruction the loaded value is not available to the following instruction in the next cycle. 

If an instruction needs the result of a preceding instruction it has to wait.

Example:
ADD R1,R2,R1; R1R1+R2
ADD R3,R1,R3; R3R3+R1
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Data hazards
Dependencies between instructions may cause data hazards when Instr1 and Instr2 are so close that their 
overlapping within the pipeline would change their access order to registers.

Three types of data hazards
- Read After Write (RAW)

- Instr2 tries to read operand before Instr1 writes it

- Write After Read (WAR)
- Instr2 tries to write operand before Instr1 reads it

- Write After Write (WAW) 
- Instr2 tries to write operand before Instr1 writes it
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Read-after-Write-Conflict (True Dependence)
Using a simple 5 stage pipeline this example shows that the operand fetch phase of the 2nd instruction comes 
before the 1st instruction writes back its result
- Delaying the pipeline is necessary!
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Pipeline conflict due to a data hazard
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add Reg2,Reg1,Reg2

mul Reg1,Reg2,Reg1

IF ID EX MEM

IF ID EX MEM WB

WB

timecycle time

Reg2 old Reg2 new

wrong register read!

add Reg2,Reg1,Reg2; Reg2  Reg1 + Reg2
mul Reg1,Reg2,Reg1; Reg1  Reg1 * Reg2
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Data hazards in an instruction pipeline
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IF ID EX MEM

load Reg1,A

load Reg2,B

add Reg2,Reg1,Reg2

mul Reg1,Reg2,Reg1

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM WB

WB

WB

WB

timecycle time
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Data hazards in an instruction pipeline

TI II - Computer Architecture

IF ID EX MEM

load Reg1,A

load Reg2,B

add Reg2,Reg1,Reg2

mul Reg1,Reg2,Reg1

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM WB

WB

WB

WB

timecycle time



3.76

WAR and WAW - Can they happen in our simple pipeline?
WAR and WAW can’t happen in the simple 5 stage pipeline, because:

- All instructions take 5 stages 
- Register reads are always in stage 2 
- Register writes are always in stage 5

WAR and WAW may happen e.g. in superscalar pipes.
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Solutions for data hazards from true data dependences
Software solution (Compiler scheduling)

- putting no-op (NOP) instructions after each instruction that may cause a hazard

- instruction scheduling
 rearrange code to reduce no-ops
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Software solutions
Insertion of NOP instructions by the compiler
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LOAD . . .. . . . . .

NOP . . .LOAD . . .

ADD . . .NOP LOAD

instr 4 NOPSUB ADD

. . . SUBinstr 5 instr 4

SUB -- -- --ADD NOP

instr 5 ADDinstr 4 SUB

LOAD R1, <addr>
NOP
ADD R1, R2, R3
SUB R4, R5, R6

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution
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Software solutions
Reordering of instructions by the compiler
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LOAD . . .. . . . . .

SUB . . .LOAD . . .

ADD . . .SUB LOAD

instr 4 -- -- --ADD SUB

. . . ADDinstr 5 instr 4

instr 5 SUBinstr 4 ADD

LOAD R1, <addr>
SUB R4, R5, R6
ADD R1, R2, R3

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution



3.80

Hardware solutions
Hardware solutions: Hazard detection logic necessary!

Delay Insertion
- Stalling/Interlocking: stall pipeline for one or more cycles

Bypass techniques
- Forwarding:

- Result Forwarding
Example: The result in ALU output of Instr1 in EX stage can immediately be forwarded back to ALU input of 
the EX stage as an operand for Instr2

- Load Forwarding
Example: The load memory data register from MEM stage can be forwarded to ALU input of EX stage

- Forwarding with interlocking: Assuming that Instr2 is data dependent on the load instruction Instr1 then Instr2
has to be stalled until the data loaded by Instr1 becomes available in the load memory data register in MEM 
stage.

- Even when forwarding is implemented from MEM back to EX, one bubble occurs that cannot be removed.
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Questions & Tasks
- Are hazards rather rare events or common? Think of typical programs, processes, operating systems, tasks of 

a computer etc.!
- Can we remove a true dependence? What can we do?
- Why is result forwarding really helpful? Think of typical program sequences!
- WAR and WAW sound strange. Find examples when they may happen!
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Side Note: The MIPS Pipeline
As defined in Patterson & Hennessy, Computer Organization and Design – The Hardware/Software Interface, Section 4.5
Instruction Fetch (IF)

- Fetch instruction from memory. [ main memory!]

