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Abstract—The unsteady Stokes problem, i.e., the Stokes problem with a constant multiple of
the velocity included in the velocity-pressure equation, is often central to methods used to solve the
nonstationary Navier-Stokes equations and the equations governing viscoelastic flows. The Glowinski-
Pironneau finite-element method for the Stokes problem decomposes the problem into a series of
Poisson’s equations, providing a potentially efficient approach for large problems in two or three
dimensions. The goal of this paper is to present a complete development and analysis of the Glowinski-
Pironneau method for the unsteady Stokes problem, along with numerical results which confirm the
analytical estimates. (© 2004 Elsevier Ltd. All rights reserved.

Keywords—Stokes problem, Finite-element method, Glowinski-Pironneau method.

1. INTRODUCTION

The Stokes problem plays a fundamental role in the modeling of incompressible viscous flows. The
equations are known to govern slow (low Reynolds number) flows, and perhaps more significantly
they are central to the numerical solution of the Navier-Stokes equations [1,2]. The application
motivating this work is viscoelastic flow associated with polymeric fiber and film processes. The
6-method is a splitting technique, first developed for the unsteady Navier-Stokes equations [3], and
more recently adapted to the equations governing unsteady viscoelastic flows. In the latter case,
the nonlinear terms appear in the constitutive equation rather than the momentum equation,
and the first and third steps of the three-step f-method are Stokes solves [4]. In this case, the
Stokes problem takes the form

nu - vAu+ Vp =f, in Q,
V-u=0, in Q, (1)
u|r = Uy,

with possible variation in the boundary condition. It is assumed that € is an open, bounded
domain in RV, N = 2 or 3, with smooth boundary I, {n,v} € ®, n >0, v > 0, £ € (L*(Q))",
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and u, € H/2(T'), satisfying

/ub-ndl‘:().
r

We shall refer subsequently to the 1 % 0 case as the unsteady Stokes problem [5].

A finite-element solution of a viscoelastic flow problem in two dimensions may involve O(10°)
variables, so for these problems and especially for problems in three dimensions, the development
of efficient iterative solvers is essential [6]. The f-method is gaining acceptance because of its
attractive stability properties. The emphasis is then on developing an efficient parallel solver
for (1). A promising candidate is the method of Glowinski and Pironneau, which is based on the
simple observation that if u satisfies (1), then

V- (qmu-vVu+Vp)=Vip=V.f

If an appropriate boundary pressure pr = pir can be found, then p and u are solutions of the
Poisson problems
-Vip=-V-f, nu — vV2u = f — Vp,

olr = pr, u|p = .

2)

The constraint V- u = 0 is used to determine pr, indirectly through the unique function 4,
satisfying
u=Vo+VxVY,

6l = 0. ®)

The Glowinski-Pironneau method is presented for the case n $ 0 in 7], for the case n = 0
in [8] and analyzed in more detail for the case n = 0 in [9]. Bach of these papers refers to a
subsequent paper for certain analytical and numerical details. To the best of our knowledge, that
paper never appeared, though it is worth noting that the method for the case with = 0 is also
presented in [1] and [10].

Because the Glowinski-Pironneau algorithm for (1) appears promising as a key component in
solving viscoelastic flow problems, the intent of this paper is to present a complete analysis of
the method, specifically for the n # 0 case, along with numerical confirmation of convergence
estimates for errors in the finite-element approximation. Though this paper is focused on the
two-dimensional problem, sufficient generality is included so that the analysis also applies to the
problem in three dimensions.

The rest of the paper is outlined as follows. In Section 2, the reformulation of (1), which is
fundamental to the Glowinski-Pironneau method, is presented along with necessary regularity
properties. The continuous and discrete variational formulations are analyzed in Section 3. Error
analysis and computational results are presented in Sections 4 and 5, respectively. In Section 6,
conclusions and next steps in this research are discussed.

2. BASIC EQUATIONS AND REGULARITY

As mentioned in Section 1, the potential function € in the curl-free part of u plays a role
in determining the pressure boundary function, pr, and also in imposing the divergence-free
constraint on u. Taking the divergence of both sides of the differential equation in (3) leads to a
Poisson problem for 4,

~V% = -V u,

6l = 0. @

To develop the algorithm for finding pr, and the necessary regularity properties of the solution
variables, we first consider p, u, and 4 as functions that depend on a prescribed pressure boundary
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function g. First decompose p, u, and 8 into g-independent and g-dependent parts, i.e.,

p(g) = po + p1(9), u(g) =up +ui(g),  6(g) = b + 61(9), (5)
—Vipy = -V -f, nuy — vV3ug = f — Vpy, ~V20y = =V - uy, )
polr = (), nglr = W, 90]1" = O,
~V2pi(g) =0,  nu(g) —vViw(g) = ~Vpi(g), —V?6i(g) = -V -u(g),
B (7)
P1|r‘ =4, ullr =0, 01l = 0.

Now considering conditions so that weak solutions of (6) and (7) are well defined, first it is
assumed that  is connected and elliptic regular. That is, if L{-) = [p —vV?](-) withnp >0, v > 0
and ¢ satisfies

Lp =¢,

wII‘ =7

then
lloq < C1 (Mellxosa + li-1jar) S Collblle, ke {12},

and the map p — 22 is continuous and surjective taking H>(2) N H§ () — HY?(Q).

An example of such a domain is a connected bounded open domain of dimension two or three
with either a Lipschitz continuous or a convex polyhedral boundary. This condition will be
denoted as T' € C*. Note that in this setting, H~ /(') = (HV*(T"))".

2.1. Regularity

The main regularity properties and two related results are summarized in the following lemma.
Though the results are mostly contained in [1], a proof is included here so that parts of the proof
may be referenced in a subsequent section.

LemMa 2.1. Consider equations (5)—(7). If T' € C*, f € (L*(Q))V, and g € H~Y/*(T")/R, then

po € HA(Q), up € (H2())", fo € HX(Q) N HA(Q), (8)
ri(g) € L*(Q), u;(g) € (Hé(ﬂ))N, 01(g) € H*(Q) n H} (), (9)
and therefore,
p(9) € (),  u(g)e (H'@)",  6(g) € HX(Q) N H(Q).

