
COMPLEXITY ISSUES IN DYNAMIC GEOMETRY

JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

ABSTRACT. This article deals with the intrinsic complexity of tracing and reachability
questions in the context of elementary geometric constructions. We consider constructions
from elementary geometry as dynamic entities: while the free points of a construction
perform a continuous motion the dependent points should move consistently and contin-
uously. We focus on constructions that are entirely built up from join, meet and angular
bisector operations. In particular the last operation introduces an intrinsic ambiguity: Two
intersecting lines have two different angular bisectors. Under the requirement of continuity
it is a fundamental algorithmic problem to resolve this ambiguity properly during motions
of the free elements.

After formalizing this intuitive setup we prove the following main results of this article:
� It is NP-hard to trace the dependent elements in such a construction.
� It is NP-hard to decide whether two instances of the same construction lie in the

same component of the configuration space.
� The last problem becomes PSPACE-hard if we allow one additional sidedness test

which has to be satisfied during the entire motion.
On the one hand the results have practical relevance for the implementations of Dy-

namic Geometry Systems. On the other hand the results can be interpreted as statements
concerning the intrinsic complexity of analytic continuation.

1. INTRODUCTION

1.1. What is Dynamic Geometry. Imagine any construction of elementary geometry –
for instance, a ruler and compass construction of the midpoint of two points A and B. It
consists of certain free elements (the points A and B) and certain dependent elements whose
positions are determined by the positions of the free elements. Each specific drawing
of such a construction is a snapshot that belongs to the whole continuum of all possible
drawings for all possible locations of the free elements. If we move the free elements we
can walk continuously from one instance (i.e. snapshot) of the construction to another one.
During such a walk a continuous motion of the free elements should result in a continuous
movement of the dependent elements.

This article deals with those effects and problems that genuinely arise from such a dy-
namic and continuous setup of geometry. The research that led to the results presented in
this article was motivated by the desire (and the actual work) of implementing a software
package for doing Dynamic Geometry on a computer [22, 23]. With such a program one
should be able to do constructions of elementary geometry with a few mouse clicks, and
after this pick the free elements with the mouse – drag them around – while the whole
construction follows accordingly. The unsuspicious looking requirement of continuity of
dependent elements turned out to be fundamentally hard to fulfill. In fact, one has to rely on
notions of complex function theory and Riemann surfaces to get a mathematically sound
treatment of these effects [11, 12]. While this is no problem in theory, we prove here that

Keywords: Dynamic Geometry, analytic continuations, NP, PSPACE, complexity, reachability, ruler and com-
pass, linkages, warehouseman’s problem

1

2 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

1: A=FreePoint;
2: B=FreePoint;
3: C=FreePoint;
4: a=Join(B,C);
5: b=Join(A,C);
6: c=Join(A,B);
7: d=AngularBisector(b,c);
8: e=AngularBisector(a,c);
9: f=AngularBisector(a,b);
10: D=Meet(d,e);

A B

C

ab

c

d

f

e

D

A B

C

Construction sequence static picture idea of the dynamic picture

Fig. 1: Dynamic behavior of the angular bisector theorem.

from a complexity theoretic point of view most algorithmic questions related to that con-
text are provably intractable (unless P=NP, of course). The complexity classes that arise
here range from NP-hard problems via PSPACE-hard problems up to even undecidable
problems. In particular we prove that � � �

� � � it is NP-hard to calculate the positions of the dependent elements after a specific
move of a free element (Sec. 5),

� � � in general, it is PSPACE-hard to decide whether two instances of the same con-
struction can be continuously deformed into each other if all free and dependent
elements must have real coordinates (Sec. 6),

� � � this reachability problem is still NP-hard if only join, meet, and angular bisector
operations occur (Sec. 4),

� � � it is undecidable whether two instances of a construction involving “wheels” –
devices that transfer angles to distances – can be continuously deformed into each
other by moving the base elements (Sec. 7).

Although the results of this article arose from the study of configuration spaces of ele-
mentary geometric constructions they are naturally related to many other setups in the area
of geometry. Among those are the study of configuration spaces of mechanical linkages
[6, 9, 10], realization spaces of oriented matroids [16, 4, 20, 25] and polytopes [21], and
the warehouseman’s problem [7, 24]. The results of this article are partially generaliza-
tions and strengthenings of known complexity results in these areas. Besides the context
of Dynamic Geometry our results are relevant for all areas where geometric objects are
moved around under certain geometric constraints, like robotics, parametric CAD [5], vir-
tual reality, or computational kinematics. Our results imply that many problems of these
areas are computationally difficult (like the persistent naming problem of parametric CAD
[5] or the navigation problem of computational kinematics). Also one can interpret the re-
sults of this paper as statements on the complexity of analytic continuation (all coordinate
functions in our setup turn out to be analytic). In particular this gives intrinsic complexity
bounds on homotopy methods for solving polynomial equations as they were discussed in
[26, 27, 28, 29, 30]. This article is complemented by [11, 12] were we give conceptual
approaches to handle a dynamic setup of geometry at all.

1.2. Constructions, Forbidden Situations and Ambiguities. In a typical setup for this
article we will study construction sequences in which each single construction step is of
very elementary nature like taking the join of two points, the meet of two lines, the angular
bisector of two lines, or the intersection of a line and a circle, etc. A construction sequence

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 3

Fig. 2: Two instances of the angular bisectors of a triangle.

starts with some free points and generates new elements by performing elementary opera-
tions on already existing elements one at a time. It may happen that an operation cannot be
carried out (for instance, if one wants to construct the join of two identical points, the meet
of two identical or parallel lines, or the intersection of a line and a circle that do not meet).
In order to avoid such situations let us assume that the input points are in suitable positions
such that each step of the construction sequence can be done. In that case we will call the
input point position admissible, otherwise we call it forbidden.

The join and meet operations are deterministic construction steps in the sense that for
each admissible input there exists exactly one corresponding output element (for instance
two distinct, non-parallel lines have exactly one point of intersection). Construction se-
quences that exclusively involve join and meet operations are easy to handle: If for a
certain position of the free elements each construction step is admissible then the positions
of the dependent elements are uniquely determined.

The situation is substantially different for operations like intersection of a circle and
a line, or angular bisector of two lines. For these operations one has a binary choice of
what the output of an operation should be (two lines have two angular bisectors, a line
and a circle have in general two points of intersection). For a construction involving such
operations the positions of the dependent elements are no longer uniquely determined by
the positions of the free elements. This kind of non-determinism will be captured by the
concept of a geometric straight line program, which is formalized in Sec. 2 (see also [11]).

The intrinsic ambiguities of these operations together with continuity requirements are
the fundamental sources that make the algorithmic problems studied in this article difficult.
These intrinsic ambiguities even touch the very heart of the notion of “What is a geomet-
ric theorem?” Consider the theorem stating that the angular bisectors of the sides of a
triangle meet in a point. Due to the intrinsic ambiguity of the angular bisector operation
this sentence stated as such is not true. Consider the drawing in Fig. 2. It shows two valid
instances of the construction: Take three points – form the three joins of any pair of them –
draw the three angular bisectors of any pair of lines. In the left drawing the chosen angular
bisectors meet, in the right drawing they do not.

Having these ambiguities in mind, in the context of Dynamic Geometry two natural
questions arise:

� Reachability problem: Is it possible to move the free points such that a first
instance is smoothly deformed into a specific second one?

� Tracing problem: How can a Dynamic Geometry program decide after a motion
of the free elements what instance to draw for the new position?

4 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

After a suitable formalization, we will show that the reachability problem is in general
PSPACE-hard. It is still NP-hard if one restricts oneself to constructions that only use
join, meet, and angular bisector operations. The tracing problem turns out to be (at least)
NP-hard.

1.3. Restricting the Operations. We try to formulate our statements as strongly as possi-
ble and restrict the allowed elementary operations to a minimum. The only operations we
will use are join, meet, angular bisectors and intersection of circle and line. Furthermore,
we assume that initially four fixed constant base points �0�0�, �1�0�, �0�1� and �1�1� are
given. In fact, we try to use the intersection of circle with line operation as sparsely as
possible. The reason for this is that the possible non-existence of such an intersection in-
cludes the possibility to encode sidedness conditions and “cutting holes” in the admissible
range of input parameters. By explicitly excluding operations like intersection of circle and
line we substantially strengthen our results. In fact the NP-hardness results for the tracing
and reachability problems can be exclusively stated in terms of angular bisectors, join and
meet. The PSPACE-hardness results need just one single intersection-of-circle-and-line
operation. We also try to introduce as few free points as possible into or constructions.
This complements many other related complexity results since there usually many free
variables are needed. The following table summarizes the complexity results covered in
this article:

Problem Complexity #free points #angular bisectors # int. circle/lines # wheels

Tracing NP-hard 1 many — —
Reachability NP-hard many 3 — —
Reachability NP-hard 1 many — —
Reachability PSPACE-hard 1 many 1 —
Reachability PSPACE-hard many — 1 —
Reachability Undecidable 1 2 — 11

In order to exclude unnecessary technicalities arising from special cases we also assume
that the plane is extended by elements at infinity to the usual projective plane.

The results that use exclusively angular bisectors (and join and meet) are in a sense
generalizations of corresponding results in other setups in the following sense. While
with mechanical linkages or with ruler and compass constructions it is easily possible
to construct angular bisectors, the converse is impossible. A complexity theoretic lower
bound for a setup that uses only angular bisectors is therefore a stronger result than a
corresponding one for linkages or ruler and compass constructions.

1.4. Related Results. There are other related areas of geometry where similar complexity
results arise. In this section we want to briefly discuss the relations – similarities and
differences – to these results.

1.4.1. Oriented Matroids and Polytopes. Research over the last few decades showed that
for oriented matroids and polytopes so called universality theorems can be proved. These
theorems show that the corresponding realization spaces can essentially be (stably equiva-
lent to) any solution space of a system of (finitely many) polynomial equations and inequal-
ities [16, 4, 20, 21, 25]. These results are usually derived by a direct translation procedure,
which starts from a system of polynomials and ends up with a configuration of the desired

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 5

category (an oriented matroid or a polytope). In the realization space of the oriented ma-
troid (or polytope) the original variables of the algebraic equations can be rediscovered
from the coordinates of certain points. The constructions of universality theorems deeply
rely on the generation of large loops that feedback the result of an evaluation of a poly-
nomial to a initially chosen constant (for instance a point whose coordinates represent the
“1”.) Deciding whether the realization space of an oriented matroid or polytope is empty
or not turns out to be NP-hard. Deciding whether two realizations of an oriented matroid
(or polytope) are in the same connected component of the realization space turns out to be
PSPACE-hard.

In Sec. 4 although we derive a similar result for elementary geometric constructions
where we rely on very different effects. The complex behavior is generated by a strictly
forward oriented construction without any feedback of information. Orientation informa-
tion cannot and is not included in any way

IFor the PSPACE-hardness result in Sec. 6. the significant difference to the construc-
tions for oriented matroids or polytopes is that we use only one free point instead of many
free points.

1.4.2. Mechanical Linkages. A similar comparison holds for mechanical linkages, for
which universality theorems are known [6, 9, 10] that prove that arbitrary primary semi-
algebraic sets can show up as components of configuration spaces. The corresponding
reachability problem (“Do two instances of a linkage lie in the same component of the
configuration space?”) is also PSPACE-hard.

The results there are obtained by making use of construction loops and inequality rela-
tions. The inequality relations arise naturally in that context, since the bars of a linkage are
only of finite length. In our setup only weaker construction primitives are allowed. Fur-
thermore also the linkage results rely on the introduction of many free elements, in contrast
to our results.

1.4.3. Warehouseman’s Problem. Moving an object with a non-restricted number of de-
grees of freedom through a world of geometric obstacles leads to another PSPACE-hard
reachability problem [7, 24]. Again, the use of inequality relations is already inherent in
the statement of the problem, and many free elements are needed.