Instruction Decode (ID)
- Read registers while decoding the instruction. The regular format of MIPS instructions allows reading and 

decoding to occur simultaneously.

Execution (EXE)
- Execute the operation [all arithmetical and logical operations] or calculate an address [load and store].

Memory Access (MEM)
- Access an operand in data memory. [Only relevant for load/store instructions, otherwise passive stage]

Write Back (WB)
- Write the result into a register.
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Side Note: The MIPS Pipeline

Source: Ben Juurlink, TU Berlin, lecture slides for „Advanced Computer Architectures“, 2015

Write affected register during first half of write back stage
 Read operand registers during second half of instruction decode stage

TI II - Computer Architecture



3.84

Data hazard: Hardware solution by stalling

TI II - Computer Architecture

ADD R2,R1,R2

time

MUL R1,R2,R1
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Data hazard: Hardware solution by stalling
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ADD R2,R1,R2

time

MUL R1,R2,R1

HW-”bubbles”
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Data hazard: Hardware solution by forwarding
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ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

OR R8,R1,R9
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Data hazard: Hardware solution by forwarding
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ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

OR R8,R1,R9
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Data hazard: Hardware solution by forwarding
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ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

OR R8,R1,R9
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Data hazard: Hardware solution by forwarding
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ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

 Solution: Don’t wait until result is written back to register, but forward it to the next stage immediately

OR R8,R1,R9
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Data hazard: Hardware solution by forwarding
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ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

 Result Forwarding from EX to EX

OR R8,R1,R9
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Result forwarding

Example: 

The result in ALU output of Instr1 in EX stage can immediately be forwarded back to ALU input of EX stage as an 
operand for Instr2
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Data hazard: Hardware solution by forwarding
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ADD R1,R2,R3

time

AND R6,R1,R7

SUB R4,R1,R3

 Forward from MEM to EXE

OR R8,R1,R9
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Load forwarding

Example: 

The load memory data register from MEM stage can be forwarded to ALU input of EX stage.
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Load-use data hazard

TI II - Computer Architecture

LW R1,$0

time

SUB R4,R1,R3
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Load-use data hazard
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LW R1,$0

time

SUB R4,R1,R3

 Data hazard even with forwarding!
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Load-use data hazard
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LW R1,$0

time

SUB R4,R1,R3

 Need stalling AND forwarding
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Forwarding with interlocking
Assuming that Instr2 is data dependent on the load instruction Instr1.

Then, Instr2 has to be stalled until the data loaded by Instr1 becomes available in the load memory data register in 
MEM stage. 

 Even when forwarding is implemented from MEM back to EX, one bubble occurs that cannot be removed.
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Bypass techniques
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Example
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LOAD <Address>, R1 R1  (<Address>)
ADD R1, R2, R3 R3  R1 + R2
SUB R4, R5, R6 R6  R4 - R5

During the execution phase 
of the ADD instruction the 
result of the LOAD is written 
into the register and, thus, 
the bypass is needed to 
provide the result early 
enough.

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution

LOAD . . .. . . . . .

ADD . . .LOAD . . .

SUB . . .ADD LOAD

instr 1 -- -- --SUB ADD

. . . ADDinstr 1 SUB

. . . SUB. . . instr 1

Bypass

Yet another (simple) pipeline…
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Questions & Tasks
- Bypassing looks fine – what is the price to pay?
- What is an assumption for load forwarding to work? Think of memory access times!
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STRUCTURAL HAZARDS

Types of Pipeline Hazards
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Three types of pipeline hazards
Data hazards arise because of the unavailability of an operand 

- For example, an instruction may require an operand that will be the result of a preceding, still uncompleted 
instruction.

Structural hazards may arise from some combinations of instructions that cannot be accommodated because of 
resource conflicts

- For example, if the processor has only one register file write port and two instructions want to write in the 
register file at the same time.

Control hazards arise from branch, jump, and other control flow instructions 
- For example, a taken branch interrupts the flow of instructions into the pipeline

 the branch target must be fetched before the pipeline can resume execution.

