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Motion and structure of atmospheric vortices

Sound-proof flow models

Clouds and waves



Scale-Dependent Models
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Scale-Dependent Models

Anelastic Boussinesque Model

ut + u · ∇u + wuz + ∇π = Su

wt + u · ∇w + wwz + πz = −θ′ + Sw

θ′
t + u · ∇θ′ + wθ′

z = S′
θ

∇ · (ρ0u) + (ρ0w)z = 0

θ = 1 + ε4θ′(x, z, t) + o(ε4)

10 km / 20 min

Quasi-geostrophic theory

(∂τ + u(0) · ∇) q = 0

q = ζ(0) + Ω0βη +
Ω0

ρ(0)

∂

∂z

(
ρ(0)

dΘ/dz
θ(3)

)

ζ(0) = ∇2π(3), θ(3) = −∂π(3)

∂z
, u(0) =

1

Ω0
k × ∇π(3)

1000 km / 2 days

EMIC - equations (CLIMBER-2)

∂QT

∂t
+ ∇ · F T = ST

∂Qq

∂t
+ ∇ · F q = Sq

Qϕ =

Ha∫

zs

ρ ϕ dz , F ϕ =

Ha∫

zs

ρ
(
u ϕ + ̂(u′ ϕ′) + Dϕ

)
dz ,

(
ϕ ∈ {T, q}

)

T = Ts(t, x) + Γ(t, x)

(
min(z, HT ) − zs

)
, q = qs(t, x) exp

(
−z − zs

Hq

)

ρ = ρ∗ exp

(
− z

hsc

)
, p = p∗ exp

(
−γz

hsc

)
+ p0(t, x) + gρ∗

z∫

0

T

T∗
dz ′

u = ug + ua , fρ∗k × ug = −∇xp uα = α∇p0

V. Petoukhov et al., CLIMBER-2 ..., Climate Dynamics, 16, (2000)

10000 km / 1 season



Scale-Dependent Models

Earth’s radius a ∼ 6 · 106 m

Earth’s rotation rate Ω ∼ 10−4 s−1

Acceleration of gravity g ∼ 9.81 ms−2

Sea level pressure pref ∼ 105 kgm−1s−2

H2O freezing temperature Tref ∼ 273 K

Tropospheric potential temperature variation ∆Θ ∼ 40 K

Dry gas constant R ∼ 287 m2s−2K−1

Dry isentropic exponent γ ∼ 1.4

Distinguished limit:

Π1 =
hsc

a
∼ 1.6 · 10−3 ∼ ε3

Π2 =
∆Θ

Tref

∼ 1.5 · 10−1 ∼ ε

Π3 =
cref
Ωa
∼ 4.7 · 10−1 ∼ √ε

where
hsc =

RTref

g
=

pref
ρrefg

∼ 8.5 km

cref =
√
RTref =

√
ghsc ∼ 300 m/s



εÿ + δẏ + y = 0; y(0) = 1; ẏ(0) = 0
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The limit is path-dependent!



Scale-Dependent Models

Nondimensionalization

(x, z) =
1

hsc

(x′, z′) , t =
uref

hsc

t′

(u, w) =
1

uref

(u′, w′) , (p, T, ρ) =

(
p′

pref

,
T ′

Tref

,
ρ′RTref

pref

)

where

uref =
2

π

ghsc

Ωa

∆Θ

Tref

(thermal wind scaling)



Scale-Dependent Models

Length scales, dimensionless numbers, and distinguished limits

Lmes = ε−1 hsc

Lsyn = ε−2 hsc

LOb = ε−5/2hsc

Lp = ε−3 hsc

Frint ∼ ε

Rohsc ∼ ε−1

RoLRo
∼ ε

Ma ∼ ε3/2



Scale-Dependent Models

Compressible flow equations with general source terms

(
∂

∂t
+ vq ·∇q + w

∂

∂z

)
vq + ε (2Ω× v)q +

1

ε3ρ
∇||p = Svq ,

(
∂

∂t
+ vq ·∇q + w

∂

∂z

)
w + ε (2Ω× v)⊥ +

1

ε3ρ

∂p

∂z
= Sw −

1

ε3
,

(
∂

∂t
+ vq ·∇q + w

∂

∂z

)
ρ + ρ∇ ·v = 0 ,

(
∂

∂t
+ vq ·∇q + w

∂

∂z

)
Θ = SΘ .