1.5. Acknowledgements. We want to thank Alexander Below, Vanessa Krummeck and
Jesus de Loera for careful proofreading and many valuable discussions. We want to thank
Maurice Rojas for drawing our attention to Plaisted’s Theorem that served as a paradigm
for the proof in Sec. 5 and simplified our original construction. We also thank Yuri Matiya-
sevich who supplied us with the proper reference for the best known bound for the number
of variables that is needed to prove the undecidability of Hiberts 10th problem over the
integers (see Sec. 7).

2. GEOMETRIC CONSTRUCTIONS

2.1. Geometric Straight Line Programs. We now start to formalize the concept of a
geometric construction. We take special care to have a setup that allows the results of an
operation to be non-existent or ambiguous. For this we first define the notion of a relational
instruction set. Here, instead of giving an algorithm or formula for the operation, only a
relation is specified that enables us to check the validity of a certain input and output pair.
A slightly more general approach can be found in [11].

6 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Definition 2.1. A relational instruction set (RIS) is a pair �O�Ω� of objects O and primitive
operations Ω with the following properties: O � �O1� � � � �Ok� is a family of sets Oi. These
sets partition the objects into classes of the same type. The primitive operations Ω �
�ω1� � � � �ωl� are relations

ωi � �Oxi
1
��� ��Oxi

si
��Oxi

si�1

with input size (arity) ar�ωi� � si and type type�ωi� :�Oxi
si�1

. An element �o1� � � � �oar�ω���

Oxi
1
��� ��Oxi

si
is called an input and an element o � Oxsi�1 is called an output of ωi.

Remark 2.2. For the relation �o1� � � � �oar�ω��o� � ωi we will also use the more intuitive
notation

o � ωi�o1� � � � �oar�ω���

This notion may be considered as a non-deterministic assignment operation. It assigns to
an input �o1� � � � �oar�ω�� one of the potential outputs o of ω. However, one should have in
mind that this notion still represents a relation that can be true or false. It is true if the
input is admissible for the operation and if the output is one of the proper evaluations of ω
on this input.

In our geometric setup the different classes of objects will correspond to points, lines,
circles, etc. Each primitive operation will represent a certain type of geometric primitive
construction like join, meet, angular bisectors, etc. In addition, we will allow special
operations to create free points which will play the role of the “input” of our constructions.
Observe that relational instruction sets are general enough to describe not only geometric,
but also arithmetic operations (see [11]).

We now describe the specific objects and operations used in this article. Although we
will make use of Euclidean operations, we will describe the purely incidence geometric
part for points and lines in terms of projective geometry. This will exclude unnecessary
special cases and helps in defining the right concept of continuity later on. We embed
everything in the real projective plane �� 2. In the usual way we can represent points and
lines (in homogeneous coordinates) by vectors in � 3 ���0�0�0�	. Vectors that only differ
by a scalar multiple are identified and represent the same point (or line). A point �x�y�z�
is on a line �a�b�c� if and only if ax� by� cz � 0. Meet and join can then be simply
expressed as cross-products of such vectors (see for instance [11]).

Since we also want to deal with objects and operations of Euclidean geometry like
circles and angular bisectors, we have to embed the usual Euclidean plane (equipped with
a Euclidean metric) in ��

2. A finite point �x�y� � �2 will be represented by the point
�x�y�1� of ��2. With this standard embedding a line ax�by� c � 0 of �2 is represented
by �a�b�c�, �∞ � �0�0�1� represents the line at infinity, and two lines l1 � �a1�b1�c1� and
l2 � �a2�b2�c2� are orthogonal if a1b2
 b2a2 � 0. In order to simplify the notation later
on we will also identify a finite point �x�y�1� with a complex number x� iy. By this we
identify the finite part of the projective plane with � .

We restrict the use of angular bisectors to those lines that pass through the origin �0�0�
of �2 . An angular bisector of two lines l1 and l2 through the origin is a line � through
the origin such that ��l1� �� � ���� l2�. For a pair of lines there are two angular bisectors,
which are orthogonal to each other. Restricting the use of angular bisectors to lines through
the origin reduces the occurrence of non-admissible situations to a minimum. Formally,
we will make use of the following primitive operations. For the sets P of points and L of

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 7

lines, we define:

JOIN :� ��p1� p2� l� � l is the line through p1 and p2 and p1 �� p2	� �P�P��L
MEET :� � �l1� l2� p� � p is the intersection of l1 and l2 and l1 �� l2	� �L�L��P

BISECT :� � �l1� l2� l� � l is an angular bisector of l1 and l2 and
l1� l2� l pass through the origin	 � �L�L��L

Furthermore, we define the following four constants (i.e. primitives with input size zero):

P�a�b� :���a�b�1�	� P; for a�b � �0�1	�

These constants will be used to fix a coordinate system. For the generation of free points
we define a special instruction that has no input elements and allows the output to be any
point of P:

FREE :� P�

We will deal with the following relational instruction set:

JMB :� ��P�L���JOIN�MEET�BISECT�FREE�P�0�0��P�1�0��P�0�1��P�1�1����

Remark 2.3. Here are three comments on the choice of the primitive operations:

(i) The only cases where the two operations JOIN and MEET are not admissible is
when the two input elements are identical. For all other cases they are well-
behaved.

(ii) The only operation that introduces an ambiguity is BISECT. The primitives JOIN

and MEET are “deterministic” in the sense that each admissible input has exactly
one possible output.

(iii) The operation BISECT has been chosen for our investigations since it isolates the
effect of generating an ambiguity. Unlike the intersection circle with line opera-
tion it has no open region of the input parameters where it is not admissible. Such
effects (which we want to exclude here) would allow the possibility to construct
some kind of “sidedness test”, which are at the core of of complexity results for
oriented matroids, polytopes, mechanical linkages or the warehouseman’s prob-
lem. In Sec. 6 when we prove the PSPACE-hardness result we will make a very
selected use of one such additional operation.

A construction sequence is formalized by the concept of a geometric straight line pro-
gram (GSP).

Definition 2.4. A geometric straight-line program on a relational instruction set �O�Ω�
is defined by a sequence of statements Γ � �Γ1� � � � �Γm�. Each Γ j has the form Γ j �
�ω� i1� � � � � iar�ω�� where

(i) ω is an operation from the instruction set Ω,
(ii) the type of Γ j is defined to be the type of ω,

(iii) for each k � �1� � � � �ar�ω�	 we have ik � j,
(iv) for each k � �1� � � � �ar�ω�	 the type of Γ ik matches the type of the k-th input of ω.

After a suitable set of primitive operations is given it is straightforward to describe
construction sequences by a GSP. Each statement Γ j � �ω� i1� � � � � iar�ω�� of a GSP describes
the generation of a new element by means of a primitive operation ω whose input is given
by the output of the statements Γi1 � � � � �Γiar�ω� . Item (iii) of the above definition ensures
that only elements are used as input that have been already constructed. Item (iv) ensures
a correct typing. The concept of a GSP emphasizes the constructive step-by-step nature,
however it allows for a certain “non-determinism” during a construction, since it does not
specify which output of an (ambiguous) operation to take. To make GSPs more readable

8 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

we also use the “ � ” notation of Remark 2.2 to encode each statement. A statement
Γ j � �ω� i1� � � � � iar�ω�� will then be written as j � ω�i1� � � � � iar�ω��. Furthermore, we allow
to exchange the references j� i1� � � � � iar�ω� by meaningful variable names.

We may consider a certain set of primitive operations as a kind of programming lan-
guage. Each GSP is a certain program. In what follows we are mainly interested in the
constructions/programs that can be described by the operations in JMB.

Example 2.5. The following sequence of instructions is a simple GSP over the JMB in-
struction set. It takes two free points p and q, joins them to the origin o, and constructs the
angular bisector of the two resulting lines.

p � FREE

q � FREE

o � P�0�0�

l1 � JOIN�a�o�
l2 � JOIN�b�o�
b � BISECT�l1� l2�

We will still simplify the notions by assuming that points that do not occur explicitly on
the left of any assignment are automatically initialized by a FREE operation. Furthermore,
if the output of an operation is unique and used only once we allow that it is used directly
(without intermediate variable) as an input of another operation. In particular this conven-
tion applies to the constants in JMB. With these conventions the above GSP can simply be
written as

b � BISECT�JOIN�p�P�0�0��� JOIN�q�P�0�0����

Closely related to the concept of a GSP �Γ1� � � � �Γm� is the notion of an instance of the
GSP. Roughly speaking an instance of a GSP is an assignment of a concrete object to each
of the statements Γi such that all corresponding relations are satisfied.

Definition 2.6. An instance of a geometric straight-line program �Γ 1� � � � �Γm� is an as-
signment of objects X̃ � X̃1� � � � � X̃m such that all primitives are satisfied, that is, for every
statement Γ j � �ω j� i1� � � � � iar�ω j�� the relation �X̃i1 � � � � � X̃iar�ω j �

� X̃ j� � ω j holds.

Example 2.7. For the GSP given in Example 2.5. we have in particular the following
instance (in homogeneous coordinates):

p̃ � �1�0�1� q̃ � �0�1�1� õ � �0�0�1�
l̃1 � �1�0�0� l̃2 � �0�1�0� b̃ � �1�1�0�

It is important that for the same choice of free elements there also exists another possible
instance that exactly differs in the choice of the angular bisector:

p̃ � �1�0�1� q̃ � �0�1�1� õ � �0�0�1�
l̃1 � �1�0�0� l̃2 � �0�1�0� b̃ � �
1�1�0�

Remark 2.8. By our definition of an instance we implicitly assume that for any specific
instance the positions of the elements are admissible in the sense that each primitive oper-
ation can be executed.

Remark 2.9. A more formal treatment of RIS’s and GSPs would include a careful separa-
tion of syntax and semantics of GSPs, a separation of references to objects and the objects
themselves, and many other subtleties that are present whenever the aim is to formalize the
concept of computing. However, we hope that the slightly informal treatment used in this
article satisfies the needs of the reader as long as only complexity issues are concerned. A
more elaborated treatment of GSPs can be found in [11].

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 9

2.2. Continuity. Along with the notion of GSPs and their instances comes a natural no-
tion of continuity. For this we will split a specific GSP P � �Γ1� � � � �Γm� over the instruc-
tion set JMB into input variables and dependent variables. We consider each point in P
that comes from a FREE operation as an input to P . W.l.o.g. we may assume that the def-
inition of the input points are the first k statements P . Each of the operations JOIN,MEET,
and BISECT has only a finite number of possible output values. This is the case since if we
prescribe the positions of the input points all other objects of this instance are determined
up to a finite number of possible binary choices. Each choice that has to be made comes
from one application of a BISECT operation.

Now assume that p1� � � � � pk are the input points of P . Furthermore, assume that we are
given continuous functions

pi�t� : �0�1� �
3 ���0�0�0�	

for each i� �1� � � � �k	. These functions describe a continuous movement of the input points
(in homogeneous coordinates).

Definition 2.10. A continuous evaluation of the GSP P over the JMB instruction set under
the movement pi�t� is an assignment of continuous functions

oi�t� : �0�1� �
3 ���0�0�0�	

for each i � �k�1� � � � �m	 such that for all t � �0�1� the objects

�p1�t�� � � � � pk�t��ok�1�t�� � � � �om�t��

form an (admissible) instance of P .

This concept formalizes the intuitive requirement that under a continuous movement
of free elements the dependent elements should move continuously as well. For instance,
if we have the simple GSP of Example 2.5 and move from one instance to another by
changing the positions of the free elements a and b, a continuous evaluation makes sure
that we do not jump spontaneously from one choice of the angular bisector to the other
one.

Observe that the way we define continuity leaves room for the necessary indeterminism:
Usually one would require that the output elements are given by continuous functions in the
input, but here both the path of the input and the path of the output are given by continuous
functions on the interval [0,1].

The following property of continuous evaluations is crucial:

Lemma 2.11. If there exists a continuous evaluation of the GSP P over the JMB for a
continuous movement pi�t� then it is unique.