Common solution is to stall the pipeline until the hazard is resolved, inserting one or more “bubbles” in the 
pipeline.
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Pipeline bubble due to a structural hazard
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load Reg2,A

mul Reg3,Reg4,Reg5

IF ID EX MEM

IF ID EX MEM WB

WB

timecycle time

Register file

WB

WB



3.104

Solutions to the structural hazard
Arbitration with interlocking: hardware that performs resource conflict arbitration and interlocks one of the 
competing instructions

Resource replication: In the example a register file with multiple write ports would enable simultaneous writes.

- However, now output dependencies may arise! 
- Therefore, additional arbitration and interlocking necessary 
- or the first (in program flow) value is discarded and the second used.
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CONTROL HAZARDS

Types of Pipeline Hazards
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Three types of pipeline hazards
Data hazards arise because of the unavailability of an operand 

- For example, an instruction may require an operand that will be the result of a preceding, still uncompleted 
instruction.

Structural hazards may arise from some combinations of instructions that cannot be accommodated because of 
resource conflicts

- For example, if the processor has only one register file write port and two instructions want to write in the 
register file at the same time.

Control hazards arise from branch, jump, and other control flow instructions 
- For example, a taken branch interrupts the flow of instructions into the pipeline

 the branch target must be fetched before the pipeline can resume execution.

Common solution is to stall the pipeline until the hazard is resolved, inserting one or more “bubbles” in the 
pipeline.
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Hazards due to control dependence
Conditional Jumps and branches stop linear program execution, program might continue elsewhere

Jump instruction normally detected in the Instruction Decode stage of the pipeline
- If a jump is detected, the pipeline already contains instructions, that are immediately behind this instruction
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Hazards due to control dependence
Jumps are very common in programs
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C Syntax

n=10
s=0
for(i=0; i<n; i++) {

s = s + i;
}
…

MMIX Syntax
LOC #100

s IS $1
i IS $2
test IS $3
n IS 10

Main SETL s,0
SETL i,0

For ADD s,s,i
ADD i,i,1
SUB test,i,n
BNZ test,For
...
TRAP 0,Halt,0
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Example
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ADC   R4,R5,R4 ; R4  R4 + R5 + C

CMP   R1,R2 ; R1 = R2 ?

BEQ Label ; PC  <Label Adresse>

ADD   R3,R1,R2 ; R3  R1 + R2

Label: SUB   R6,R4,R5 ; R6  R4 - R5

SLL   R0 ; R0  shift_left(R0)
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Example
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The ADD instruction is still in the pipeline and therefore
executed before the jump is realized!

ADC . . .. . . . . .

BEQ . . .ADC . . .

ADD . . .BEQ ADC

SLL -- -- --SUB ADD

. . . SUB. . . SLL

SUB ADCADD -- -- --

. . . ADDSLL SUB

CMP   R1,R2
ADC   R4,R5,R4
BEQ   Label
ADD   R3,R1,R2

Label: SUB   R6,R4,R5
SLL   R0

Instruction
fetch

Write back
result

Instruction
decode

Operation
execution
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Solutions
Hardware Solutions

Pipeline Flushing 
- Flush (empty) pipeline before realizing the jump

Speculative Branch 
- In case of a conditional jump: Estimate result of condition and load pipeline (speculative)
- Wrong speculation: Pipeline Flushing
- Branch prediction used in most modern processors
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Simple solutions
Hardware Interlocking

- This is the simplest way to deal with control hazards: the hardware must detect the branch and apply 
hardware interlocking to stall the next instruction(s).

Software Solutions
- Insertion of NOP instructions by the compiler after every branch
- Re-Ordering of instructions by the compiler
- Instead of NOPs, instructions that will be executed anyway and that do not influence the branch condition will 

be put into the pipeline immediately after the branch instruction (early days of RISC processors)
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Solution: Decide branch direction earlier
Flushing or Locking is often not acceptable

Reordering is often not possible

Calculation of the branch direction and of the branch target address should be done in the pipeline as early as 
possible. 

Best solution
- Already in ID stage after the instruction has become recognized as branch instruction. 
- or even earlier: if history shows that address contains a branch
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Branch Prediction
Branch prediction foretells the outcome of conditional branch instructions, excellent branch handling techniques 
are essential for today's and for future microprocessors.