Scale-Dependent Models

Asymptotic Expansions & Classical Results

Recovered classical single-scale models:

U(i) = U(i)(
t

ε
, x,

z

ε
) Linear small scale internal gravity waves

U(i) = U(i)(t,x, z) Anelastic & pseudo-incompressible models

U(i) = U(i)(εt, ε2x, z) Linear large scale internal gravity waves

U(i) = U(i)(ε2t, ε2x, z) Mid-latitude Quasi-Geostrophic Flow

U(i) = U(i)(ε2t, ε2x, z) Equatorial Weak Temperature Gradients

U(i) = U(i)(ε2t, ε−1 ξ(ε2x), z) Semi-geostrophic flow

U(i) = U(i)(ε3/2t, ε5/2x, ε5/2y, z) Kelvin, Yanai, Rossby, and gravity Waves

... and many more



Scale-Dependent Models

R.K., Ann. Rev. Fluid Mech., 42, 249–274 (2010)
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Päschke, Marschalik, Owinoh, K., JFM, 701, 137–170 (2012)

Asymptotic modelling framework

Motion and structure of atmospheric vortices

Sound-proof flow models

Clouds and waves



http://www.aoml.noaa.gov/hrd/tcfaq/A4.html

Tropical easterly african waves



Dunkerton et al., Atmos. Chem. Phys., 9, 5587–5646 (2009)

Developing tropical storm
(streamlines in co-moving frame and Okubo-Weiss-parameter (color))

T. J. Dunkerton et al.: Tropical cyclogenesis in tropical waves 5627
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Fig. B1. Streamlines of horizontal (rotational + divergent) flow at 850 hPa, as seen in ERA-40 data, for six consecutive analyses leading
up to the best-track genesis time of Tropical Storm Chris (2000). Shading indicates relative vorticity (units: 10−5 s−1). The sequence
of frames translates westward at the zonal propagation speed of the parent wave at 850 hPa as estimated from the Hovmöller method
(−9.1±1.1ms−1) and streamlines are calculated and displayed in the co-moving frame; note that relative vorticity itself is invariant with
respect to the translation. Isopleths of zero relative zonal flow are shown (purple) together with their uncertainty. In the final panel of the
sequence the critical latitude of the parent wave is also indicated (red) corresponding to isopleths of zero relative zonal flow in low-frequency
data with periods longer than 9 days. The wave’s trough axis is shown for reference (black). The genesis location is indicated by the black
dot in the final panel.
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Fig. B2. Stream function of horizontal flow for the genesis sequence of Tropical Storm Chris as in Fig. 23, but at 600 hPa. Shading indicates
the Okubo-Weiss parameter (units: 10−10 s−2) as defined in Eq. (2). This quantity, like vorticity, is invariant with respect to translation,
therefore identical in co-moving and resting frames. The sequence of frames translates westward at the zonal propagation speed of the parent
wave at 600 hPa (−8.5±0.5ms−1) and stream function is calculated and displayed in the co-moving frame.

www.atmos-chem-phys.net/9/5587/2009/ Atmos. Chem. Phys., 9, 5587–5646, 2009

Ro =
|v|
fL
∼ 1

10



Developed hurricane

R∗mw ≈ 50 . . . 200 km

uθ ≈ 30 . . . 60 m/s

Rmw: radius of max. wind

Hurricane ”Rita“

Ro =
uθ,max

fRmw
∼ 10



Radial momentum balance regimes

− 1

ρ

∂p

∂r
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(
1
)

geostrophic Ro� 1 typical “weather”

u2
θ

r
− 1

ρ

∂p

∂r
+ fuθ = O

(
1
)

gradient wind Ro = O (1)
tropical storm
incipient hurricane

u2
θ

r
− 1

ρ

∂p

∂r
+ fuθ = O

(
1
)

cyclostrophic Ro� 1 hurricane



Dunkerton et al., Atmos. Chem. Phys., 9, 5587–5646 (2009)

Vortex tilt in the incipient hurricane stage
(Velocity potential)

200 hPa
(∼ 12 km)

5618 T. J. Dunkerton et al.: Tropical cyclogenesis in tropical waves

925 hPa velocity potential
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-1 5 ms
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200 hPa velocity potential

Fig. 21. Velocity potential of divergent flow, as seen in ERA-40 data, at (a, c) 925 hPa and (b, d) 200 hPa leading up to the genesis time of
Hurricane Debby, at (a, b) 30 h before genesis and (c, d) genesis.