Also, the linear functional defined by

86y
Flo) = - [ Geodr (10)
is bounded on H=Y/2(I")/R, and
P1(9)llo,q = “9“—1/2,I“ (11)

ProoF. The result (8) is a standard result, following from (6) and I' € C* {1]. Thus the inner
product in (10) is bounded. To assure p(g) € L3(2), u(g) € H(Q)", and 8(g) € H2(Q)N H(Q),
it would suffice to have p;(g) € L%(Q) because from (7) we would then have u;(g) € Hg(Q)V
and 6;(g) € H2(2) N H3 ().
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To prove (11), consider the Green’s formula
/ uV2qdQ = / qV2udQ ~ / qa—" dr, (12)
Q Q r on
which holds for u € H2(2) N H}(R), and ¢ € L?*(), such that V2q € L?(). Specifically, we
choose ¢ = p1(g) and V2q = V2p;(g) = 0 so that

)
/F 8—ng1" = /ﬂ pi(g)V2udQ,  Vpe HX Q)N HYQ). (13)

Result (11) follows because the map y — V24 has a continuous extension from H2(2) N HE(2)
onto L%(2), and the map p — 32 is continuous and surjective taking H2(Q)N HF () — H/*(Q).
See [1] for details. ]

2.2. Pressure Boundary Equations
The result in the next theorem is fundamental to the Glowinski-Pironneau method. This result,

proven for the case 7 = 0 in [10], is, essentially, that for u(g) and 6(g) solving (5)—(7),

99(g)| _ _ _
B r'_O < V-u(g) =0.

THEOREM 2.2. Consider u(g), 81(g), and 8y in Lemma 2.1. IfT € C*, f € L)Y, and
g € H-Y2(T), then in the sense of L? derivatives,

0
001(g)| _ _ %% (14)
on ip on |
if and only if
V-u(g) =0
PROOF. If g € H-V2(T'), then 8(g) € H?(Q) N H}(SY) and
V-ug) =0=>0(g)=0= %(i) =0.
on |
Taking distributional derivatives,
VEV28(g) = V2 (V - u(g)) = V- (V*u(g))
1
==V (=nulg) +£ - Vp(g))
=1y . u(g) = v?
= 17 -u(g) = 19%(9)
This means that if %ngllr = 0, then 6(g) satisfies the biharmonic equation
vV2V0(g) - 1V26(g) =0,
9(9)[1" = 0’
80(9)| _,.
on |-
The bilinear operator here is continuous and coercive on H2(Q) N H}(£), and so 6(g) = O.
Therefore, V28(g) = 0 and as a result, V - u(g) = 0. ]

Note that (14) provides a means of choosing pr in (2) so that Vu(pr) = 0. Defining the bilinear
form a(-,-) and linear operator F(-}, respectively, as

[ 96:(a) g
o) = | =5, gdl,  Flg)=- | 594l
the function pr € H~1/?(T")/R must satisfy
H-Y(T
atpr.0) = Fla), Vo T (15)

The next theorem establishes two equivalent forms of (15), which are useful for developing ana-
lytical properties of a(,-) and also lead to a form more convenient for computing.
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THEOREM 2.3. Let T’ € C*, f € L*(Q)V, and B = H-Y%(I')/R. If p(g) is any function that
satisfies p(g) € L*(Q), V?p(g) € L3(2), and p(g)|r = g, then (15) is equivalent to the following
two equations for pr € B:

/Q B(9)V - wy(pr) — 81(pr) V?p(g) d = — /Q H(g)V - uo — 6,V?5(g) 2, Vge B, (16)
/Qnul(pr) -uy(g) + vVuy(pr) : Vui(g) d2 = — /npl(g)V - ug d2, VgeB, (17)

where T : 0 =}, ;7405 for second-order tensors T and o.

PROOF. Because 8;(g) € H2(Q) N H}(Q) and u;(g) € H (), Green’s second identity leads to

/ 961pr) gr - / $(9) V%61 (pr) 92 /Q 6, (pr)V25(g) dO2
- f B(9)V - wi(pr) dO2 - / 61 (pr) V25(g) d2.
Q Q

Then choosing $(g) = p1(g), we have V2p;(g) = 0 and so

/p 393(71:r)gdr = /Qpl(g)V -uy(pr)dQ
_ _/ Vpl(g) ~uy(pr)dQ + /pl(g)ul(]?r) .andl’
o r
- [ 9510 o) a0
B /n (nu1(9) = »V?u(g) - wi(pr) d.

Therefore,

/ 061 (pr) gdl' = / nuy(g) - uy(pr) + vVuy(g) : Vuy(pr)dQ. (18)

The right-hand sides of (16),(17) are established in the same fashion. ]

From (18) it is clear that a(-,-) is symmetric positive semidefinite on H~1/2(T'). (Note that
symmetry may be lost if boundary conditions other than Dirichlet-type are imposed.) The
operator is positive definite provided g — w;(g) is one-to-one, which is true on H~/2(T")/R. But
while it is clear that 1/a(g, g) ~ |[u1(g)[|; o, recall that the needed continuity and coercivity are
related to the H~1/2(T") /R norm. More specifically, it is required that

Va(g,g) = inf lg +ell_y/ar

which is established in the following theorem.

THEOREM 2.4. IfT € C*, f € L*(Q)V, and B = H~Y/%(T")/R, the equation

80‘ pF) / % ,dr,  vgeB, (19)
T

has a unique solution pr € B where (u(pr),p(pr)) € H(Q) x L%(Y) is a weak solution to the
unsteady Stokes problem (1).
In addition,
061(g)
on

IV - ui(g)llpq = I'

~inf [lg+c|l_y - (20)
1/2,F ceER /2,
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ProOOF. From (18) it follows that

aez;(g)gdr 2 nllui(@)lig.q + viu (9l a, 2
/ ——aeéfr)gdr <+ ) [ua(er)llyg lui(@)l g 22
r

and considering the weak form of the equation for u; in (7),

/ nuy(g) - v+ vVu(g) : VvdQ = / pi(g+ )V -vdQ, Vve H&(Q)N, (23)
Q

for any c € R.