IF stage finds a branch instruction
- predict branch direction

The branch delay slots are speculatively filled with instruction
- of the consecutively following path
- of the path at the target address

After resolving of the branch direction
- decide upon correctness of prediction

In case of misprediction  discard wrongly fetched instructions
- rerolling when a branch is mispredicted is expensive: 

- 9 cycles on Itanium 
- 11 or more cycles in the Pentium II
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Branch-Target Buffer or Branch-Target Address Cache
The Branch Target Buffer (BTB) or Branch-Target Address Cache (BTAC) stores branch and jump target 
addresses. 

It should be known already in the IF stage whether the as-yet-undecoded instruction is a jump or branch.

The BTB is accessed during the IF stage.

The BTB consists of a table with branch addresses, the corresponding target addresses, and prediction 
information. 

Variations
- Branch Target Cache (BTC): stores one or more target instructions additionally.
- Return Address Stack (RAS): a small stack of return addresses for procedure calls and returns is used 

additional to and independent of a BTB. 
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Branch-Target Buffer or Branch-Target Address Cache
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Branch address Target address Prediction Bits
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Two Basic Techniques of Branch Prediction
Static Branch Prediction

- The prediction direction for an individual branch remains always the same.

Dynamic Branch Prediction
- The prediction direction depends upon previous (the “history” of) branch executions.
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Static Branch Prediction
The prediction direction for an individual branch remains always the same!

- The machine cannot dynamically alter the branch prediction (in contrast to dynamic branch prediction which is 
based on previous branch executions). 

Static branch prediction comprises
- machine-fixed prediction (e.g. always predict taken)
- compiler-driven prediction. 

If the prediction followed the wrong instruction path, then the wrongly fetched instructions must be squashed from 
the pipeline.
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Static Branch Prediction - machine-fixed
Wired taken/not-taken prediction

- The static branch prediction can be wired into the processor by predicting that all branches will be taken (or all 
not taken). 

Direction based prediction
- Backward branches are predicted to be taken and forward branches are predicted to be not taken
 helps for loops

TI II - Computer Architecture



3.120

Static Branch Prediction - compiler-based
Opcode bit in branch instruction allows the compiler to reverse the hardware prediction.

There are two approaches the compiler can use to statically predict which way a branch will go: 
- it can examine the program code, or
- it can use profile information (collected from earlier runs) 
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Dynamic Branch Prediction
In dynamic branch prediction the prediction is decided on the computation history of the program execution.

In general, dynamic branch prediction gives better results than static branch prediction, but at the cost of 
increased hardware complexity.

Example: One-bit predictor
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Formerly used: Alpha 21064 (1bit in instruction cache), Motorola PowerPC 604

Not Taken

Not Taken

Taken

Taken

Predict 
Taken

Predict
Not 

Taken
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One-bit vs. Two-bit Predictors
A one-bit predictor correctly predicts a branch at the end of a loop iteration, as long as the loop does not exit.

In nested loops, a one-bit prediction scheme will cause two mispredictions for the inner loop:
- One at the end of the loop, when the iteration exits the loop instead of looping again, and 
- One when executing the first loop iteration, when it predicts exit instead of looping. 

Such a double misprediction in nested loops is avoided by a two-bit predictor scheme.

Two-bit Prediction: A prediction must miss twice before it is changed when a two-bit prediction scheme is applied.
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Two-bit Predictors
(Hysteresis Scheme)
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Predict
Strongly
Not Taken

00

Predict
Weakly

Not Taken
01

Predict 
Weakly
Taken

10

Predict 
Strongly
Taken

11

Taken

Not Taken

Taken

Not Taken

Taken
Not Taken

Taken

Not Taken

Realization: Intel XScale, Sun UltraSPARC IIi
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Two-bit Predictors
(Saturation Counter Scheme)
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Predicated Instructions
Provide predicated or conditional instructions and one or more predicate registers.

Predicated instructions use a predicate register as additional input operand.

The Boolean result of a condition testing is recorded in a (one-bit) predicate register.