troposphere flow is well-represented on the synoptic scale
(a compliment that excludes the tropical tropopause layer or
TTL, and the lower stratosphere, due to insufficient cloud
coverage or water vapor content, and lower troposphere in
regions where thick clouds obscure). To the extent that both
lower and upper troposphere horizontal winds are captured
faithfully by the analyses on the synoptic scale, it is possi-
ble to identify TD-like conditions in the parent wave from
the vertical structure of wind anomalies: specifically, a “first
baroclinic mode” structure or stacked arrangement of LT cy-
clone and UT anticyclone.
Such features – as one might expect us to say – are best

revealed in a frame of reference translating with the parent
wave. But in the case of Debby and more generally, there
is no need for the optimum translation speeds to be iden-
tical throughout the depth of the troposphere. One reason
(noted in Sect. 3 and quantified in Table 1) is that the phase
speed of the parent wave may vary with height, from lower
to mid-troposphere. Another (noted here) is that the proto-
vortex may translate slowly with respect to its parent wave
while its deep convective signature extends to the upper tro-
posphere28. The definition of “properly co-moving frame”
therefore depends precisely on what the “co” refers to. In-
28Effects of the diabatic proto-vortex on the upper troposphere

may be separated into a near-field response with anticyclonic out-
flow aloft (relevant to TC genesis within) and a far-field response
communicated by secondary Rossby waves (relevant to adjacent
troughs and TC genesis therein).

deed, it is likely that a trapped LT disturbance propagates at
a slightly different speed than a diabatically activated LT-UT
dipole. There are multiple reasons, the simplest being that
gross moist stability is reduced by the latent heating associ-
ated with deep moist convective precipitation, causing wave
phase speed of moister waves to be slower than that of drier
waves. In the language of tidal theory it could be said that
the equivalent depth of the proto-vortex and its induced flow
is smaller than that of the original parent wave, which sees a
larger area and more dilute distribution of precipitation than
the proto-vortex itself and its upper tropospheric signature.
We therefore expect a diabatic Rossby wave and diabatic
Rossby vortex to propagate at slightly different speeds, the
speed of the wave depending, among other things, on the de-
gree of convective heating seen by the wave, via the gross
moist stability. Also possible is that the two entities respond
differently to vertical shear. An isolated vortex is expected
to propagate at the speed of the local mean flow (excluding
the effects of unbalanced motions, if any) which, as noted in
Sect. 2, matches the phase speed of the wave at the critical
latitude. There are kinematic reasons for the parent wave and
proto-vortex to remain together, at least within some maxi-
mum distance as determined by the dimensions of the trans-
lating gyre. But they do not necessarily walk in lock step.
The marsupial paradigm evidently allows some “slop” in the
exact position of the vortex relative to the wave trough, i.e.,
slightly different propagation speeds which (as in Debby and
other cases) are measurably different. Key to the success

Atmos. Chem. Phys., 9, 5587–5646, 2009 www.atmos-chem-phys.net/9/5587/2009/
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(∼ 0.8 km)
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Fig. 21. Velocity potential of divergent flow, as seen in ERA-40 data, at (a, c) 925 hPa and (b, d) 200 hPa leading up to the genesis time of
Hurricane Debby, at (a, b) 30 h before genesis and (c, d) genesis.

troposphere flow is well-represented on the synoptic scale
(a compliment that excludes the tropical tropopause layer or
TTL, and the lower stratosphere, due to insufficient cloud
coverage or water vapor content, and lower troposphere in
regions where thick clouds obscure). To the extent that both
lower and upper troposphere horizontal winds are captured
faithfully by the analyses on the synoptic scale, it is possi-
ble to identify TD-like conditions in the parent wave from
the vertical structure of wind anomalies: specifically, a “first
baroclinic mode” structure or stacked arrangement of LT cy-
clone and UT anticyclone.
Such features – as one might expect us to say – are best

revealed in a frame of reference translating with the parent
wave. But in the case of Debby and more generally, there
is no need for the optimum translation speeds to be iden-
tical throughout the depth of the troposphere. One reason
(noted in Sect. 3 and quantified in Table 1) is that the phase
speed of the parent wave may vary with height, from lower
to mid-troposphere. Another (noted here) is that the proto-
vortex may translate slowly with respect to its parent wave
while its deep convective signature extends to the upper tro-
posphere28. The definition of “properly co-moving frame”
therefore depends precisely on what the “co” refers to. In-
28Effects of the diabatic proto-vortex on the upper troposphere

may be separated into a near-field response with anticyclonic out-
flow aloft (relevant to TC genesis within) and a far-field response
communicated by secondary Rossby waves (relevant to adjacent
troughs and TC genesis therein).