PROOF. We can prove this lemma by induction on the length of P. Assuming that the
statement holds for all programs of length m
 1 we prove that it also holds for programs
of length m. Assume that for such a program P the functions p i�t� describe a continuous
movement for which a continuous evaluation exists. If the last operation of P is one of the
constant points then the statement holds trivially. If the last operation of P is one of the
deterministic operations JOIN or MEET, then the statement holds by the continuity of these
operations. If the last operation is BISECT then we can argue as follows: The two possible
outputs of BISECT are two lines that are orthogonal to each other. If there was a way to
continuously get from one branch to the other there must be a position in which these two
lines coincide. This is impossible since the two angular bisectors are orthogonal.

10 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Remark 2.12. This Lemma shows the importance of non-admissible positions: At these
singularities the different branches coincide, both angular bisectors degenerate to the zero
vector. It is not possible to extend the projective setting by this additional line �0�0�0� (and
a corresponding point) without destroying the uniqueness of continuous evaluations, even
though it is possible to extend the JMB instruction set to include them.

2.3. Fundamental Problems in Dynamic Geometry. After formalizing the concept of
GSPs and continuity we are finally in the position of formalizing the main questions of
this work. The first problem formalizes the most fundamental operation of a Dynamic
Geometry program: After you pick a free point of a construction and move it to another
position, how did the rest of the construction change?

Definition 2.13. (Tracing problem): Let P be a GSP and let pi�t� describe a continuous
movement for which a continuous evaluation �p 1�t�� � � � � pk�t��ok�1�t�� � � � �om�t�� exists.
Furthermore, let �p1� � � � � pk�ok�1� � � � �om� be an instance of P with free points pi � pi�1�
for all i � �1� � � � �k	. Decide whether oi � oi�1� for all i � �k�1� � � � �m	.

The second problem asks for the mere existence of a path from one instance to another.

Definition 2.14. (Reachability problem): Let P0 � �p0
1� � � � � p0

k�o
0
k�1� � � � �o

0
m� and P1 �

�p1
1� � � � � p1

k �o
1
k�1� � � � �o

1
m�. Decide whether there exists a continuous evaluation that starts

at P0 and ends at P1.

We will see that both problems turn out to be (at least) NP-hard. If we allow one single
use of a sidedness test to constrain admissible regions the reachability problem even turns
out to be PSPACE-hard.

3. USEFUL GADGETS

This section will describe small constructions that are helpful to compose the more
complicated constructions that we need later.

3.1. More Primitives. Since our set of primitive operations is very restricted we first show
that other useful primitive operations can be easily composed from these primitives.

3.1.1. The Line at Infinity. By a simple sequence of join and meet operations we can
construct the line at infinity:

a � MEET�JOIN�P�0�0��P�0�1��� JOIN�P�1�0��P�1�1���

b � MEET�JOIN�P�0�0��P�1�0��� JOIN�P�0�1��P�1�1���

�∞ � JOIN�a�b�

By construction, a and b are two distinct points on the line at infinity and hence � ∞ is the
line at infinity with homogeneous coordinates �0�0�1�.

3.1.2. Parallel Lines. For a line l and a point p we can calculate the parallel to l through
p by

JOIN�MEET�l� �∞�� p��

If p lies on l this formula produces l itself. If l � �∞ this formula is not admissible. We
will refer to this “macro” by PARALLEL�l� p�.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 11

�0�0�
�1�0�

�0�1�

�1�1�

a

b

c

l
perp

Fig. 3: Construction of a perpendicular.

3.1.3. Perpendicular. A bit less trivial is the construction of a perpendicular to l trough
p. We can only do such a construction since the choice of our constant points provides
us with a sample of two perpendicular lines. This right angle can then be transferred to
another line. Since we already have a parallel operation w.l.o.g. we may assume that l
passes through P�0�0� and that p � P�0�0�. The construction is given in Fig. 3. We have

a � MEET�JOIN�P�1�0��P�1�1��� l��

b � MEET�JOIN�P�0�0��P�0�1���PARALLEL�a� JOIN�P�1�0��P�0�1�����

c � MEET�JOIN�P�0�1��P�1�1���PARALLEL�b� JOIN�P�0�0��P�1�1�����

perp � JOIN�c�P�0�0���

This construction is admissible for all situations where l passes through P �0�0�. We will
refer to the general construction for perpendiculars by PERPENDICULAR�l� p�.

3.2. Arithmetics. An essential part of our constructions will be the evaluation of certain
polynomial expressions. For this we single out one particular line l on which we perform
the evaluation. On this line we fix two points that play the roles of “0” and “1” and therefore
fix an origin and a scale. To every point x on this line we can assign a unique value with
respect to this scale. This value is given by the ratio �0x�

�01� of oriented segment lengths.
Sometimes we will abuse notation and use the name of the point as name for the value.

3.2.1. Von Staudt Constructions. The evaluation of arbitrary polynomials can be done if
we are able to perform an elementary addition z � x� y and an elementary multiplication
z � x � y. This can be done by the classical von Staudt constructions. They are shown in
Fig. 4. In these pictures lines that seem to be parallel are really parallel. The desired arith-
metic relations follow immediately from the similarities of the darkened triangles. Both
constructions can be easily decomposed into a sequence of JOIN, MEET and PARALLEL

x y x� y0 x y1 x � y0

Fig. 4: Von Staudt constructions for addition and multiplication.

12 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

0 1 a

i

ib

l�

li�

P

0 1 a

i

ia

l�

li�

Fig. 5: Coordinate extraction for “complex” points.

operations, that start from the points 0, 1, x, y and one auxiliary point p not on l. In
particular we get

x� y � MEET�JOIN�0�x��
PARALLEL�JOIN�x� p��

MEET�PARALLEL�JOIN�0� p��y��
PARALLEL�JOIN�0�x�� p�����

x � y � MEET�JOIN�0�x��
PARALLEL�JOIN�x� p��

MEET�PARALLEL�JOIN�1� p��y�� JOIN�0� p�����

These construction sequences are chosen with care such that as long as the auxiliary point
p is not on l the only non-admissible situations arise when in the addition both points x and
y are at infinity or in the multiplication one of the points is at 0 and the other is at infinity.

3.2.2. Complex Arithmetics. As well as calculations over the real numbers we can also do
calculations over complex numbers. For this we fix points “0”, “1” and “i” in the plane,
such that the lines l� � JOIN�0�1� and li� � JOIN�0� i� are perpendicular and such that
the distance from 0 to 1 is the same as the distance from 0 to i. For convenience we
take 0 � P�0�0�, 1 � P�1�0�, i � P�0�1�. The lines l� and li� play the roles of the real
and imaginary axes of the complex plane. The points 0 and 1 define a scale on l �. The
points 0 and i define a scale on li�. For each point p in the plane we can (after orthogonal
projection to these two axes) assign two coordinates, the real and the imaginary part of
a complex number a� ib. If no confusion can arise we simply denote the points with
homogeneous coordinates �a�b�1� by the corresponding complex number a� ib. By a
parallel projection along the direction of JOIN�1� i� we can transfer any number in l i� to
the corresponding number on l�, and vice versa. Let z1 � a1 � ib1 and z2 � a2 � ib2 be
two complex numbers. With respect to our coordinate system we can model complex
addition and complex multiplication of the points z 1 and z2 by first transferring the real
and imaginary parts to the line l�, then modeling the formulas

z1 � z2 � �a1 �a2�� i�b1 �b2��
z1 � z2 � �a1a2
b1b2�� i�a1b2 �b1a2��

by a sequence of von Staudt constructions and finally construct a new point from the re-
sulting real and imaginary part. The complex addition can be used for addition of vectors
as well.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 13

0

1

1� i

1
2

1
4

1
8

i

Fig. 6: Constructions for 1
2n .

Remark 3.1. One might think that using von Staudt constructions for vector addition is
more than necessary. The simple construction sequence

z1 � z2 � MEET�PARALLEL�0�z1��PARALLEL�0�z2��

seems to work as well. However, this construction has the disadvantage that it is non-
admissible whenever 0, z1 and z2 are collinear. For the complexity issues that we consider
later the actual length of these elementary operations is irrelevant as long as it is constant.

3.2.3. Integer and Rational Points. By being able to add and multiply via von Staudt con-
structions we are also able to construct points a� ib for arbitrary integers a and b with
respect to our coordinate system. We simply have to find a sequence of additions and mul-
tiplications that computes the numbers a and b starting from 0 and 1. In particular, using
the binary representation any integer n � 0 can be constructed in O�log�n�� construction
steps.

It is also easy to construct numbers of the form 1
2n . The construction in Fig. 6 shows

that this can be done in O�n� steps.

3.3. Points on Circles and Intervals. In our relational instruction set JMB we do not
have direct access to circles. However, by Thales’ theorem we can freely generate points
on circles that are given by two diameter points (see Fig. 7 left). Let a and b be the two
endpoints of a diameter of the desired circle. We take a free point p and construct

q � MEET�JOIN�a� p��PERPENDICULAR�JOIN�a� p��b���

Using Thales’ theorem it is immediate that the point p is on the circle with the segment
�ab� as diameter. We will abbreviate this construction by

q � ONCIRCLE�a�b� p��

p

q

a b

p

q

xa b

Fig. 7: Constructing points on circles and on segments.

14 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

ω

ω�2

ω�4

l�

�0

�1

�2

a

0

Fig. 8: Detection of a winding number.

If we furthermore project the resulting point orthogonally to the line a�b by

x � MEET�JOIN�a�b��PERPENDICULAR�JOIN�a�b��ONCIRCLE�a�b� p����

we get a point x that is constrained to lie in the closed segment from a to b (see Fig. 7 right).
We abbreviate this by

x � ONINTERVAL�a�b� p��

Only if p and a coincide these two operations are not admissible.

Remark 3.2. This construction has the side effect that while point p cycles once around
point a, the derived point q makes two full cycles on the circle.

Remark 3.3. Although by this construction we can generate a point freely on the boundary
of a circle, this circle is not available for further constructions like intersecting it with a line.

3.4. Detecting a Winding Number. So far the constructions used in our gadgets did not
contain any BISECT operations and therefore no non-determinism occurred. The basic
functionality for which we will use BISECT operations is the generation of monodromy
effects: “One can start with an instance A of a GSP and continuously make a round-trip
with the free elements and end up in a different instance B.” The smallest device for which
such an effect occurs is given by the following GSP:

�0 � JOIN�a�0�
�1 � BISECT�l�� �0�
�2 � BISECT�l�� �1�

It takes a free point a, joins it with the origin and constructs an angular “quad-sector” of this
line and l�. Assume that a is in a certain position (�� 0) and from there makes a round-trip
with continuous speed around the origin. While �0 moves with an angular velocity ω the
line �1 moves with angular velocity ω�2 and the line �2 moves with angular velocity ω�4.
Thus after a has performed a full cycle around the origin the line � 2 has made a quarter
turn. If a moves along an arbitrary path (that avoids point 0) and returns to its original
position then the resulting situation reflects the parity of the winding number of a around
the origin. If �2 returned to its original position, the winding number was even, if � 2 moved
to the orthogonal of its original position the winding number was odd.

We can furthermore iterate this construction by adding more statements of the form

�i � BISECT�l�� �i�1�

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 15

for i � �3� � � � �k	. The resulting line �k moves with angular velocity ω�2k. By this con-
struction we can determine the winding number of a round-trip of a modulo the exponential
number 2k�1. If the line �k made a total turn of i �π�2k�1 the winding number w satisfies

w � i mod 2k�1�

The situation for the first two iterations is shown in Fig. 8.

4. REACHABILITY PROBLEMS

This chapter is dedicated to our first theorem. We will prove:

Theorem 4.1. The following decision problem is NP-hard: Given a GSP P over the JMB
instruction set that uses at most three BISECT operations. Furthermore, given two in-
stances A and B of P . Decide whether there is an admissible real path from A to B.

We will prove this theorem by giving a reduction from the well known 3-SAT decision
problem.