Predicated instructions are fetched, decoded, and placed in the instruction window like non predicated 
instructions. 
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Predication Example
if (x == 0) { /* branch b1 */

a = b + c;
d = e - f; 

}
g = h * i; /* instruction independent of branch b1         */

(Pred = (x == 0) ) /* branch b1: Pred is set to true if x equals 0 */

if Pred then a = b + c; /* The operations are only performed            */

if Pred then d = e - f; /* if Pred is set to true                       */

g = h * i;
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Predication
Pro

- Able to eliminate a branch and therefore the associated branch prediction  increasing the distance between 
mispredictions.

- The run length of a code block is increased  better compiler scheduling.

Contra
- Predication affects the instruction set, adds a port to the register file, and complicates instruction execution. 
- Predicated instructions that are discarded still consume processor resources; especially the fetch bandwidth.

Predication is most effective when control dependencies can be completely eliminated, such as in an 
if-then with a small then body. 

The use of predicated instructions is limited when the control flow involves more than a simple 
alternative sequence. 
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Branch handling techniques and implementations
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Technique Implementation examples

No branch prediction Intel 8086

Static prediction

always not taken Intel i486

always taken Sun SuperSPARC

backward taken, forward not taken HP PA-7x00

semistatic with profiling early PowerPCs

Dynamic prediction

1-bit DEC Alpha 21064, AMD K5

2-bit PowerPC 604, MIPS R10000, Cyrix 6x86 and M2, 
NexGen 586

two-level adaptive Intel PentiumPro, Pentium II, AMD K6

Hybrid prediction DEC Alpha 21264

Predication Intel/HP Merced, most DSPs, ARM processors, TI 
TMS320C6201, …

Eager execution (limited) IBM mainframes: IBM 360/91, IBM 3090

Disjoint eager execution none yet
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Performance of branch handling techniques
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Class Technique Rough Accuracy (Spec 89)

Static always not taken 40%

always taken 60%

backward taken, forward not taken 65%

Software Static analysis 70%

Profiling 75%

Dynamic 1-bit 80%

2-bit 93%

two-level adaptive 95 – 97.5%

Adapted from: Dave Archer, Branch 
Prediction: Introduction and Survey, 2007
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Pipelining basics: Summary
Hazards limit performance

- Structural hazards: need more HW resources
- Data hazards: need detection and forwarding
- Control hazards: early evaluation, delayed branch, prediction

Compilers may reduce cost of data and control hazards
- Compiler Scheduling
- Branch delay slots
- Static branch prediction

Increasing length of pipe increases impact of hazards

Pipelining helps instruction bandwidth, not latency

Multi-cycle operations (floating-point) and interrupts make pipelining harder
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Questions & Tasks
- How can we resolve structural hazards?
- What are the limits of branch prediction? Think of multi-tasking, interrupts, multi-user etc.
- Why can compilers sometimes optimize branches better than the processor?
- A k-stage pipeline can result in a speed-up of k. So why not having very long pipelines?
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VECTOR PIPELINING

Pipelining
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Vektor Pipelining
Vector processor: a processor operating on a one-dimensional array of floating point numbers using a vector 
pipeline in the execution unit following the SIMD principle (single instruction, multiple data)

Vector = Array of floating point numbers (≠ math. vector!)

Operation on single values often called scalar processing.

Vector computers often contain scalar units besides many vector processing units – or CPUs may contain several 
vector units operating in parallel to scalar units.

Today, this approach is common in graphic processors but also standard CPUs (MMX, SSE, AVX, AltiVec, …)
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Example: Addition
A(J) = B(J) + C(J), J = 1,2,...,N

Component wise addition of the vectors B and C, i.e. the single floating point numbers of the arrays B(1),...,B(N)
and C(1),...,C(N), with a single instruction and storing the result in the result vector A. 

The execution of the operation is overlapping, i.e. first the operation of B(1)+C(1) starts, then B(2)+C(2)etc.

Typical stages in the vector pipeline:
- Operand fetch
- Exponent alignment
- Shift of significand
- Addition
- Normalization
- Rounding
- Write back
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Characteristics of vector pipelines
A single vector instruction allows the processing of two arrays of floating point numbers using this pipeline. 

No separate address calculations for each operand needed (as this is the case for scalar units) – special 
hardware fetches the elements of an array from registers/memory.