deed, it is likely that a trapped LT disturbance propagates at
a slightly different speed than a diabatically activated LT-UT
dipole. There are multiple reasons, the simplest being that
gross moist stability is reduced by the latent heating associ-
ated with deep moist convective precipitation, causing wave
phase speed of moister waves to be slower than that of drier
waves. In the language of tidal theory it could be said that
the equivalent depth of the proto-vortex and its induced flow
is smaller than that of the original parent wave, which sees a
larger area and more dilute distribution of precipitation than
the proto-vortex itself and its upper tropospheric signature.
We therefore expect a diabatic Rossby wave and diabatic
Rossby vortex to propagate at slightly different speeds, the
speed of the wave depending, among other things, on the de-
gree of convective heating seen by the wave, via the gross
moist stability. Also possible is that the two entities respond
differently to vertical shear. An isolated vortex is expected
to propagate at the speed of the local mean flow (excluding
the effects of unbalanced motions, if any) which, as noted in
Sect. 2, matches the phase speed of the wave at the critical
latitude. There are kinematic reasons for the parent wave and
proto-vortex to remain together, at least within some maxi-
mum distance as determined by the dimensions of the trans-
lating gyre. But they do not necessarily walk in lock step.
The marsupial paradigm evidently allows some “slop” in the
exact position of the vortex relative to the wave trough, i.e.,
slightly different propagation speeds which (as in Debby and
other cases) are measurably different. Key to the success

Atmos. Chem. Phys., 9, 5587–5646, 2009 www.atmos-chem-phys.net/9/5587/2009/

∼ 200 km



Asymptotic scaling regime

centreline

Lsyn

Lmes

X(t , z)

z

x

y

j

i

k

hsc

tsyn =
hsc/uref

ε2
; Lsyn =

hsc

ε2
; |vq| = O (1)

︸ ︷︷ ︸
farfield: classical QG theory

; Lmes =
hsc

ε3/2
; |vq| = O

(
1

ε1/2

)

︸ ︷︷ ︸
core: gradient wind scaling

|vq|L = O
(
ε−2
)

; |vq|/fL = O (ε) |vq|L = O
(
ε−2
)

; |vq|/fL = O (1)



Result of matched asymptotic expansion analysis:

3D Theory for

vortex motion, vortex core dynamics∗,

and the role of subscale moist processes∗

∗ Includes strong vortex tilt

∗ Modelled by prescribed heating patterns here



∗ Frank & Ritchie, Mon. Wea. Rev., 127, 2044–2061 (1999)

The adiabatic lifting mechanism∗

Figure 4.3: Adiabatic lifting mechanism: - plan view of asymmetric potential
temperature patterns after the vortex has been tilted downshear in response
to an imposed westerly environmental shear. The environmental flow is 4 m/s
near the surface and zero at the upper boundary, - bold circle: relative motion
through the anomaly (Jones 1994, Fig. 4 c)

Figure 4.4: Horizontal cross-sections showing wavenumber-one vertical velocity
(a) and potential temperature fields (b) after 30 min simulation; (c), (d) show
the same after 6 h simulation (taken from Jones (1994), Fig. 3)

66

Figure 4.3: Adiabatic lifting mechanism: - plan view of asymmetric potential
temperature patterns after the vortex has been tilted downshear in response
to an imposed westerly environmental shear. The environmental flow is 4 m/s
near the surface and zero at the upper boundary, - bold circle: relative motion
through the anomaly (Jones 1994, Fig. 4 c)

Figure 4.4: Horizontal cross-sections showing wavenumber-one vertical velocity
(a) and potential temperature fields (b) after 30 min simulation; (c), (d) show
the same after 6 h simulation (taken from Jones (1994), Fig. 3)

66



The adiabatic lifting mechanism
( 0th & 1st circumferential Fourier modes: w = w0 + w11 cos θ + w12 sin θ + ... )

gradient wind balance (0th) and hydrostatics (1st) in the tilted vortex

1

ρ

∂p

∂r
=
u2
θ

r
+ f uθ , Θ1k = −1

ρ

∂p

∂r

∂

∂z

(
er · X̂

)
1k

potential temperature transport (1st)