4.1. From 3-SAT to Algebra. The following problem is one of the standard NP-complete
decision problems [2].

Decision Problem 4.2 (3-SAT). Let B � �b1� � � � �bn� be boolean variables, and let the
literals over B be �B � �b1� � � � �bn��b1� � � � ��bn�. Furthermore, let C1� � � � �Ck be clauses
formed by disjunction of three literals from �B. Decide whether there is a truth assignment
for B that satisfies all clauses C1� � � � �Ck simultaneously.

W.l.o.g. we may assume that each variable occurs at most once in each clause. We
first give a (polynomial time) procedure that transfers each instance of 3-SAT into a cor-
responding problem concerning the roots of a multivariate polynomial. Let b 1� � � � �bn be
the boolean variables and let C1� � � � �Ck be the clauses of a given 3-SAT S. To each bi we
assign a formal variable xi. For a literal li � �bi��bi	 we set

f �xi� :�

�
xi if li � bi�
1
 xi if li � �bi�

Assume that for each j � 1� � � � �k the clause C j is of the form l j
r � l j

s � l j
t where the literal

l j
i is either bi or �bi. We set

Fj :� f �l j
r � � f �l j

s � � f �l j
t ��

Finally we set

FS �
k

∑
j�1

Fj�

By this translation for instance the 3-SAT formula �b1��b3�b5�� ��b2�b4��b5� is
translated to �x1 � �1
 x3� � x5����1
 x2� � x4 � �1
 x5��. The satisfying truth assignments
for S and the roots of FS in �0�1�n are related by the following lemma (here �0�1� denotes
the closed interval between 0 and 1).

Lemma 4.3. S has a satisfying truth assignment if and only if there are �x1� � � � �xn�� �0�1�n

with FS�x1� � � � �xn� � 0.

PROOF. If S has a satisfying truth assignment �b1� � � � �bn� � �TRUE�FALSE	n we set

xi :�

�
0 if bi � TRUE�
1 if bi � FALSE�

Since every clause contains at least one true literal we the get that all f 1� � � � � fk are zero.
This yields that FS is zero as well. Conversely, assume that there are values �x1� � � � �xn� �

16 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

�0�1�n such that FS�x1� � � � �xn� � 0. If the xi are chosen in the interval �0�1� all f j are non-
negative. Thus ∑k

j�1 f j � 0 implies that all f j are zero. However, each f i can only be zero
if at least one of its factors is zero. By setting

bi :�

�
TRUE if xi � 0�
FALSE if xi �� 0�

we get a satisfying truth assignment for S.

Using the structure of the polynomial FS�x1� � � � �xn� we can derive a simple gap theorem
in the case that S is not satisfiable.

Lemma 4.4. If S is not satisfiable then FS�x1� � � � �xn�� 1 for all �x1� � � � �xn� � �0�1�n.

PROOF. This is true since FS is a multilinear form and FS�x1� � � � �xn� is an integer that is
greater or equal to zero for all vertices �x1� � � � �xn� � �0�1	n of the unit cube.

4.2. From Algebra to Geometry. Our next step is to transfer the algebraic situation in FS

to a geometric construction using exclusively JOIN and MEET operations and the constant
points 0, 1, i, and 1� i. This construction has the following properties: It contains freely
movable points p1� � � � � pn (one for each boolean variable in S), and a dependent point q
that is constrained to lie on l�. There will be admissible positions for p1� � � � � pn such that
0 and q coincide if and only if S is satisfiable.

Using the gadgets from Sec. 3 the construction is straightforward. We construct n points
x1� � � � �xn according to

xi � ONINTERVAL�0�1� pi��

The construction constrains each of the points x i to the segment �0�1� (see Sec. 3.3). Except
for this there is no restriction to the positions of the points x1� � � � �xn. These points model
the input variables x1� � � � �xn of the equation FS whose values should be chosen in the
interval �0�1�.

Using von Staudt constructions we now encode the polynomial FS�x1� � � � �xn� geomet-
rically. All calculations are carried out on the line l�. The point that finally represents
the result of the calculation is called q. This point q lies on l� by its construction and
Lemma 4.3. It can coincide with 0 if and only if S was satisfiable. We call the whole
construction CS. Altogether we obtain:

Lemma 4.5. (i) In CS the point q lies on l�.
(ii) There is an admissible position for p1� � � � � pn in CS such that q and 0 coincide if

and only if S has a satisfying truth assignment.
(iii) If S is not satisfiable then q� 1 for all admissible positions of p1� � � � � pn.

PROOF. (i) The point q lies on l� by construction. (ii) is a consequence of the construction
and Lemma 4.3. (iii) is a consequence of the construction and Lemma 4.4.

4.3. A Geometric Combination Lock. Our final task for proving Thm. 4.1 is to transfer
the construction CS into a construction that can be used for proving NP-hardness of a reach-
ability problem. The construction of CS so far included only JOIN and MEET operations
without non-determinism. The idea now is to conclude the construction by linking it to the
“winding number gadget” presented in Sec. 3.4. We will do this in such a way such that
a certain angular bisector can be rotated by π�2 if and only if the original 3-SAT problem
was satisfiable.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 17

x1

x2

x3

x4

q 0 ?

?

Fig. 9: Schematic view of the construction of a “geometric combination lock”.

For this we add a new free point p from which we construct a derived point v on the
circle with diameter �
 1

2 �0i� 1
2 �0i�. The construction is standard using the point on circle

gadget from Sec. 3.3:

v � ONCIRCLE�

1
2
�

1
2
� p��

Then we take the construction for CS and use our gadget for complex addition to construct
w� q�v and the line �0 � JOIN�0�w�. Finally, we add three non-deterministic statements

�1 � BISECT�l�� �0�� �2 � BISECT�l�� �1�� �3 � BISECT�l�� �2��

The line �3 is a three times iterated angular bisector of l� and �0. By construction the lines
�0, �1, and �2 pass through the origin. Hence the bisector operations are admissible. If the
positions of p� p1� � � � � pn are fixed then the construction is completely determined up to the
actual position of �1, �2, and �3. The final construction is called RS.

For the positions �p � �p1 � � � �� �pn � 1 the line �0 coincides with l� and the choice

�1 � �2 � �3 � l�

is a proper instance A of RS. For these positions of p� p1� � � � � pn also the choice

�1 � �2 � l�� �3 � li�

is a proper instance B. The only distinction between the instances A and B is the position
of �3.

Lemma 4.6. There is a continuous admissible path from A to B (induced by a movement
of the free points p� p1� � � � � pn) if and only if S is satisfiable.

PROOF. The only way to get from A to B is that the point w � q� v turns an odd number
of cycles around the origin. Assume for a moment that p 1� � � � � pn are fixed. Then the point
q has a certain position on the line l�. The point w is then constrained to lie on a circle of
radius 1

2 around q. By moving p we can freely influence the position of w on this circle.
The only way to let w cycle around the origin is to move p to a position that has less than
distance 1

2 to the origin, and then move p to achieve a full cycle of w around the origin.
However, Lemma 4.5 shows that q can only come so close to the origin if and only if S was
satisfiable. This proves the claim.

We may think of the whole construction as a “geometric combination lock:” The points
p1� � � � � pn play the role of the code dials. The point p plays the role of an opening wheel.

18 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

The angular bisector is the bolt of the combination lock. The reachability problem trans-
lates to the question whether one can open the lock. Initially the dials and the wheel are
in some position. If we want to open the combination lock we first have to move the dials
into the correct position (this can only be done if we know the solution to the 3-SAT prob-
lem S). If the dials are in the correct position we can turn the opening wheel and open the
lock. After opening the lock we move all dials and the opening wheel again to the initial
position. Nothing has changed except for the fact that the lock is now open.

A schematic picture of the whole situation is shown in Fig. 9. Points on an interval are
used for von Staudt constructions. The result of this computation is used for the opening
wheel.

Finally, observing that the whole translation from the original 3-SAT to the construction
RS can be carried out in polynomial (even linear) time in the length of the 3-SAT problem
proves Thm. 4.1.

5. COMPUTING A SPECIFIC TRACE

The goal of this section is to prove our next main theorem. It describes the complexity
of the basic situation in a Dynamic Geometry system: You pick a point and move it from
one position to another. It will turn out to be NP-hard to decide whether a continuous
evaluation of the situation ends up in a specific situation.

Theorem 5.1. Given a GSP P over the JMB instruction set that contains exactly one free
point p. Furthermore, given two instances A and B such that p is at position a in A and p
is at position b in B. Let p�t� : �0�1� �a�b� be a (straight) movement of p with p�0� � a
and p�1� � b. It is NP-hard to decide whether a continuous evaluation of P under this
movement that starts at instance A ends up at the instance B.

Here is an overview over the ingredients of our proof: First, we map the moving point
p to the unit circle. Then we construct a set of polynomials B j�z� that correspond to
the variables of a given 3-SAT problem in a way that all possible 0-1 combinations are
represented by the values of the B j on the unit circle. Finally, another polynomial Fs�z�
encodes the boolean formula of the 3-SAT problem and controls a point q, that will cycle
around the origin. The winding number of this point can be used to read off the satisfiability
of the 3-SAT.

A similar polynomial construction has been used by Plaisted in [17, 18, 19]. He used
it to prove that it is NP-hard to decide for a sparse univariate polynomial whether it has
a complex root of modulus 1. Our constructions differ from Plaisted’s work by being
more focused on evaluations of polynomials over the real numbers. One of the direct con-
sequences of our construction is that it is NP-hard to decide whether a real polynomial
encoded by a straight line program has a root over the real numbers (see Sec. 5.7). This
fact can also be derived as a consequence of Plaisted’s Theorem by a Moebius transforma-
tion argument. The alert reader will find out that we could have used the binary counter
construction of Sec. 6 to prove Thm. 5.1, but the additional results for real polynomial
roots (and some additional insight) would not have been possible then. We are convinced
that the additional effort pays off very well.

5.1. A Point on the Unit Circle. We will start our construction with a little gadget that
maps a certain line segment to a point on the unit-circle. For this we first use the point-on-
circle gadget of Sec. 3.3. and set

w � ONCIRCLE�
1�1� p��

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 19

If p is located at 2 the point w is located at 1. While p moves on a straight vertical path
to the point 2�3i point w makes a quarter turn on the unit circle. We set

z � w4�

This point is constructible by the gadgets for complex arithmetics from Sec. 3.2. While p
moves along the segment from 2 to 2�3i the point z �: z�p� makes exactly one full cycle
on the unit circle.

5.2. Complex Polynomials for Variables. From now on we fix a specific instance S of a
3-SAT problem with variables b1� � � � �bn and clauses C1� � � � �Ck. We will encode S into an
instance of the decision problem of Thm. 5.1.

Let Pj be the j-th prime number, and let M � ∏n
j�1 Pj be the product of the first n primes.

The size of the j-th prime is less than j log� j�. Hence the size of M is less than nn logn. The
polynomial zM
 1 has altogether M single roots, the M-th roots of unity, equally spaced
on the unit circle at z � e2iπ�r�M�, for r � �1�2� � � � �M	. We abbreviate εM�r� � e2iπ�r�M�.
We consider two classes of polynomials for which the sets of roots are subsets of the roots
of zM
1:

B j�z� � 1
 zM�Pj �

B j�z� � 1� zM�Pj � z2M�Pj � z3M�Pj � � � �� z�Pj�1�M�Pj �

For each j � �1� � � � �n	 we set A j � �Pj�2Pj�3Pj� � � � �M	 and A j � �1�2� � � � �M	
A j. The
following relations are immediate.

Lemma 5.2. With the notation as set above we have:

(i) For each j � �1� � � � �n	 we have B j�z� �Bj�z� � zM
1.
(ii) The roots of B j�z� are at z � εM�r�, for r � A j.

(iii) The roots of B j�z� are at z � εM�r�, for r � A j.