Useful only for “longer” vectors as the pipeline need some time to fill before it produces a result per cycle.
- “long” depends on the architecture

No dependency checking needed between the operations as they are independent by definition (different 
elements of an array).

One can think of an enhanced EXE stage for floating point operations in CPUs.
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Chaining of vector pipelines
Chaining

- Apply the pipelining idea to a sequence of vector instructions.
- Forward the results of each element to the next pipeline immediately. 
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B(J)*C(J)+D(J), J=1,2,...,N B*C->V

V+D

cycle

time
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History: chaining of 4 pipelines (Cray 1, 1976)
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Register file 
V2

Register file 
V3

Register file 
V4

Main memory Register file 
V0

Register file 
V1

Register file 
V5

Shifting 
(4 stages)

AND 
(2 stages)

Addition 
(3 stages)

Memory 
access 

(7 stages)

https://en.wikipedia.org/wiki/Cray-1

https://en.wikipedia.org/wiki/Cray-1
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Simple Example
Component-wise multiplication of vectors
- A(i)= B(i) * C(i), i = 1, …, 100

Standard processor
i = 1
b = b(i)
c = c(i)
a = b * c
a(i) = a
i++
if i<101
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Vector processor
vload b, 1, 100
vload c, 1, 100
vmult a, b, c
vstore a, 1, 100
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SUPERSCALAR PROCESSORS

Pipelining
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Superscalar processors
Definition

- Superscalar machines are distinguished by their ability to (dynamically) issue multiple instructions each clock 
cycle from a conventional linear instruction stream.

Consequence
- value of CPI (cycles per instructions) << 1.0 possible!
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Superscalar Pipeline
Instructions in the instruction window are free from control dependences due to branch prediction, and free from 
name dependences due to register renaming. 

So, only (true) data dependencies and structural conflicts remain to be solved.
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Sections of a Superscalar Pipeline
The ability to issue and execute instructions out-of-order partitions a superscalar pipeline in three distinct sections

- in-order section with the instruction fetch, decode and rename stages - the issue is also part of the in-order 
section in case of an in-order issue,

- out-of-order section starting with the issue in case of an out-of-order issue processor, the execution stage, 
and usually the completion stage, and again an

- in-order section that comprises the retirement and write-back stages. 
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Fetch, decode, rename
Fetch
- Get a bunch of commands

Decode
- Decode the new instruction

Rename
- Externally visible register are mapped to internal shadow registers
 Avoid WAW/WAR-conflicts
 Mapping stored in a rename map (Intel: alias table)
 core execution units free from name dependencies due to register renaming.
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Issue
The issue logic examines the waiting instructions in the instruction window and simultaneously assigns (issues,
dispatches) a number of instructions to the functional units (FUs) up to a maximum issue bandwidth. 

Several instructions can be issued simultaneously (the issue bandwidth). 

The program order of the issued instructions is stored in the reorder buffer. 

Instruction issue from the instruction buffer can be:
- in-order (only in program order) or out-of-order
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Reservation Station(s)
A reservation station is a buffer for a single instruction with its operands.

Reservation stations can be central to a number of FUs 
or each FU has one or more own reservation stations.

Instructions await their operands in reservation stations. 
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Dispatch
An instruction is said to be dispatched from a reservation station to the FU when all operands are available, and 
execution starts.

If all its operands are available during issue and the FU is not busy, an instruction is immediately dispatched, 
starting execution in the next cycle after the issue. 

So, the dispatch is usually not a pipeline stage. 

An issued instruction may stay in the reservation station for zero to several cycles.

Dispatch and execution is performed out of program order.

Other authors interchange the meaning of issue and dispatch or use different semantic.
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Completion
When the FU finishes the execution of an instruction and the result is ready for forwarding and buffering, the 
instruction is said to complete.  

Instruction completion is out of program order.

During completion the reservation station is freed and the state of the execution is noted in the reorder buffer. 

The state of the reorder buffer entry can denote an interrupt occurrence. 

The instruction can be completed and still be speculatively assigned, which is also monitored in the reorder buffer.
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Commitment
After completion, operations are committed in-order. 

An instruction can be committed:
- if all previous instructions due to the program order are already committed or can be committed in the same 

cycle,
- if no interrupt occurred before and during instruction execution, and
- if the instruction is no more on a speculative path. 