Since 2 is connected, the map v — V-v is a continuous surjection taking H3 ()Y — LZ(Q). So
given g choose v € H}(Q)V so that V-v = p(g)+cv = p(g+cv) and ||v]i; o < C1 {Ip1(g +evdllgn-
Using this with (23) and (11), and noting that 1;(g) = ui1(g + ¢v) we have

Crmax(n,v) lui(g)ll; o = lp1(g +ev)llog = C2llg +evli_1/ar
>0y éggt g +ell_i/ar-

Now, if V - u;(g) = 0, then choose v so that V- v = 0, and from (23)
/ nui(g) - v+ vVu(g) : VvdQ = / pi{g+c)V-vdQt =0.
Q Q

If V-uy(g) # 0, then choose v = uy(g), so that equation (23) leads to

[ e ws@ +vTue) s Ve a2 = [ mio+0)7 - mig)dn
Using this with (11) results in
viu(glly,g < r}gsfe C3 llp1(g + g0 < Cs 325% g +cll_1a,r-

That is,
llui(g) "1,9 =~ |lg+ C||_1/2,1‘ . (24)
Thus a(-,-) is a symmetric, continuous, and coercive bilinear form on B x B. So using Lemma 2.1

and the Lax-Milgram theorem, the existence and uniqueness of a solution follows.
Now to establish (20), using Theorem 2.3 and Lemma 2.1, and noting that V - ui(g) € L),

gives
-1 [ 96:(g) -1
(lahjar) ™ [ Z52aar = (lahipor)” [ @7 - wmilg) a0

-1
<G (In@le) [ 7@V -mie)do
< Cy ||V -uy(g)lly

which holds V¢ € H~'/2. Using this and (24) gives

961(9)
an

. 2
S Cu||V- ‘11(9)“0,9 <GCs ”‘11(9)”1,Q <GCs 22;‘; llg + C“~1/2,1‘ -

1/2,0

Finally, as ar(-,-) is coercive, we have
00
/ al(g)gdr >Cq mf llg + el 1/2,T

“ 961(9)

/2T = clgge lg+ell s/ '

Note that while Theorem 2.4 establishes that the boundary pressure is uniquely determined,
it also demonstrates how perturbations of pr affect V - u(pr) = V - (uo + ui(pr)). Specifically,
small changes in the boundary pressure pr result in small changes in V - u(pr).
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3. VARIATIONAL FORMULATION

Solving either (16) or (17) in their current form would be awkward, at the least, for several
reasons. The choice of (17) would require that for each pair of boundary functions (gi, g;), ui(g:)
and u;(g;) must be used simultaneously. The use of (16) with {61(g),80} C H?*(Q) n HL()
implies an especially large linear system. However, working in the subspace B = HY 2T)/R
of B provides the benefit of increasing the regularity of p1(g) and relaxing the regularity required
of 6,(g) and 6. Also, like {16), the boundary pressure equation does not explicitly require
using p(g), as illustrated in the following lemma.

LEMMA 3.1. IfI' € C* and g € B = HY/2(T')/R then p;(g) is in H'(Q) and is characterized by

/n Vpi(g) Ved2=0, VueHNQ), m@l =g, (25)

and (16) can be written as

/Q p(g)V - ui(pr) + Véi(pr) - VH(g) dQ = — /Q #(9)V - ug + Vb - Vi(g) d, (26)

where p(g) is any function in H*(Q) that satisfies p(g)|r = g.

PRroOOF. The equivalence of boundary pressure equation (26) is clear from Green’s first identity
provided p1(g) € H'(€2), and this condition is established by considering the variational form (13)
as a map taking g — p1(g). Because I’ € C*, for a given g we know that (25) has a unique solution
p1(g) € HY(). Because (25) holds for all u € H}(R), it also holds for all u € H2(Q) N H}(Q).
Thus the unique solution to (25) corresponds to the unique solution to (13). 1

3.1. Variational Formulation in Infinite-Dimensional Spaces

Lemma 3.1 shows that when seeking a solution pr in the closed subspace B of B, it is only
necessary to require that {#:1(pr),60} C H(f). This allows for the approximation of 8;(g), 6o,
p1(g), and po using the same finite-element subspaces. Lemma 3.1 also implies that $(g) can be
chosen to be nonzero only in the vicinity of the boundary.

The variational formulation is as follows.

PROBLEM 3.2. GivenT € C*, B = H V%(I'), and f € L*(), find a weak solution (u(pr), p(pr))
for (1) along with auxiliary variables pr and 6(pr), as follows: determine pg, wg, and 8y so that
polr = 0, wolr = b, fo|r =0, and

/prVde:/f-VudQ, V€ Hy (), (27)
Q Q
/ mig -V +rVug : VvdQ = / (f—Vpo)-vdQ, VveH} VN, (28)
Q Q
/ V- VudQ = / (=V - up) pdQ, Ve HY(SR). (29)
Q Q

Determine pr € B so that

/ p1(9)V - wi(pr) + Vo1 (pr) - Vpi(g) dO
o (30)
= —/Qpl(g)V-uo+V90-Vp1(9)dﬂ, VgeB,
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where, given g € B, the functions p1(g), ui1(g), and 01(g) are determined so that p,(g)Ir = g,
ui(g)lr =0, 01{g)|r =0, and

/vavam=o, Vi e HYQ)NHNQ), (31)
(]
/ ma(g) - v+ vVui(g) : VvdQ = / —Vpi(g) - vdQ, Yv e HA ()N, (32)
Q Q
/ V6y(g) - Viud = / -V w(g)udd VYue HIQ). (33)
Q 0

The solution is given by

u(pr) = ug + ui(pr), (34)
p(pr) = po + p1(or). (35)

THEOREM 3.3. IfT" € C*, f € L*(Q)V, and B = H~1/%(T")/R, then the variational formulation
given in (27)—(35) has a unique solution (pr,p(pr), u(pr)) € B x H*(Q) x H}(Q)V.

PROOF. By Lemma 2.1, each of the Poisson problems has a unique solution. From Theorem 2.4
we know that (30) has a unique solution. So Theorem 3.3 follows immediately. ]

REMARK 3.4. When working within a closed subspace of H~'/2(T"), note that u(pr) may not
be the same as u, the standard weak solution of (1) because the divergence free condition,
V -u(pr) = 0, is imposed differently.