PROOF. Claim (i) can be directly proved by expansion of the product. Claim (ii) is trivial.
Claim (iii) is a consequence of (i) and (ii) and the fact that there are no multiple roots in
zM
1.

Later on we will associate to each number r � �1�2� � � � �M	 a certain evaluation of the
boolean variables b1� � � � �bn. For a number r the boolean variable b j will be considered
TRUE if εM�r� is a root of B j and FALSE otherwise. The above lemma proves that under
this correspondence b j is FALSE (at r) if and only if εM�r� is a root of B j. We set

b j�r� :�

�
TRUE if B j�εM�r�� � 0�
FALSE if B j�εM�r�� �� 0�

Lemma 5.3. For each truth assignment �b1� � � � �bn� � �TRUE�FALSE	n there is at least
one number r � �1� � � � �M	 such that b j�r� � b j for all j � �1� � � � �n	.

PROOF. For a given assignment �b1� � � � �bn� � �TRUE�FALSE	n we are looking for an
integer r � M that has Pj as a prime factor if and only if b j�r� � TRUE. For this we can
simply take the number

∏
� j � b j�r��TRUE�

Pj

which has this property.

20 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

We will explicitly calculate the above polynomials B j�z�, Bj�z� and zM
1 by suitable
geometric constructions. We will have to take care that the effort of doing this is no more
than polynomial in the coding length of the original 3-SAT S. For this we need:

Lemma 5.4. For each n the polynomial zn can be evaluated by a straight line program
using at most O�log2�n�� multiplications. Similarly for each n and each divisor m of n the
polynomial 1� zm � z2m � � � �� zn can be evaluated by a straight line program using at
most O�log�n�2� additions or multiplications.

PROOF. Let n � σ020 �σ121 �σ222 � � � ��σk2k with k � log2�n� and σi � �0�1	 be the
binary expansion of n. We can write zn � ∏�i � σ j�1� z2 j

. This product has at most log2�n�

terms. The polynomial z2 j
� z2 j�1

� z2 j�1
uses only one additional multiplication if we

already have z2 j�1
. This proves the first claim.

For the second claim we first set fk�z� � 1� z1 � z2 � � � �� zk. We have 1� zm � z2m �
� � �� zn � fn�m�z

m�. Thus after having used 2log2�m� multiplications for computing zm we

just have to care about fk�z� for k � n�m. If k is even we get fk�z� � fk�2�z��1� zk�2�, if

k is odd we get fk�z� � fk�2�1�z��1� zk�2�� zk�2, and a simple recursion on k proves the
claim.

The last lemma together with the observation that M is less than nn logn shows that all
polynomials B j�z�, B j�z� and zM
1 can be encoded by straight line programs whose length
is polynomial in n.

5.3. Evaluating a 3-SAT. We now proceed by encoding the original 3-SAT instance S
into our construction. For a complex number z � a� ib we set ��z�� � a 2 � b2. For all
j � �1� � � � �n	 we consider L j�z� � ��Bj�z��� and L j�z� � ��Bj�z���. These two functions are
real-valued and even non-negative. The only way for these functions to be zero is that the
corresponding functions B j�z� and B j�z� become zero. For a literal l j � �b j��b j	 we set

f l j �z� :�

�
Lj�z� if l j � b j�
L j�z� if li � �bi�

Assume that for each j � 1� � � � �k the clause C j is of the form l j
r � l j

s � l j
t where the literal

l j
k is either bk or �bk. We set

Fj�z� :� f l j
r �z� � f l j

s �z� � f l j
t �z��

Finally we set

FS�z� �
k

∑
j�1

Fj�z��

If z � a� ib the function FS�z� is a real polynomial in a and b that can be realized by
a straight line program with length polynomial in the size of the 3-SAT instance S. It is
important that FS�z� is not an element of the polynomial ring � �Z�, because otherwise the
following lemma could not be true.

Lemma 5.5. It is NP-hard to decide whether there is a z � � with FS�z� � 0.

PROOF. The only way for FS�z� to become zero is that all its summands are zero. This
however can only be the case if z is of the form εM�r� for an r that corresponds to a
satisfying truth assignment of S.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 21

5 10 15 20 25 30

10

20

30

40

50

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Fig. 10: The graph of the function FS�cos�2πt�30�� isin�2πt�30��.

Example 5.6. Let us consider a specific satisfiability problem S and the associated function
FS. In order for the example to have a reasonable size we consider a 2-SAT instead of an
actual 3-SAT instance:

S � �b1�b3�� �b2�b1�� ��b2�b3��

The satisfying truth assignments are �1�0�0�, �1�0�1� and �1�1�1�. We associate b 1 with
the prime number 2, b2 with 3, and b3 with 5. The resulting graph of FS�cos�2πt�30��
isin�2πt�30�� together with the corresponding bit patterns is shown in Fig. 10. The ticks
mark the corresponding 30th roots of unity. Whenever we have a bit pattern corresponding
to a satisfying assignment the function is zero, else it is greater than zero.

5.4. Another Gap-Theorem. Again we need an estimate how small the function FS�z�
can become if S is not satisfiable. In fact we will need this minimum only for points ε M�r�
with r � �1�2� � � � �M	. We can get a lower bound for this value by calculating the smallest
possible non-zero summand of FS�εM�r��. This value in turn can be bounded by the cube
of the smallest non-zero value α that one of the functions L j�εM�r��, Lj�εM�r�� can take
for r � �1�2� � � � �M	. For this it is useful to observe that L j�εM�r�� � 2
2cos�2π � r�Pj�.
This desired value α is taken at Ln�εM�1��. Thus we have α � 2
2cos�2π�Pn�. We obtain
the following lemma.

Lemma 5.7. If FS�εM�r�� is non-zero for some r � �1� � � � �M	, then we have

FS�εM�r��� �2
2cos�2π�Pn��
3 � �2
2cos�2π2� log�n�2

�3�

PROOF. The first inequality follows from our considerations above. The second inequality
is a very rough estimate following from the monotonicity of cos�t� in �0�π�2� and the fact
that Pn � 2log�n�2

.

We set βS � �2
2cos�2π �2� log�n�2
��3. This number can be constructed geometrically

using an iterative sequence of log�n�2 BISECT operations starting with the right angle fol-
lowed by a constant number of JOIN and MEET operations.

5.5. Tracing the Flight of a Bumble Bee. Now we are done with the algebraic part of
our construction. We come back to the geometric part that started with the construction of
a point z that moves once around the unit circle while the free point p moves from a to b
(Sec. 5.1). We take z as the input of FS�z� and model the evaluation of FS�z� by von Staudt
constructions as described in Sec. 3.2. The result is a non-negative point q on the real axis
l�. This point can coincide with the origin whenever z corresponds to a satisfying truth

22 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Fig. 11: The path of the dependent point gS�z�.

assignment of S. In particular, this can only happen if z � ε M�r� for a suitable r. We now
consider the function

gS�z� :� zM
1
FS�z��βS�

Lemma 5.8. Let G be the path of gS�z� while z makes one full cycle around the unit circle.
The winding number of G with respect to the origin is zero if and only if S has no satisfying
truth assignment.

PROOF. Let z � e2iπt for t � �0�1� move with constant speed on the unit circle. We can get
the corresponding winding number around the origin in the following way: We take the
ray of all positive real numbers. We calculate two numbers: w� counts how often the point
gS�z� crosses this ray moving from the lower to the upper half plane, and w � counts how
often the point gS�z� crosses this ray moving from the upper to the lower half plane. The
number w�
w� gives the winding number.

The real part of gS�z� is by construction and by Lemma 5.7 at most βS. For gS�z� being
real and positive the numbers zM
1 and FS�z� must both vanish. Thus we obtain

w� � ��r � �1� � � � �M	 � FS�εM�r�� � 0	� and w� � 0�

The winding number counts exactly the number of possible r � �0� � � � �M	 for which b j�r�
is a satisfying truth assignment of S.

Fig. 11 shows the trace of gS�z� for the 2-SAT formula of Example 5.6. The origin lies
on the symmetry axis of the figure very close to the right boundary. The winding number
will be exactly 12 corresponding to the 12 zeros of FS�z� shown in Fig. 10.

5.6. NP-hardness of Tracing. Now we are in principle done. We do a geometric con-
struction that calculates gS�z�p�� using the free point p as input parameter. This can be
done by a number of JOIN, MEET, and BISECT operations that is polynomial in the param-
eter n and k of S (by Lemma 5.4 and the considerations in Sec. 5.4). We construct the line
�0 � JOIN�0�gS�z�p���. Finally, we add n3 non-deterministic statements:

�1 � BISECT�l�� �0�
�2 � BISECT�l�� �1�

...
�n3 � BISECT�l�� �n3�1�

The winding number w of Lemma 5.8 satisfies

w � M � nn log�n� � nn2
� �2n�n2

� 2n3
�

Thus we obtain the following lemma.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 23

Lemma 5.9. Let A be an initial position of our entire construction for p � 2 and let B be
the corresponding position with identical choice of the angular bisectors for p � 2�3i. B
is the result of a continuous evaluation under the straight movement of p if and only if S
was not satisfiable.

PROOF. If S is not satisfiable, then the winding number of gS�z�p�� around the origin is
zero and the position of the angular bisectors remains unchanged. If S is satisfiable, then
the winding number lies between 1 and 2n3

. Thus a movement of p causes a change of the
positions of the angular bisectors.

This concludes our proof of Thm. 5.1, which is a direct consequence of the above
Lemma and the fact that the construction was polynomial in the size of n and k.

5.7. Roots of Univariate Polynomials. We will close this chapter with a little side re-
mark. Assume that the free point p of our construction is parameterized by �2�x�1� (in
homogeneous coordinates with x � �). The construction of the function FS�z�p�� could be
exclusively done with JOIN and MEET operations. The coordinates of the resulting point
FS�z�p�� � �α�x��β�x��γ�x�� are then polynomials in the single variable x. These polyno-
mials can be calculated by straight line programs whose length is polynomial in the size of
S, by translating the GSP into an equivalent SLP (see [11]). The 3-SAT S is satisfiable if
and only if there is an x with α�x� � 0. Thus we obtain

Theorem 5.10. It is NP-hard to decide whether a univariate polynomial encoded by a
straight line program has a real root.

6. PSPACE-HARD PROBLEMS

This section focuses on proving that certain reachability problems are PSPACE-hard
do decide. Compared to the previous sections there is one important difference. Every
construction done so far only needed constant points, meet, join, and bisect operations.
For the proof of the following PSPACE-hardness results for real reachability we need one
additional ingredient, a semialgebraic constraint on the configuration space of the geomet-
ric configuration. We will demonstrate several variants of the result with different such
constraints:

� the condition that a certain point is always on the left of a certain line,
� the condition that a certain point is always inside a certain circle,
� the condition that the intersection of a line and a circle is always real,
� the condition that the total length of the path of a freely movable point stays below

a certain threshold.

Note that the first three variants can be transformed into each other. In fact there are
many other variants of the result since the necessary restrictions that come from the addi-
tional inequality can be formalized in a very weak way. Nevertheless we have not been
able to derive a comparable result without the additional condition. Our proof will be en-
tirely constructive and self contained. It just relies on the well known PSPACE hardness of
quantified boolean formulas. Moreover we will be very restrictive in the use of free points:
the final construction has only one free point.

Let us first formulate one of the natural version of the main result of this section which
is very similar to Thm. 4.1, except for the additional inequality constraint (for which we
choose an incircle test here).

24 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Theorem 6.1. The following decision problem is PSPACE-hard: Given a GSP P over
the JMB instruction set that has exactly one free point and a certain dependent point d.
Furthermore, given two instances A and B of P . Decide whether there is an admissible
real path from A to B, such that along the path we always have �d�� 2.