By or after commitment, the result of an instruction is made permanent in the architectural register set, 
- usually by writing the result back from the rename register to the architectural register.
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Precise Interrupt / Precise Exception
If an interrupt occurred, all instructions that are in program order before the interrupt signaling instruction are 
committed, and all later instructions are removed. 

Precise exception means that all instructions before the faulting instruction are committed and those after it can 
be restarted from scratch. 

Depending on the architecture and the type of exception, the faulting instruction should be committed or removed 
without any lasting effect.
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Retirement
An instruction retires when the reorder buffer slot of an instruction is freed either

- because the instruction commits (the result is made permanent) or
- because the instruction is removed (without making permanent changes).

A result is made permanent by copying the result value from the rename register to the architectural register. 
- This is often done in an own stage after the commitment of the instruction with the effect that the rename 

register is freed one cycle after commitment.
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Questions & Tasks
- Where do we have vector pipelines today?
- What makes vector pipelines so efficient?
- How do super scalar pipelines avoid WAR and WAW hazards?
- What does the programmer or compiler see from the super scalar pipeline or renaming registers? How is the 

ISA affected?
- Where does the vector pipeline fit into a super scalar pipeline?
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Example: Dynamic Scheduling for an FP-Unit using Tomasulo’s Algorithm
Roberto Tomasulo, IBM, 1967 (https://en.wikipedia.org/wiki/Tomasulo_algorithm) 

Key features: hardware support for register renaming, all EXE units have a reservation station, a common data 
bus (CDB) broadcasts results to all reservation stations

Common in many of today’s processors

Simplifications in the following example:
- Single Issue Processor (in-order)
- Instruction Queue can hold 4 instructions from ID-Unit
- up to 3 instructions can be fetched and decoded in parallel
- 1 FP Adder with 3 Reservation Stations
- 1 FP Multiplier with 2 Reservation Stations
- no speculative execution ( no Reorder Buffer needed)

- only 4 FP registers
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Instruction
Queue

from ID Unit FP Registers

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

FP Adder FP Multiplier

Source: Ben Juurlink, TU Berlin, lecture slides for „Advanced Computer Architectures“, 2015

ID RS Value

F0

F1

F2

F3

ID op RS1 Val1 RS2 Val2 busy

Add3 0

Add2 0

Add1 0

ID op RS1 Val1 RS2 Val2 busy

Mul2 0

Mul1 0
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Instruction
Queue

from ID Unit FP Registers

FP Adder FP Multiplier

FP Operation Bus

Reservation Stations
of FP Adder

Reservation Stations
of FP Multiplier

ID RS Value

F0

F1

F2

F3

ID op RS1 Val1 RS2 Val2 busy

Add3 0
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Add1 0

ID op RS1 Val1 RS2 Val2 busy
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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MUL.D F0,F1,F2
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Instruction
Queue

from ID Unit
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm

TI II - Computer Architecture

Instruction
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from ID Unit

ID RS Value
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MUL.D F0,F1,F2
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Example: Dynamic Scheduling for a FP-Unit using Tomasulo’s Algorithm
Possible Extensions:
- out-of-order Issuing
- Multiple-Issue
- Speculative Execution using the Reorder Buffer

 Out of scope for this Bachelor’s module
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Example Components of a Superscalar Processor
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Floor plan of the PowerPC 604
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Example: Intel Core 2 Architecture
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(Future) Processor Architecture Principles
Speed-up of a single-threaded application
- Simultaneous Multithreading
- Advanced superscalar 
- Superspeculative
- Multiscalar processors

Speed-up of multi-threaded applications
- Chip multiprocessors (CMPs)
- Simultaneous multithreading
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Example: Intel Sandy Bridge
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Example: Power8
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Questions & Tasks
- Check the architecture of your favorite CPU and try to find the different stages of the pipeline!
- What are the key features of Tomasulo’s algorithm?
- What is the role of the Common Data Bus?
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Summary
Architecture of a microprocessor

- Control unit, execution unit, registers, interfaces, busses

Performance enhancement of computers
- Technology
- Structures

Pipelining
- Methods
- Hazards
- Branch prediction
- Vector pipelining

Superscalar processors
- Tomasulo
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