3.2. Variational Formulation in Finite-Dimensional Spaces

Assume that Q is a convex planar region and that 7 is a triangulation of € with interior
nodes ay, o and boundary nodes a, p. Set the pressure at node ag r so that the pressure solution
is uniquely determined. This will not interfere with using the same space to estimate 8; and 8
because they are defined as zero on I'. Finally, since it is necessary to solve for the boundary
pressure, the pressure space is decomposed by separating the basis functions along the boundary
from those that are strictly interior. The Taylor-Hood finite-element spaces—continuous piece-
wise quadratic functions for velocity and continuous piecewise linear functions for pressure—will
be used. In light of the above conditions, define the following finite-element spaces:

Xn={vec® (@)’ ivl.c P, vee Tn},

Vi = X N Hy (),

Wi, = (Xn ~Va) U {0},

Qp = {qh ec® (Q)2 :qle € P, Ve € T, and g(apr) = 0},

Gy = {q € Qh H Q(an,ﬂ) =0, V’I’L} ’
®p =QnN H&(Q)

For Qp in particular, and for G, or ®;, as applicable, the norm ||g||g/5 = infeer [|g + clp Will be
used. For the sake of notation, the basis functions associated with these spaces are as follows:

Vi = span {vy,va,vs,... },
W;, = span {w1,wa,W3,...},
Qn =span{q1,¢2,93,--. },
G =span{g1,92,93,- -},
@}, = span {¢1, ¢2,¢3,- - }.
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Note that the functions in G are defined on €, and they have support limited closely along
the boundary. Also note that g; € G, € HY(Q) = gilr € HY2(T'). So to represent the pressure
on the boundary, let By, = span{gi|r : ¢; € Gn}. This gives By, C B as required by Lemma 3.1,
so (26) may be used with p(g;|r) = g; along with appropriate choices for 61(g;|r) and 6.

Given these spaces, the discrete variational formulation is as follows.

PROBLEM 3.5. Given f € L?(Q), find an approximate solution (un(pr),pn(pr)) for (1) along
with auxiliary variables pr and 8y (pr), as follows.

STEP 1. Determine ppg € ®1, upy € X, and Opg € By so that ppolr = 0, upolr = b, fror =0,
and

/Vpho-V¢dQ=/f-V¢dQ, Vo e by, (36)
0 Q
/ pg -V + vVUpg : Vvd = / (f — Vpng) - vdQ, Vv eV, (37)
Q 0
/ Vb -V dQ = / (——-V . uho) ¢ d2, Voe . (38)
o) o) '

STEP 2. Determine pr = Y . ajg; € G so that

/ gV - upi(pr) + Véni(pr) - Vg d

? (39)

=—/9V-uho+V9ho-ngQ, forg=g,€Gp, t=1,....
Q

StEP 2.1. As needed, for g € G}, determine pr1(g) € Qr, un1(g) € Va, and 6,1(g) € ®p, so that
pr1(@Ir = glr, wr1(g)lr = 0, Ora1(g)lr = 0, and

/QVphl(g) -VodQ =0, Vo e Py, (40)
/ nupi(g) - v+ vVugi(g) : VvdQ = / —Vpni(g) - vdQ, Vv eV, (41)

Q Q
/V@hl(g)-thdQ :/ (~V-un(g)) 6dQ, Vée (42)

Q 0

STEP 3. The solution is given by

Pr(Pr) = pro + pPr1(pr), (43)
up(pr) = upo + upi(pr), (44)
On(pr) = Bro + On1(pr). (45)

REMARK 3.6. In implementing the algorithm, Step 2 solves for the coefficients a5, j = 1,...,
using the system of equations

E :O‘j/ngiv'uhl(gj)+V0h1(gj)'VQidQ= —/giV-uho-kV()ho-Vg,-dQ, i=1,....
2 A
J

Depending upon storage capabilites, pn1(pr), uni(pr), and 8x1(pr) might be formed as linear
combinations of stored vectors pni(g;), uri1{g;), and fr1(g;), 5 = 1,.... As storage becomes
an issue, these vectors can be discarded after use, and ppi{pr), uni(pr), and 6p1(pr) can be
calculated as in Step 2.1 using ¢ = pr.

Furthermore, the stiffness matrices associated with (36) and (40) are identical, as is the case
with (37) and (41), and (38) and (42).

Note that in the discrete variational formulation the boundary equation as given in Lemma 3.1
has been imposed, and substituting g € G, for (g) does satisfy the constraints of that lemma.
However, po, p1(g), 0o, and 6,(g) are variational solutions in closed subspaces of H(Q), so it is
necessary to verify that the pressure boundary equation is equivalent to (17).
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LEMMA 3.7. The boundary equation (39) is equivalent to
/ﬂnuhl(g) “up1(pr) + vVuni(g) : Vugi(pr) dQ. = /nphl(g)v - upo df2. (46)

Proor. Using (40) with the fact that 8,1 (pr) € @5, (42) with g — ppi(g) € ®3, and (41) with
upi(pr) € Vi, it follows that

/ﬂ gV - a1 (pr) + V1 (pr) - Vg do2

- /Q 9V - un1(r) + Vo1 (pr) - (Vg — Vpni(g)) d2
- /9 9V - un1(pr) + wn (pr) - (Vg ~ Vpna(g)) d2
= - [ wna(or) - Vom(a) a0

= /Qnuhl(g) “ugi(pr) + vVup(g) : Vupi(pr) dQ.

Similarly,

— / gV rupo + Vo - VgdQ
Q

= - _/ng “upo + Vo - (Vg — Vpri(g)) dQ

== /QQV “Upo + upo - (Vg — Vppi(g)) dQ

= / Upo - Vpri(g) dQ - / gupo -ndl
0 T

= /nphl(g)v - upo d2,

and the result follows. ' i

Now it is shown that the discretization has a unique solution.

THEOREM 3.8. The bilinear form in the boundary equation (39) is symmetric positive definite
on Gy x Gp, and Problem 3.5 has a unique solution

(pr, pr(pr), un(pr), On(pr)) € Gh X Qp X Xp x ®p. (47)

ProoF. It is clear that the Poisson problems have a unique solution and that the pressure
and velocity discrete operators are symmetric positive definite. The discrete boundary pressure
equation operator is at least symmetric positive indefinite by Lemma 3.7. Now it is shown that
this operator is positive definite. Note that

/ gV - up1(pr) + Vopi(pr) - VgdQ
Q

= /ﬂ nmap1(g) - upi(g) + vVupi(g) : Vupi(g) dQ
> viun ().