The proof of this result will be done by a reduction to the PSPACE-hardness of Quanti-
fied Boolean Formulas (QBF). Formally the PSPACE-hardness of QBF can be stated as “it
is PSPACE-hard to decide whether the formula

�x1�y1�x2�y2 � � ��xn�yn f �x1�y1�x2�y2� � � � �xn�yn�

is true, where f is a boolean expression.” In a sense this formula resembles a two player
game with players X and Y. It asks for a winning strategy for player Y. The formula f
encodes the winning positions of Y: “For each move x 1 of X there is a move y1 for Y such
that for each move x2 of X there is a move y2 for Y such that � � � such that there is a final
move yn for Y such that Y wins the game.

For the proof we will geometrically construct a binary counter that counts through all
possibilities for the x1� � � � �xn. The entire construction is such that in order to get from
position A to B in the reachability problem one has (at certain positions) to set the values
of the y1� � � � �yn properly which can only be done if one knows the complete strategy for
player Y.

Remark 6.2. Before we start with the proof let us contemplate for a moment the value of
the following constructions. It is a remarkable fact that a similar result can be obtained even
without using the BISECT operation at all – however for the price of an unbounded number
of free points. The idea for this is to use one of the well known PSPACE-hard semialgebraic
reachability problems (like the warehouseman’s problem [7, 24]) as the starting point of the
reduction. All involved equations and inequalities can be condensed into one big inequality
(this new inequality describes an ε-approximation of the original problem). This translation
can only be done with the help of additional slack-variables (one variable per original
inequality). The information of a certain state of the construction is “stored” in the actual
values of the slack variables. Particular technical difficulties arise from the right choice of
the involved ε-sizes.

Compared to this approach the construction presented on the following pages is much
more direct. Its “computational power” is more or less distributed among the monodromy
behavior of several BISECT operations. Each of these angular bisectors contributes one bit
of information to the “storage” of the device.

Our construction allows for variants and extensions that are not possible in the other ap-
proach. In particular, the results can be strengthened further to have only one free complex
input variable. A streamlined variant of this result for the case of analytic continuation will
be presented in [14].

6.1. Another Gadget. Before starting the crucial construction of a binary counter we will
introduce another gadget that simplifies this construction. We show that over the JMB
construction set, we can intersect a line through the origin with the unit circle (note that
there are no circles available in JMB). Let l be a line through the origin and l� be the real
axis. We consider the following GSP:

g� BISECT�l� l��
q� MEET�l�PARALLEL�g�
1��

The output point q is one of the intersections of l and the unit circle. Which of the two
intersections we get, depends on the choice of angular bisector. If the line l makes a half

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 25

g

−1

l

l�0

q

lp g

−1

l

l�0

q

lp

Fig. 12: Two instances of an INT UNITCIRCLE�l� gadget.

turn (and by this comes back to its original position), the intersection moves continuously
from one possibility to the other, see Fig. 12. We will encapsulate this construction within a
(non-deterministic) macro INT UNITCIRCLE�l� that produces one of the two intersections.

6.2. A Binary Counter. Our first sub-goal is to construct a binary counter, that drives
the construction through an exponential number of different stages. For this we again start
with a point z, which is given by

w � ONCIRCLE�
1�1� p��
z � w4�

As described in Sec. 5.1, while p moves on a straight vertical path from a � 2 to the
point b � 2� 3i, the point z makes one full counterclockwise cycle on the unit circle,
starting and ending at 1. W.l.o.g. for our considerations we may assume that p is bound to
lie on the line that connects a and b.

We will consider the point z directly as a driving input point that is bound to lie on the
unit circle. We now have a look at the following functions:

z1 � Re�z2�� z2n

2

z2 � Re�z4�� z2n

2

z3 � Re�z8�� z2n

2

...
...

...
zn � Re�z2n

�� z2n

2

The Re�� � �� operation (that extracts the real part of complex number) can be carried out
geometrically by a projection to the real axis. All the z1� � � � �zn can be constructed by a GSP
whose total number of construction steps is linear in n. No angular bisectors are needed.

All the real parts of the functions z1� � � � �zn are in the interval �
2�0�, since the numbers
zk all lie on the unit circle. While z moves along the unit circle the function z k is zero
exactly if z is a 2k-th root of unity. Each of the functions zk is real iff z is a 2n�1-st root of
unity. For j � 0� � � � �2n we set

a j � e2iπ� j�2n� and b j � e2iπ� j�2n�1�2n�1��

We will refer to regions on the unit circle by the term circular interval. For two points a�b
on the unit circle the open circular interval �a�b� is the (open) arc on the unit circle that
arises by traveling counterclockwise from a to b.

The imaginary parts of the functions zk only depend on the function z2n
. Im�zk� is

positive in the circular intervals �a j�b j� and negative in the circular intervals �b j�a j�1� for
j � 0� � � � �2n. The largest purely real value that occurs for the function z k is 0, the second
largest real value is cos�2π�2k�
1. We set ε �
cos�2π�2n�1��1, a number that can be

26 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

constructed geometrically by n successive BISECT operations of a right angle, followed by
a projection.

Now let l� be the real axis and we add for each k � 1� � � � �n the following instructions
to our GSP:

lk � BISECT�JOIN�0�zk � ε�� l��
qk � INT UNITCIRCLE�lk�

First observe that the operation JOIN�0�zk � ε� is always admissible, since zk � ε is
never 0. The line JOIN�0�zk � ε� is identical to l� whenever z is either a j or b j for some
i � �0� � � � �2n	. Thus at these places the line lk can either be the real or the imaginary axis.
Note that the only freely movable point in the whole construction so far is z (indirectly
controlled by p). As a starting instance of the GSP we set z � 1. All lines JOIN�0�zk � ε�
are then identical to l�. We get an admissible instance of the above operations by setting
all lk � l� and setting all qk � 1.

From this admissible starting instance A the behavior of the entire construction is deter-
mined (by analytic continuation) while z travels along the unit circle.

Lemma 6.3. With all settings as above (starting at A) the values of the q k are uniquely
determined for all z (with �z� � 1). In particular, we have that for all j � �0� � � � �2n
 1	
the value z � b j implies that

qk �

�
i for σn�k � 0�

i for σn�k �� 0�

Here j � σ020 �σ121 �σ222 � � � ��σn�12n�1 with σk � �0�1	 is the binary expansion.

PROOF. For the proof let us investigate what happens during a full counterclockwise
cycle of the driving point z. At the beginning (z � 1 � a 0) all the lk are by definition of
A identical to the real axis and all qk are by definition equal to 1. Furthermore, all zk are
positive (namely equal to ε). While z travels from a0 to b0 all zk move through the upper
halfplane to a negative value. Thus all lines JOIN�0�zk � ε� make a counterclockwise half
turn. Consequently all lk make a counterclockwise quarter turn and all q k move to the value
i as stated in the theorem.

Now let us investigate what happens when z moves from position b j on the shortest
possible path via a j�1 to position b j�1. During such a move the position of qk will make a
half turn if and only if zk makes a cycle around the origin. This in turn exactly happens if
for z � a j�1 the value of zk is positive. However, this is only the case if a j�1 is a 2k-th root
of unity. This gives exactly the desired counting behavior. Finally after z has completed
one full cycle, all elements are back to their initial positions. Hence no global monodromy
occurs and the behavior is globally determined.

The whole construction behaves like a binary counter. For each position z � b j all qk

are either i or
i. The positions exactly resemble the behavior of the binary expansion of
j with i playing the role of the 0 and
i playing the role of the 1.

6.3. A Register. The output of the counter we constructed so far will later on play the role
of the xk that occur in the quantified boolean formula

�x1�y1�x2�y2 � � ��xn�yn f �x1�y1�x2�y2� � � � �xn�yn��

We now explain how to model the yk. For this we construct a register with dependent
points r1� � � � �rn. Whenever the driving point z is at a position b j the rk will either be i or

i. However, which of the two values will be taken depends on the position of certain

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 27

free points p1� � � � � pn during z being at a position a j. We will call the points b j evaluation
points and call the points a j setting points. For each k � �1� � � � �n	 we add the following
four lines to our GSP constructed so far:

p�
k � ONINTERVAL�0�1� pk�

z�k � p�
k
1� zk � ε

l�k � BISECT�JOIN�0�z�k�� l��
rk � INT UNITCIRCLE�lk�

We extend our initial position A (remember there we had z � 1) first by setting p 1 �
p2 � � � � � pn � 2. This forces the lines JOIN�0�z�k� to be l�. As we did for the counter
we set all l�k � l� and all rk � 1. The following Lemma summarizes the properties of the
register.

Lemma 6.4. For any admissible move of the free input points p� p1� � � � � pn starting from
instance A we have the following properties:

(i) Whenever z is at an evaluation point each of the rk is either i or
i.
(ii) For each k � �1� � � � �n	 and each j � �0� � � � �2k
 1	 we have: Whenever z stays

in the circular interval Ik� j � �a j�2n�k �a� j�1��2n�k�, all values of rk when z is at an
evaluation point in Ik� j are identical.

(iii) Except conditions (i) and (ii) there are no other restrictions to the values of r k

when z is at an evaluation point.

PROOF. The proof is very similar to the proof of Lemma 6.3. The initial situation of A
ensures that condition (i) is satisfied. For each j � �0� � � � �2k
1	 the function z�k is always
negative within the entire circular interval Ik� j. Hence, as long as z does not leave this
interval for all evaluation points the values of the rk must be identical (since z�k cannot
cycle around the origin.) This proves (ii). The function z �

k can be positive whenever z
takes one of the values a j�2n�k with j � �0� � � � �2k
1	 (these are the 2k-th roots of unity).
Whether it actually is positive depends on the position of the free point p k. Thus whenever
z makes a transition between the intervals Ik� j and Ik� j�1 (in either direction) we can (by
moving pk accordingly) control whether the rk at z being at an evaluation point in Ik� j and
Ik� j�1 are identical for both intervals or not. This proves (iii).

6.4. Encoding the QBF. Let us now step back and see what we have achieved so far. We
have constructed a GSP together with an initial position A. The free points of the GSP
are p� p1� � � � � � pn. We have output points q1� � � � �qn for the counter and r1� � � � �rn for the
register. Whenever z is at an evaluation point all these output points are either i or
i. For
n� 3 the “timing” of the whole construction is shown in Fig. 13. The horizontal axis shows
the positions for z on the unit circle. Each of the oscillating curves roughly represents the
values of the counting points q1�q2�q3. The dots mark those positions that are relevant for
possibly changing the values of the register points r1�r2�r3. The bottom row represents the
point pair �q3�r3�. The middle row represents �q2�r2�, and the top row represents �q1�r1�.
Between two of the positions marked with a dot the corresponding r-point always has the
same value at the evaluation points. If for instance z passes a0 in clockwise direction the
position of p1 determines which values r1 can take at the evaluation points b0�b1�b2�b3.
These values can only be changed if z passes once more one of the setting points a 0 or a4.

We are now going to link a given QBF formula to our construction. For this consider
the QBF

�x1�y1�x2�y2 � � ��xn�yn f �x1�y1�x2�y2� � � � �xn�yn�

28 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

a0 a1 a2 a3 a4 a5 a6 a7b0 b1 b2 b3 b4 b5 b6 b7

�x3�y3

�x2�y2

�x1�y1

Fig. 14: The timing of the counter and the register

where we assume that f is given in conjunctive normal form. As in Sec. 4.1 we first
translate the boolean formula f into a polynomial F f by replacing each positive literal xk

by a real variable xk and each negative literal �xk by �1
xk�. We do so similarly for the yk.
Then each and-operation is replaced by a multiplication and each or-operation is replaced
by an addition. The resulting polynomial is called F f �x1�y1�x2�y2� � � � �xn�yn�. Similar to
Lemma 4.4 we obtain

Lemma 6.5. We have Ff �x1�y1�x2�y2� � � � �xn�yn� � 0 for some �x1�y1� � � � �xn�yn� � �0�1�2n

if and only if all variables are either 0 or 1, and f �b�x1��b�y1�� � � � �b�xn��b�yn�� � TRUE

with b�0� � TRUE and b�1� � FALSE. For all other choices of the variables in �0�1� 2n

the value of Ff is strictly positive. Furthermore, at each corner of the cube �0�1�2n the
polynomial Ff evaluates to an integer number.