If up1(g) = 0, then (40) implies

/ Vpri{g) - vdQ =0, Vv e V. (48)
Q
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This implies that pr1(g) = 0 and so (as will be shown) g = 0. That is, the variational form is
positive definite. To establish that pni(g) = 0, note that the Taylor-Hood element satisfies the

inf-sup condition [2]
/ V§-vdQ
Q

sup 20— >uldloq, Vi Qn (49)
VEWL lvll,ﬂ

The pressure space is denoted Q) instead of Q) because the uniqueness condition is enforced
here by insisting [, §dQ = 0 as opposed to setting the pressure at one node on the boundary.
This condition suffices in this case because for each ¢ € Q) there exists some constant ¢4, such
that g + ¢, € Qn, and

/Vq-vdﬂ /V(q+cq) vdQ

sup “4————— = sup
VEVL IviLe vEV, viLa

>wlg+ Cq”o Q2w HQHO/ER

So choosing ¢ = pai(g), (48) implies ||pr1(9)llo/r = 0, and so g = 0. That is, the map
g — up1(g) taking G, — V, is one to one, and the proof is complete. ]

REMARK 3.9. The discussion following equation (48) establishes the equivalence of imposing a
zero-mean condition and setting the pressure at a point in order to have a unique solution. The
former condition is often used in analysis while the latter is imposed on the computed solution.

Returning to the specifics of the discretization, pr is approximated as par = Zﬁ'(‘]l ajgj, where
the a; satisfy
IGh

aJ / V01 (glr) - Vgi + gV - ua(gylr) A
i= (50)

—/VBO-Vg,--i-g,-V-uon, V’LG{].'Ghl}
Q
For each g;, let

[Pl {Vh|

pugslr) #phy = g5+ Y Bhbm,  wilgslr) Hudy = Z YoV,
m=1

|®nl

81(g5l0) ~ 6], = > L bm,
m=1

where the 87, 49, (7 are obtained by considering the definitions of p1(g;|r), ui(g;Ir), and 61(g;ir),
and insisting that the following hold:

|®n| '

¥ . -~ _ L.
mzzlamfn(wm Vén) d2 /n Vg; - VérdQ, Vne{l---|®n}, (51)
Vil

Z’Ym/(an Vo + Vv, Vv, )dQ = / ~-Vpl vndR, VYne{l---|Vh|}, (52)

[®rl

Zgi/ (Vém - Von)d /¢nv ul, dQ, Vne{l---|®]}. (53)

The values of pg, up, and 8y are determined similarly. Let

[@nl Vil | @)

Po~pho= Y Pmbm: WU =Y YVm+br, b= (%dm,
ma=1 m=1

m=1
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where by = ZL‘Z’{’ 5gwk € Wy and the 62 are selected so that by|r interpolates b. Then the
following equations must hold:

[®n]

0 - frd . ..

nlzzjlﬂm/ﬂ(wm Vé,)de /ﬂf Vi dQ, Vne{l-|oal},  (54)

Vil

Z_;l'y?n /ﬂ(nvm-v,1 + Vv Vv, )dQ

- /ﬂ (£ — Vo — 7bs) (55)
- vy, —UVby : Vv, dQ, Vne{1---|Vil},

@] )
n;(ﬁ)n/rz(v¢m-v¢n)dﬂ=——/ﬂgbnv-ufwdﬂ, Ve {l--|®}.  (56)

Note that the process of determining pr involves three discrete linear operators. For notation,
call these App, A;p, and A, for boundary pressure (50), interior pressure (51), (53), (54), (56),
and velocity (52),(55). It is important to note that none of these operators depend upon f or b.

Note also that A, can be permuted to the form (‘3

basis functions. So the effective size of A4, is |V}| /2.

The size of A, depends upon the number of nodes along the boundary and so the system
is relatively small. However, the calculation of each entry of A, requires solving two systems
involving A;,, and one system involving A,. So if one should use this approach in an iterative
scheme such as the f-method, it is fortunate that Ay, need only be recalculated after changes in
the mesh. That is, f and b may be changed without effecting Ap,,.

Finally, note that all entries of Ag, are independent of each other, and so they can be calculated
in a parallel fashion.

g) through judicious selection/ordering of

4. ERROR ANALYSIS

THEOREM 4.1. Suppose that p(mod R) and u comprise the true solution to the unsteady Stokes
problem (1) with b = 0, and Q a convex polygon with a regular triangulation. If (p,u) €
H ()2 x H*(Q)(mod R) for k € {1,2} then the unique solution (pp, un, 6n) = (pn(pr), un(pr),
Or(pr)) € Qn x Xp x @), of Problem 3.5 satisfies the following error bounds:

lha = unlly < Ch* (lulypy + I2li)
164}, < hu = unlly,
llp = prlloym < CA* (luleyy +1pl)
a = up + VOallg < CR* (Juliyy +Ipli) -

PROOF. The proof of the error bounds will make use of the two equalities

n(a—up,vy) +v(V(a—up), Vvi)
+(V{p—~pn),va ~ Von) =0, Y (Vhsn) € Vi X ®p, (87)
(VohyV(Ih) = (Uh, th) 3 V(Ih € Qh' (58)

To establish (57) and (58), note that the following equalities hold by construction:
(Vph1v¢h) = (fvv¢h) ) v¢h € (I)h,, (59)

7 (g, V) + v(Vuy,Vvy) = (f - Von, Vi), Vv € Vy, (60)
(Vbh, Vér) = (un, Vo), Von € O (61)
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Equation (57) follows from (59)—(61) by observing that p, u, and § also satisfy (59)—(61). Also,
(58) holds by extending (61) to hold on Qp. With this in mind, given qn € Q, note that there
is a unique g € Gp, such that gn|r = gnlr, s0 g has a unique representation gn = pr1(gn) + @n
with ¢, € ®p and pp1{gn) satisfying (40). Uniqueness of this representation follows from the
uniqueness of pp; as a function of gp. This gives

(un, Var) = (un, Vori(gn) + Von) = (un, Vpri(gr)) + (un, Vér),
(V0r,Vap) = (V6,Vpni1(gn) + Voér) = (VO0r, Vpri(gn)) + (V6r, Vér).

Noting (38) and (42) gives (V0, V) = (up,V¢n). Also, 6, € ®;, which means (40) gives
(VO6r,Vpri(gn)) = 0. So to show (up,Vgu) = (V0;,Vg), it will suffice to show (uy,
Vpri(gr)) = 0. To do this, recall that u, is the approximation, so u, = up(pr) € V,. This
means using uy(pr) as v in (41) gives

(un(9), Vpri(grn)) = —n (un1(g), uno + upi(pr)) — v (Vuni(g), Vure + Vuri(pr))
= —1n(un1(g), uno) — ¥ (Vuni(g), Vuro)
~ n(un1(g), ur1(pr)) — v (Vuni(g), Vuni(pr))

= —n(un1(g), upo) — ¥ (Vuni(g), Vure) + (V - uno, pri(g)) (62)
= —n(un1(g), uno) — ¥ (Vuni(g), Vupo) — (uno, Vpai(g))
= (uno, VPu1(9)) — (ano, Vpri(9)) (63)

= 0.

Equality at (62) follows from the equivalence of the boundary equations established in Lemma, 3.7,
and using (41) once more shows equality at (63). Therefore, (57) and (58) hold, and may be used
to produce the error bounds.

BoOUNDS FOR u — u. To produce error estimates for velocity, it is convenient to introduce the
space

Dp={(v,¢n) € Va x ®p : (Vi — Vén, Vagr) =0, Vg € Qn}.

Note that Dy, # @, because (up,8) € Dy. Now restricting the pair (v, ¢p) in (57) to Dy, it
follows that

n(u—up,va) + v (V(u—u), Vvy) + (V{p — qn), vh = V) =0,

64
V{((Vh,#n),qn) € Dp x Qp. (64)
For gp, substitute P,p, the projection of p onto Qp which satisfies
(Vo - Pl Va) =0, YaneQu and  [paa= [ Ppan.  (69)
0 Q

That Pyp exists follows from & € {1,2} and p € H¥(). Also note that
llp — Prpllg = lip - PhP“o/se :

Substituting u — up = u — Wy, + Wy, — 1, in (64) results in

n{u—wp, vy} + 9 (Whp —up, vp)
+v (V(u—wr),Vvy) + v (V(wh — up), Vvp)
=(p— Pnp,V-vp), Y {(Vh,¢n) € Dp.
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Now choose vy, = up, — W, and note that (up,6) € Dy. As a result,

7l — Whllg + lup = wi)[} = 7 (0 = Wh, up - wh)
+v (V(u—wh),V(uh —Wh))
_(v'(uh—wh)np_Php)a V(Wh,Wh)EDh,

with o dependent upon wy. From the above,
[up, ~ whlf < g (u—wp,up —wi) + (V(u—wp), V(u, — wp))
1
“;(V‘(uh“‘Wh),p—Php), V(Wh,goh)EDh,

n V2
up = Waly < Cioflu = wallg + [u— Wil + —=lIp — Papllo/

V2
<(1+ad)lu=waly+ 2o = Paplloys: ¥ (Wh,¢n) € Da.

(66)

Now choose ¢y, = 0, and note that {v: (v,0) € Dp} ={ve V,: (V- -v,q,) =0,Yq € Q}. That
is, wn = 0 implies w,, may be arbitrarily selected from the subspace of V};, whose divergence is

orthogonal to Qy. Therefore, because V,, and @Q, satisfy the inf-sup condition,

Vq-vdQ

sup R 2w I|Q||o,m, Vg€ Q.
vEV, ‘vll,n

The inequality [1]

V2
inf - <{l1+—] inf —
(w,0)€Dn I = wonlly < ( + )k, = vl

may be applied to (66) to obtain a fixed wy, so that
V2
- <[14+—] inf - .
Ja = wal, < ( +22) e vl

So using (66), it follows that

V2

. V2
fun = wal, < (1+C1 1) (1 + 7) ot = villy + = llp— Prpllosn-

Because u — up = u — wy + Wy, — uy, it follows that
[u—unlly <flu—wall; +Czlun — wal
which with (68) and (69) gives
- < Cs inf — + C. - P .
flu—usll; < 3 inf flu=vally + Callp — Prpllo/m

Now for interpolation estimates on V}, and @, with &k € {1,2} and n € {0,1},

v - Invll, < Csh**1 " v,  Vve HYYQ)?, n<k,

llp — PhPHO/ae +hl|p~ Pupl; < Cgh* 1Pl -

(68)

(69)

(70)

(71)
(72)
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So from (70), the velocity error bound is
flu— uh“1 < ChF (Iulk+1 + Iplk) - (73)
BOUNDS FOR 6. To bound 8}, recall from (58) that
(up —VO0r,Van) =0, Vg € Qn,
which gives

(V8h,V6r) = (un, Vép)
= (up, Vo) — (V - u,6)
=—(u-—u, Vo).

So the resulting bound, in terms of the velocity error, is
|9hl1 <lu- uh”o .

Bounps FOR p — pn. To produce bounds for the error in pressure, consider (57) with ¢ = 0.
This gives

~(V(p—=pn),vn) = n(u—up,vp) + v(V(u—up), Vvy), Vvp € Vg,

and thus ,
(Pr — qn, V - vi) = —n(u —up, vi) — v (V(u = up), Vvy) (74)
+(p—qh,V-vh), Vvp € Wy, thGQh.
Noting |V - v|q < v2||v|);, assuming v # 0 and dividing both sides of (74) by |4 ]|, gives
—qn, V- v
Dn= 80 VNN < g maxin, v} u—wally + VEIp—anlg,  Van€Qn  (75)

vally

Now using the inf-sup condition (67), choose v, # 0 so that

(pn — qn, V - vp)

w||pn — gal| <
/R [Vhl 1

Noting that ||[vx|[; < C7!|val,, and using (75) gives

lpr — Qh”o/z}e < Cl% max{n, v} |ju— unfl, + Cl\/jg llp - ‘Jh"o/zre ) Van € Qn,
so using the triangle inequality
lp = prllo/m < llpn — anlloyw + 1P — arllo/n
results in
I = pellon < Coman, ) pu =l + (14 G 2V8) inf = anlym: Van€ Qn
w w an€Qn
Now considering (70), substituting g = Pyp gives