PROOF. The proof is straightforward. It follows exactly the considerations in Sec. 4.1.

We now (constructively) identify the values
i and i (of the q k and rk) with the boolean
values TRUE and FALSE, respectively by adding the statements

xk �
1
2 �iqk �1��

yk �
1
2 �irk �1�

for k � 1� � � � �n to our GSP. Furthermore, we set with these newly constructed points

F � Ff �x1�y1�x2�y2� � � � �xn�yn��

The next lemma brings us close to the complexity result we are aiming for. Recall that
the point p was w.l.o.g bound to the line connecting 2 and 2�3i, and that while p moves
straight from 2 to 2�3i the path of the point z is a full clockwise cycle on the unit circle.
by

Lemma 6.6. The QBF �x1�y1�x2�y2 � � ��xn�yn f �x1�y1�x2�y2� � � � �xn�yn� is true if and
only if the following holds: In our GSP starting with instance A there is an admissible
path that moves point p from 2 to 2� 3i such that the value of F is 0 whenever z is at an
evaluation point.

PROOF. First assume that �x1�y1�x2�y2 � � ��xn�yn f �x1�y1�x2�y2� � � � �xn�yn� is true. We
can skolemize the variables yk of the �-quantors by introducing Skolem functions

s1�x1��s2�x1�x2�� � � � �sn�x1� � � � �xn�

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 29

such that
f �x1�s1�x1��x2�s2�x1�x2�� � � � �xn�sn�x1� � � � �xn��

is a tautology. These Skolem functions are exactly the “strategy” of the two player game
associated to the QBF, which tell player Y how to move. We can derive a path as desired
in the theorem as follows. We first choose δ to be a sufficiently small positive number
such that for p � 2
δi the point z lies in the circular interval �b2n�1�a0� and move point
p straight from 2 to 2
δi while leaving the pk unchanged.

After that we move point p straight from 2
 δi to 2� 3i. Whenever z passes one of
the setting points we make sure that the positions of the points p 1� � � � � pn were adjusted
such that for the forthcoming evaluation point the y k take the values of the corresponding
Skolem functions (this is possible by Lemma 6.4). The construction allows exactly enough
freedom to possibly change the value of sk whenever the variable xk changes its value. By
this choice and by Lemma 6.5 the derived point F is 0 at each evaluation point.

Conversely assume that we know how to move the points p k such that point p can move
from 2 to 2� 3i in a way that whenever z is at an evaluation point the dependent point F
is 0. We call such a path correct. We show how to reconstruct the Skolem functions from
the situations at the evaluation points. One technical difficulty arises from the fact that it
may happen that p changes its moving direction while traveling from 2 to 2�3i arbitrarily
often. If this is the case the point z possibly meets several of the points a j or b j more than
once.

Assume that the movement of p� 2�φ�t�i is given by the function φ�t� : �0�1�� with
φ�0� � 0 and φ�1� � 3. The induced movement of z will be denoted by z�t�. Furthermore,
we set b�i� � FALSE and b�
i� � TRUE. Let us abbreviate TRUE by T and FALSE by F.
We describe step by step how to derive the functions s�x1�, s�x1�x2�, � � � .

Since z�t� (continuously) describes one full cycle there is an (open) interval I F
1 � �0�1�

such that z�IF
1 � equals the (open) circular interval �a0�a2n�1�. Lemma 6.5(ii) tells us,

that within this interval the value of point r1 must be the same for all evaluation points.
Lemma 6.5(i) shows that this value r F

1 must be either i or
i. We set s1�F� � b�rF
1 �. Sim-

ilarly there is an open interval I T
1 � �0�1� such that z�IT

1 � � �a2n�1 �a2n�. Also there the
value rT

1 at the evaluation points is uniquely either i or
i. We set s1�T� � b�rT
1 �.

We now proceed inductively. Within the interval I F
1 there are subintervals I F�F

2 and IF�T
2

such that z�IF�F
2 � � �a0�a2n�2� and z�IF�F

2 � � �a2n�2 �a2n�1�. We let s2�F�F� � b�rF�F
2 � and

s2�F�T� � b�rF�T
2 �. Similarly we define the values s2�T�F� and s2�T�T� by considering

suitable subintervals of I T
1 . The values of the Skolem functions s3� � � � �sn are defined sim-

ilarly each one by looking at a suitable subintervals of the intervals considered for the
previous function. Now, by our initial assumption the value of F was 0 at each evaluation
point. Lemma 6.5 thus ensures that

f �x1�s1�x1��x2�s2�x1�x2�� � � � �xn�sn�x1� � � � �xn��

is a tautology. Hence the original QBF was true.

In the current construction the number of free points depends on the problem size. How-
ever, the character of the construction allows for an easy alternative that has just one free
input point. We can strengthen Lemma 6.6 to the following version.

Lemma 6.7. The GSP of Lemma 6.6 can be assumed to have only one free point p.

PROOF. For this note that in order to get a correct path we have to set the points p �
1� � � � � p�

n
to suitable values in �0�1	 whenever z is at a setting point. We construct a second counter

30 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

controlled by a free point p � on the segment from 2 to 2� 3i. This new counter is just an
identical copy of the decvice described in Sec. 6.2. We connect the outputs q �

1� � � � �q
�
n of

this new counter directly to the p �
k by setting (i.e. redefining)

p�
k � Re��iq�

k �1��2��

Now the position of the p�
k can be controlled by the position of p �. In particular every

0�1-combination of the p �
k can be achieved by placing p � to a suitable position. This

construction still behaves like the construction of Lemma 6.6 but it has only two input
points p and p�. We now “rename” our input point p to p ��, then we introduce a new free
point p, and add the following instructions p �� � 2� Im�p� and p� � 2�Re�p
2� � i to
our GSP. This controls the points p � and p�� by the x and y parameter of just one single
input point p. Still all necessary freedom that makes Lemma 6.6 work is maintained.

6.5. The Inequality Condition. Our final task is now to transfer the “existence of a cor-
rect path”-property of Lemma 6.7 to a suitable geometric condition like the incircle condi-
tion in Thm. 6.1. For this we add the following statements to our GSP:

G � F � z2n
�1�2

z� � INT UNITCIRCLE�JOIN�G�0��
d � zn
 z�

We resolve the nondeterminisms by setting h � l� at our initial position A and z� � 1.

Lemma 6.8. In our GSP starting with instance A consider an admissible path that moves
point p from 2 to 2�3i. For such a path the following conditions are equivalent:

(i) If z is at an evaluation point the value of F is 0.
(ii) We have �d�� 2 throughout the path.

PROOF. Since F is positive and stays on the real axis the value of G is real if and only
if z2n

is real. This is exactly the case if z is either at a setting point a j (then z2n
� 1) or at

an evaluation point b j (then z2n
�
1). This implies that G is positive at all setting points.

Remember that F assumes only integer values at the evaluation points. Hence G is negative
at an evaluation point if and only if F � 0 at this evaluation point. Point z � is the image of
this point G mapped by a central projection to the unit circle.

Now assume that the path has the property as claimed in (i). We prove that this path au-
tomatically satisfies (ii). In this path z� � 1 at each setting point, z� �
1 at each evaluation
point. Furthermore, sign�Im�z ��� � sign�Im�z2n

��. Hence there is always a line through
the origin that has z� and z2n

on the same side and therefore we have �d�� 2 throughout the
path.

Conversely, assume that there is no path that satisfies condition (i). This means that for
every possible path along which p is moved from 2 to 2�3i the total winding number of
z� with respect to the origin is less than 2n. This is the case since z� can cross the negative
half line only for all the evaluation points. On the other hand the total winding number of
z2n

with respect to the origin is 2n. This implies that there is at least one position along the
path where z and z2n

are antipodals on the circle. At this position we have d � 2.

Now we obtain Thm. 6.1 as a direct consequence of the PSPACE-hardness of QBF,
Lemma 6.5 and Lemma 6.6. This finishes the proof of Thm. 6.1.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 31

Remark 6.9. Without formal proof we mention a few possible alterations of Thm. 6.1.

� Non-Strict inequalities: The construction we gave really needed a strict inequal-
ity as additional obstruction (two points on the unit circle cannot be further apart
than 2 units). It is easy to obtain the same result also with a non strict inequality.
For instance one could introduce an additional BISECT operation of JOIN�G�0�
and l� intersect the result with the unit circle and compare the resulting point
with z2n�1

.
� Sidedness vs. incircle test: One can turn an incircle condition �d� � 1 as used in

Thm. 6.1 into a sidedness test of a point w.r.t. a line. One possibility for this is to
construct the point

d� � �MEET�PERPENDICULAR�JOIN�0�d��d�� l���2�

The incircle condition then translates to d � � 1.
� Admissibility of circle-line intersections: We may also introduce the operation of

intersecting the unit circle with a line. We may restrict the range of admissible
situations to those where such an intersection properly exists. By this we can also
express the inequality conditions that are needed in Thm. 6.1.

� Restriction on total length of the path of p: One can also perturb Thm. 6.1 in a
way such that the inequality becomes a restriction on the total length of the path
of p in a reachability problem. For this we first replace our assignment p � � 2�
Re�p
2�i by p� � 2�N �Re�p
2�i for a very large number N. This operation
rescales the imaginary part of p such that the control of the p �

i does not really
contribute significantly to the overall length of the path p takes. Then we take
the �n� 1�-times iterated angular bisector hn�1 of JOIN�G�0� and l� and ask the
following reachability problem. “Is it possibly to move p from 2 to 2� 3i such
that hn�1 make a 90Æ-turn into its other alternative such that the total length of the
path described by p does not exceed 3� δ (for sufficiently small δ � 0)?” The
only way to do this is to move straight from 2 to 2� 3i by passing every setting
point at most once. At each evaluation point the function F must be 0 in order to
end up with a rotation of the desired amount. This is by Lemma 6.5 equivalent to
knowing the Skolem functions for the QBF. This variant is particularly important,
since then no additional sidedness or incircle test is needed.

� Games against external forces: The last statement can reformulated also in an-
other way. Redefine p� and p�� as free points again. Assume that an exterior force
moves p�� from 2
δi to 2�3i. Can you simultaneously move the points p � such
that hn�1 makes a 90Æ-turn? This is PSPACE-hard to decide.

7. UNDECIDABLE PROBLEMS

In this section we enlarge the set of our possible primitive operations. We add one non-
deterministic operation that models the mechanical behavior of a wheel that rolls along a
road. In principle wheels have the ability to transfer angles to distances. If the wheel was
rotated for a certain angle it has traveled along the road for a certain distance. If we (as
usual) denote angles modulo 2π this introduces a new kind of monodromy behavior to our
context. For the same angle as input there is an infinity of possible output values. All these
output lengths are integer multiples of the length that is generated by rotating the wheel
once by 2π.

This new type of monodromy introduces a drastic change in the complexity behavior of
the reachability problem. We will see that we can translate the solvability of Diophantine

32 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

equations into a reachability problem for a construction involving several wheels. By the
undecidability of Hibert’s 10th problem this induces the undecidability for this reachability
problem.

7.1. Wheels. Let us first formalize the concept of a wheel to fit into our setup of geometric
straight line programs. The right algebraic function that models the behavior of wheels is
the logarithm function applied to points on the unit circle. Our WHEEL-primitive will take
a point p � r � eiϕ �� 0 and map it non-deterministically to a point on the real axis that
represents the possible angles. We define the relation

WHEEL :� ��p�q� � q � ϕ�2π;q � r � eiϕ	� P�P�

As usual we allow ourselves to write q � WHEEL�p� if �p�q� � WHEEL. The operation
is not admissible for p � 0. If �p�q� � WHEEL then we have also �p�q� k� � WHEEL

for all k � �. In particular we have �1�k� � WHEEL for all k � �. If we start with an
admissible instance p � 1;q � 0 of q � WHEEL�p� then we can continuously reach the
situation p � 1;q� k by letting p spin around the origin k times. In our picture of an actual
mechanical wheel the operation WHEEL is designed to model the properties of a wheel of
circumference 1 (and thus of irrational (!) radius 1

2π). The resulting RIS is called JMBW.