- < inf - C — P
lip Ph“o/;}e <G V;:IEIV;. lu—vall; + Csllp hP”()/aea
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so from the velocity error bound (73),

1P — Prlloyn < Ch* (lulyy; +1pl:) - (76)

BOUNDS FOR u — uy, + V8,. To improve the velocity error bound somewhat, consider a variant
of the duality argument of Aubin and Nitsche [11,12]. For a convex polygonal domain, and given
F ¢ L2(2)?, there exists a unique solution (1, u) [1] to the Stokes (dual) problem

—Vz’l/)"v#—_-F, VT/):O’ WFZO,
HY(®)

v e HAQ)PNH(Q)?, pe—5—,

¥l + lply < Cr[[Fllo -

To see that this is also true for the unsteady Stokes problem, note that because I' € C*, by the
Lax-Milgram theorem there is a unique solution ¥ € H}(Q)? to

nd — vV = V2, I = 0.

Noting that V28 = -V — 9 € L(Q), it follows from ' € C* that 9 € H?(Q)? n H}(Q)2.
Taking distributional derivatives gives

V- -vV¥) =9V -9 -vViV .9 =-V Vi =0.
Now let £ = V - ¢ and note that there is a unique solution £ = 0 to

né — vV =0, lr=0.
So V-9 = 0. It follows that for a given F € L?(Q)?, there exists a unique solution (9, 1) to the
unsteady Stokes (dual) problem
m - vV —Vu=F, V.-9=0, I =0, (77)

1
pe @Y we TS ol + ey < O IRl (78)

Using the true solution to (77) (¥, u), the true solution (u,p) to (1), and the approximation
(up, pr) to (1), gives

Fou—up)=n(0,u—up) +v(VI,V(u—wup)) —(Vi,u—up). (79)
Also, because {up, pg) is the approximation for (u,p), using (37) and (41) results in
0=n(u—upvy)+v(V(iu-—uy),Vvy)+ (VP —pr): Va), Vv € Va.
Combining this with (58) and the fact that V - (nd — vV29 — V) = -V2u =V - F,

0=n(u~-upvy)+v(Vu—up),Vvy)+ (V(p - pn) vr)
+ (Van, un) — (Van, Vn)
— (6h,V?0) = (V-F,6h), VVvai€Vha, Vgr€@n, (80)
=10 (u—up,va) + ¥ (V(u—up), Vva) + (V(p — pa), Vi)
— (gr, V- up) + (VO V(u— qn)) + (F, V),  VVh €V, Vgp € Qn
The equality at (80) follows from the divergence theorem and the fact that us|, = 0 and G, = 0.

Now for gp, choose Pyu, the projection of u onto Qp as in (65). Then subtracting (80) from the
right-hand side of (79) gives
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(Fou—wp) =70 —vp,u—up) +v (V0 —vp),V(u—up))

—(Vu,u—up) = (V(p ~ pa), va)

+ (Papy V - up) = (VO V(i — Pap)) — (F,V6y),

As in (85), (VOr,V(p — Pap)) =0, 50 using V-u=0and V-9 =0 gives

(P,bu—up +VOy) =m0 —vp,u—up) + v (V0 ~vp),V(u—uy))

+ (V- (u—uwm)) = (p—pn, V- (I —va))

= (Pap, V- (u—up))
=0 —vp,u—up)+ v (VW —vy),V(u—ug))

Vv, € Vi

+@=pn, V- (v =9)) ~ (g — Papt, V- (up, — ),

1207

(81)

(82)

(83)

Noting that this holds VF € L?(0)2, and that u—uy+6, € L2(R), choose F so that |F||, = 1 and
(F,u—~up,+0) = [lu—up + 6|, Choosing F fixes (9, u) by (77), so (78) gives [|9], + |ul; <
C1 ||Flly = C1. Now choose v, as the V}, interpolant of . Using the interpolant and projection
ertor estimates for (9, u) € H'(Q)2 x L2(Q) results in

(9 —vill; < C2h and

It follows that
19 = villy £ C2h and

Finally, from (83),

lla—un + 0kl <0l = vallgllu —unlly + v IV = vi)llo IV (0 — ws)ll,

e = Prplly < Csh.

V(8 = vi)lly < V2C2h.

+lp = prllo NV - (vh = Do + I = Papllp IV - (un — )l

so using the errors proven earlier for the approximation (u, pp),

llu — wp + Vbhllg < CRM (lulyy +Iply)

thus proving Theorem 4.1.

Table 1. Results for Example 1.

h  lWuw—ully Jun—uly  [pr—plo o1
n=0,v=1 -}I 6.55e — 1 2.37¢ +1 3.98¢ 4+ 0 4.92e — 2
é 8.30e — 2 6.19¢ + 0 3.06e — 1 8.46e ~ 3
—1% 1.05e ~ 2 1.57e+ 0 2.18e - 2 6.68e — 4
-515 1.31e -3 393e—1 1.50e — 3 4.48e -5
n=1Lv=1 i 6.54e — 1 237e+1 3.99e + 0 4.8%e — 2
% 8.29e — 2 36.19e + 03 3.07e -1 8.43e — 3
% 1.05e — 2 31.57e+ 0 2.18e — 2 6.66e — 4
51—2 1.3le—3 33.93¢ — 1 1.50e — 3 4.47e — 5

(84)
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5. NUMERICAL RESULTS

In this section, numerical results for Problem 3.5 are presented which confirm the convergence
rates predicted by Theorem 4.1. The results are given as L?(2) norms and H!(Q) seminorms of
the difference between the finite-element approximation and the exact solution, e.g., |lps — plil,
and |up — u|;. Also displayed are results for {0, and {|lu, — ully, which by Poincare-Friedrichs
should satisfy [1]

lu=unlly < Clul;.

In each example, the discrete systems generated by the Glowinski-Pironneau algorithm are solved
using the Choleski method. The triangular mesh in all cases is constructed so that no triangle
has two edges on I' [13]. As stated in [2], triangulating into corners is not necessary to achieve

Table 2. Results for Example 2.

h lwn-ully  lun—uh  lpa-rply 16
Re = 0.01 -411 3.90e -1 L1l4e+1 1.03e + 3 2.14e -1
% 4.65e — 2 2.94e + 0 1.59e + 2 1.79e — 2
118 5.44e — 3 74le—-1 220e+1 1.18¢ — 3
-313 6.60e — 4 1.86e — 1 2.90e + 02 7.46e -5
Re=0.1 i 3.78e -1 1.10e + 1 9.99% + 1 2.07e — 1
% 4.50e — 2 2.85e 4+ 0 1.54e+1 1.74e — 2
% 527e—3 717e -1 2.13e+0 1.17e - 3
§1§ 6.40e — 4 1.80e -1 2.80e ~ 1 8.6le - 5
Re=1.0 i 2.77e —1 8.12¢ 40 7.18e+0 1.49e -1
% 3.3le — 2 2.08e + 0 1.09e 40 1.33e — 2
%é 3.97e -3 5.23e -1 1.5le—1 1.31e~3
é 52le -4 13le -1 2.00e — 2 2.39%e -4
Re = 10.0 i 4.07e - 2 1.21e+0 7.50e — 2 1.43e — 2
% 5.13e — 3 3.07e—1 1.13e — 2 1.68e — 3
11_6 7.02e — 4 7.6%e — 2 1.86e ~ 3 3.57e - 4
3—12- 1.17e — 4 1.92e - 2 3.63e -4 9.0le -5
Re = 100.0 % 1.39e — 2 4.04e -1 6.82¢ — 4 4.90e — 4
% 1.83e -3 1.03e -1 6.54e — 5 4.7 — 5
-11—6 2.32e — 4 2.6le — 2 1.24e -5 3.40e — 6
515 2.9le—-5 6.53¢ ~ 3 29le—-6 2.22e -7
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optimal accuracy. It was observed that for the examples given in this paper, the magnitude
(though not the convergence rate) of errors was less when using triangulation into corners.
5.1. Example 1
Results for Example 1 are displayed in Table 1. Here the domain is [0, 1] x [0, 1] and f is chosen
so that the solution is
u = 256z(x — 1)(2z — 1) (6y® — 6y + 1) i
~ 256y(y — 1)(2y — 1) (62% — 6z + 1) j,

(6D

The errors in |up — uf; converge at the predicted rates, while the others converge faster than
predicted.
5.2. Example 2

The solution used for this example is known as a 2D Kovasznay flow [14]. The domain is
[-1/2,1/2] x [-1/2,1/2], with n = 1, v € {1/100,1/10, 1,10, 100}, and f selected so that

A
u={-e*cos(2ry)} i+ {E;e)‘z sin(27ry)}j,
1-e?

2 )

p:

where A = Re/2 — ((Re/2)? + (27)2)1/2 and Re = 1/v. Convergence results are displayed in
Table 2. Results for the case 1 = 0 are nearly identical to those for 7 = 1.

5.3. Timing Results

Timing comparisons between the Glowinski-Pironneau algorithm, a sparse direct approach,
and an iterative algorithm are now presented. Tables 3-5 can be used to compare times, in
seconds, to solve (1) using the sparse direct solver in the Aztec package [15], an iterative solver in
Aztec, and the Glowinski-Pironneau algorithm using the Choleski method for the Poisson solves.
In each case, the exact solution is the Kovasznay flow with 5 = v = 1. The iterative solver
is BiCGStab with a ninth-order least squares polynomial preconditioner, using l.e — 6 as the
convergence criterion for the relative residual.

The timings in Table 5 are organized to separate that portion of the algorithm which will be
repeated for each time step to solve an unsteady problem, in which the right-hand side of (1)

Table 3. Timing in seconds for sparse direct solver.

h 1 1 1

8 16 32
Assemble 0.06 0.43 4.56
Factor 0.27 6.06 139.30
Solve 0.01 0.04 0.23

Table 4. Timing in seconds for iterative solver.

1 1 1
h hud = =l
8 16 32
Assemble 0.06 0.43 4.45
Solve 0.10 1.92 11.68
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Table 5. Timing in seconds for Glowinski Pironneau algorithm.

A oo
8 16 32
Assemble boundary pressure matrix 0.28 3.55 49.80
corresponding to (45), using (42)—(44)
Factor boundary pressure matrix 0.006 0.014 0.076
Assemble and factor systems (39)-(41) 0.08 0.92 13.28
Solve for boundary pressures 0.02 0.14 0.89

~ Solve factored form of (39)-(41)

- Calculate RHS of (45)

— Solve factored form of (45)

— Determine py1, Up1, Op1

— Determine pj, up, 8y, using (46)-(48)

Table 6. Convergence results using sparse LU solver.

P lw—ully  Jun-ul, lee—pll
i— 2.49%-1 8.47e+0 9.55e+0
1

3 3.17e-2 2.10e+-0 1.35e+0
Tlé 3.79e-3 5.24e-1 1.7%-1
% 4.64e-4 1.31e-1 2.33e-2

changes. This is the case, for example, in the §-method [4]. It is appropriate, then, to compare
the last row of timings in each table. The direct solver, as would be expected, has the lowest
time in the solve step. This fact loses relevance as the problem size grows beyond the point at
which an LU solver for the velocity-pressure system is feasible. One can infer from a comparison
of the solve times for the latter two methods that in a time-dependent context, there will be a
threshold number of time steps at which the total time for the iterative method equals that for
the Glowinski-Pironneau algorithm, after which the Glowinski-Pironneau algorithm will take less
time. More extensive numerical results are needed to confirm this point.

Table 6 displays convergence results for the sparse direct solver from Aztec for the Kovasznay
flow with n = v = 1. The entries can be compared with the Re = 1 values in Table 2, showing
that the accuracy of the algorithms is very similar.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a complete description and analysis of the Glowinski-Pironneau finite-element
method for the unsteady Stokes problem has been presented. The next step in this research
will be to use the algorithm (or a variant) within a time-dependent viscoelastic flow simulation.
Implementation in a parallel setting, for the 3D problem, is a likely direction for this effort.
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