7.2. Diophantine Equations. The following theorem states one version of the famous
undecidability of Diophantine equations.

Theorem 7.1. Let N � 11 and f � ��x1� � � � �xN � be a polynomial. It is algorithmically
undecidable whether f has a zero in �N.

The number N depends on the actual state of research in the area around Hilbert’s 10th
problem [31, 32]. We keep it fixed for the following considerations.

We will prove the following theorem by reduction to the above statement:

Theorem 7.2. Let P be a GSP over the JMBW instruction set with at least N WHEEL-
operations and two BISECT-operations. Let A and B be two admissible instances of P . It
is undecidable whether there is an admissible real path from A to B.

PROOF. Step by step we will construct the translation from the polynomial in Thm. 7.1
to the GSP in Thm 7.2. We start with a free point p and a point z given by

z � ONCIRCLE�
1�1� p��

Then we add for i � 1� � � � �N the instructions:

qi � ONINTERVAL�0�2� pi�
xi � WHEEL�qi � z�

Assume that in the instances A and B we have p � p1 � � � � � pN � �3�0� and thus z � 1,
and q1 � � � � � qn � 2. Any admissible instance with z � 1 that is reachable from A by
an admissible path satisfies xi � � for all i � 1� � � � �N, since whenever z � 1 the qi � z are
positive. Additionally, for every �yi� � � � �yN� � �

N there is an admissible path starting at A
and ending at a position with z � 1 and xi � yi for all i � 1� � � � �N. For this claim we only
have to prove that each variable xi can be changed by �1 independently from the others.
In order to obtain such an elementary change simply set q i � 0 and q j � 2 for i �� j, and
do a full clockwise or counterclockwise turn with point z.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 33

Now let f �x1� � � � �xN� be an instance of the polynomial used in Thm. 7.1. We finish our
construction by adding the following statements to our GSP:

F �
� f �x1� � � � �xN��
2
3�2

qN�1 � ONINTERVAL�0�1� pN�1�
l0 � JOIN�qN�1 �F � z�0�
l1 � BISECT�l�� l0�
l2 � BISECT�l�� l1�

For the starting instance A we assume that we have pN�1 �
1 and hence qN�1 � 0. This
implies that qN�1 �F is real. Thus in A we have l0 � l�. For A we resolve the ambiguities
of the BISECT-operations by setting l1 � l2 � l�. The only point in which instance B differs
from A is that in B we set l2 � li�.

We now claim that it is undecidable whether instance B is reachable from instance A:
Observe that the only way in which A can be transformed into B is that the point q N�1 �
F � z makes an odd number of cycles around the origin.

If there are �yi� � � � �yN� � �
N with f �y1� � � � �yN� � 0 we can achieve such a movement

as follows. We set qN�1 � 0. By the procedure described above we follow a path that puts
the xi to the values of the yi. Then we set all q1 � � � �qN � 0 and qN�1 � 1, do another full
cycle with z, set qN�1 � 0 again, and reset to xi � 0 again by a suitable movement. The
resulting situation is exactly instance B.

Conversely assume that there is an admissible path from A to B. During this path we
must have at least one position where qN�1 �F � z is real and positive. This can only
happen if z � 1, since qN�1 �F is always real and by definition at most
1�2. However, if
z � 1 the f �x1� � � � �xN� must have an integer value. The only way to get q N�1 �F � z � 0
is to have f �x1� � � � �xN� � 0. Since all xi were integral this means that a solution of the
Diophantine equation exists.

8. OPEN PROBLEMS

We end our considerations by stating at least some of the open problems in decision
complexity of tracing and reachability.

Problem 8.1. Determine upper bounds for the decision complexity in the various setups
described in this paper.

Problem 8.2. Extend the JMB instruction set by a new non-deterministic operation that
intersects a circle and a line. Furthermore, enlarge the setup such that also complex co-
ordinates for points lines and circles are allowed. By this a circle and a line always have
two or one intersections. What is the decision complexity of the reachability problem in
this context?

This problem is of fundamental importance, since if the intrinsic complexity would turn
out not to be too big this might yield good algorithms for randomized theorem proving
for ruler and compass theorems. The structure of this problem seems to be fundamentally
different from the problems discussed in this paper. It is not unlikely that for this problem
there are effective randomized methods. However, we are pessimistic about fast determin-
istic methods, since we can prove that it is at least as hard as zero testing for polynomials
[13].

Closely related to the above problem is the following:

34 JÜRGEN RICHTER-GEBERT AND ULRICH H. KORTENKAMP

Problem 8.3. Extend the JMB instruction set by a new non-deterministic operation that
intersects a circle and a line. Furthermore, enlarge the setup such that also complex co-
ordinates for points, lines, and circles are allowed. Let A be an instance of a construction
and let B� be a partial instance that just defines the positions of the free elements. How
difficult is it to complete B� to an instance B that is reachable from A?

Our last problem forms another approach that may single out certain tracing problems
to be more easy than others. Since it asks for a new concept, the formulation is kept a little
vague on purpose.

Problem 8.4. Define the “right” concept of output sensitivity for the tracing problem that
allows statements like “if the elements move not too wildly we can trace them easily”.

Finally we ask for a slightly stronger version of Thm. 7.2 that gets rid of the constant π
hidden in the WHEEL-operation.

Problem 8.5. Redefine the relation WHEEL by

WHEEL :� ��p�q� � q � ϕ;q � r � eiϕ	� P�P�

Is Thm. 7.2 still valid in this setup?

REFERENCES

[1] J. CULBERSON, Sokoban is PSPACE-complete, Proceedings in Informatics 4, Fun With Algorithms, E.
Lodi, L. Pagli and N. Santoro Eds. pp 65-76, Carleton Scientific, Waterloo. 1999.

[2] M. J. GAREY & D. S. JOHNSON, Computers and Intractability, W.H. Freeman and Company, New York
(1979).

[3] J. R. GILBERT, T. LENGAUER & R. E. TARJAN, The pebbling problem is complete in polynomial space,
SIAM J. Comput., 9, (1980), 513–524.

[4] H. GÜNZEL, The universal partition theorem for oriented matroids, Discrete Comput. Geom., 19, (1998),
521–551.

[5] CH. M. HOFFMANN, Solid Modeling, in: J.E. Goodman & J. O’Rourke. (eds.): Handbook of Discrete and
Computational Geometry, Lecture Notes in Mathematics 1346, CRC Press, Boca Raton, New York, 1997,
863–880.

[6] J. HOPCROFT, D. JOSEPH & S. WHITESIDES, Movement problems for 2-dimensional Linkages, SIAM J.
Comput., 13, (1984), 610–629.

[7] J. HOPCROFT, J.T. SCHWARZ & M. SHARIR, On the Complexity of Motion Planning for multiple Inde-
pendent Objects; PSPACE-Hardness of the “Warehouseman’s Problem”, Intern. J. Robotics Research 3,
(1984), 76–87.

[8] N. JACKIW, The Geometer’s Sketchpad, Key Curriculum Press, Berkeley, 1991–1995.
[9] D. JORDAN & M. STEINER, Configuration Spaces of Mechanical Linkages, Discrete Comput. Geom., 22,

(1999), 297–315.
[10] M KAPOVICH & J. MILLSON On the moduli spaces of polygons in the Euclidean plane, J. of Differential

Geometry, 42 (1995), 133–164.
[11] U. KORTENKAMP, Foundations of Dynamic Geometry, PhD-thesis, ETH Zürich, 1999,

http://www.inf.fu-berlin.de/�kortenka/Papers/diss.pdf.
[12] U. KORTENKAMP & J. RICHTER-GEBERT, On the foundations of Dynamic Geometry, in preparation.
[13] U. KORTENKAMP & J. RICHTER-GEBERT, Decision complexity in Dynamic Geometry, Proceedings of the

ADG 2000, Springer Lecture Notes to, appear.
[14] U. KORTENKAMP & J. RICHTER-GEBERT, The intrinsic complexity of analytic continuation, in prepara-

tion.
[15] JEAN-MARIE LABORDE AND FRANCK BELLEMAIN, Cabri-Geometry II, Texas Instruments, 1993–1998.
[16] N.E. MNËV, The universality theorems on the classification problem of configuration varieties and convex

polytopes varieties, in: Viro, O.Ya. (ed.): Topology and Geometry – Rohlin Seminar, Lecture Notes in
Mathematics 1346, Springer, Heidelberg 1988, 527–544.

[17] D. A. PLAISTED, Sparse Complex polynomials and polynomial reducibility, Journal of Computers and
System Sciences., 14, (1977), 210–221.

COMPLEXITY ISSUES IN DYNAMIC GEOMETRY 35

[18] D. A. PLAISTED, Some polynomial and integer divisibility problems are NP-hard, SIAM J. Comput., 7,
(1978), 458–464.

[19] D. A. PLAISTED, New NP-Hard and NP-Complete Polynomial and Integer Divisibility Problems, Theoret-
ical Computer Science, 31, (1984), 125–138.

[20] J. RICHTER-GEBERT, The Universality theorems for oriented matroids and polytopes, Contemporary Math-
ematics 223, (1999), 269–292.

[21] J. RICHTER-GEBERT, Realization Spaces of Polytopes, Lecture Notes in Mathematics 1643, Springer, Hei-
delberg 1996.

[22] J. RICHTER-GEBERT & U. KORTENKAMP, Cinderella - The interactive geometry software, Springer 1999;
see also http://www.cinderella.de.

[23] J. RICHTER-GEBERT & U. KORTENKAMP, Cinderella - Die interaktive Geometriesoftware, HEUREKA
Klett, 2000.

[24] J. REIF, Complexity of the movers’ problem and generalizations, Proc. 20th IEEE conf. on Foundations of
Comp. Sci., Long beach, Calif.: IEEE Computer Society, 1979, 421–427.

[25] P. SHOR, Stretchability of pseudolines is NP–hard, in: Applied Geometry and Discrete Mathematics – The
Victor Klee Festschrift (P. Gritzmann, B. Sturmfels, eds.), DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Amer. Math. Soc., Providence, RI, 4, (1991), 531–554.

[26] M. SHUB & S. SMALE, Complexity of Bezout’s theorem I: Geometric Aspects, J. Amer. Math. Soc., 6,
(1993), 459–501.

[27] M. SHUB & S. SMALE, Complexity of Bezout’s theorem II: Volumes and Probabilities, in: Computational
Algebraic Geometry (F. Eyssette and A. Galligo, eds.), Progress in Mathematics, Birkhauser, 109 (1993),
267–285.

[28] M. SHUB & S. SMALE, Complexity of Bezout’s theorem III: Condition number and packing, J. Complexity,
9, (1993), 4–14.

[29] M. SHUB & S. SMALE, Complexity of Bezout’s theorem IV: Probability of success, SIAM Jour. of Numer-
ical Analysis, 33, (1996), 128–148.

[30] M. SHUB & S. SMALE, Complexity of Bezout’s theorem V: Polynomial Time, Theoretical Computer Sci-
ence, 133, (1994), 141–164.

[31] Z. W. SUN, Reduction of unknowns in Diophantine representations (English Summary, Sci. Schina Ser A,
35, (1992), 257–269.

[32] Z. W. SUN, J.P. Jones’ work on Hilbert’s tenth problem and related topics, Adv. in Math. (China), 22,
(1993), 312–331.

Jürgen Richter-Gebert
ETH Zürich
Inst. for Theoretical Computer Science
ETH Zentrum
CH-8092 Zürich
Switzerland

e-mail: richter@inf.ethz.ch

Ulrich H. Kortenkamp
FU Berlin
Institut für Informatik
Takustraße 9
D-14195 Berlin
Germany

e-mail: kortenkamp@inf.fu-berlin.de

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