−(−1)k
uθ
r

Θ1k∗ + w1k
dΘ

dz
= QΘ,1k (k∗ = 3− k)

1st-mode phase relation: vertical velocity – diabatic sources & vortex tilt

w1k =
1

dΘ/dz

[
QΘ,1k + (−1)k

(
er ·

∂X̂

∂z

)

1k∗

uθ
r

(
u2
θ

r
+ f uθ

)]



Spin-up by asynchronous heating

∂uθ,0
∂τ

+ w0
∂uθ,0
∂z

+ ur,00

(
∂uθ
∂r

+
uθ
r

+ f

)

︸ ︷︷ ︸
standard axisymmetric balance

= −ur,∗
(uθ
r

+ f
)

ur,∗ =

〈
w
∂

∂z

(
er · X̂

)〉

θ

er · X̂ = X̂ cos θ + Ŷ sin θ

w1k =
1

dΘ/dz

[
QΘ,1k +

∂

∂z

(
er · X̂

⊥) uθ
r

(
u2
θ

r
+ f uθ

)]



Spin-up by asynchronous heating

∂uθ,0
∂τ

+ w0
∂uθ,0
∂z

+ ur,00

(
∂uθ
∂r

+
uθ
r

+ f

)

︸ ︷︷ ︸
standard axisymmetric balance

= −ur,∗
(uθ
r

+ f
)

ur,∗ =

〈
w
∂

∂z

(
er · X̂

)〉

θ

=
1

dΘ/dz

(
QΘ,11

∂X̂

∂z
+ QΘ,12

∂Ŷ

∂z

)
!!

er · X̂ = X̂ cos θ + Ŷ sin θ

w1k =
1

dΘ/dz

[
QΘ,1k +

∂

∂z

(
er · X̂

⊥) uθ
r

(
u2
θ

r
+ f uθ

)]



Vortex theory

Päschke, Marschalik, Owinoh, K., JFM, 701, 137–170 (2012)

Achieved:

Large displacement, nonlinear theory

for core dynamics and motion of

concentrated atmospheric vortices

with

simple spin-up criterion w.r.t. asymmetric heating

Todo: ⇒ CRC 1114

• corroboration against 3D simulations

• realistic QΘ via moist-air thermodynamics

• boundary layer analysis

• large vortex Rossby number theory for full-fledged hurricanes



Asymptotic modelling framework

Motion and structure of atmospheric vortices

Sound-proof flow models

Clouds and waves



Atmospheric Flow Regimes

R.K., Ann. Rev. Fluid Mech, 42, 249–274 (2010)
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Scale-Dependent Models

R.K., Ann. Rev. Fluid Mech., 42, 2010

Classical length scales and dimensionless numbers

Lmeso = ε−1 hsc

LRo = ε−2 hsc

LOb = ε−5/2hsc

Lp = ε−3 hsc

Frint ∼ ε

Rohsc ∼ ε−1

RoLRo
∼ ε

Ma ∼ ε3/2



Sound-Proof Models

† e.g. Lipps & Hemler, JAS, 29, 2192–2210 (1982) ∗ Durran, JAS, 46, 1453–1461 (1988)

Compressible & sound-proof flow equations

ρt +∇ · (ρv) = 0

(ρu)t +∇ · (ρv ◦ u) + P∇‖π = 0

(ρw)t +∇ · (ρvw) + Pπz = −ρg

Pt +∇ · (Pv) = 0

drop term for:

anelastic† (approx.)

pseudo-incompressible∗

hydrostatic-primitive

P = p
1
γ = ρθ , π = p/ΓP , Γ = cp/R , v = u + wk (u ·k ≡ 0)

Parameter range & length and time scales of asymptotic validity ?
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From here on: ε is the Mach number



Design Regime (10 km / 20 min )

Characteristic (inverse) time scales

dimensional dimensionless

advection :
uref

hsc

1

internal waves : N =

√
g

θ

dθ

dz

√
ghsc

uref

√
hsc

θ

dθ

dz
=

1

ε

√
hsc

θ

dθ

dz

sound :

√
pref/ρref
hsc

=

√
ghsc

hsc

√
ghsc

uref

=
1

ε

Ogura & Phillips’ regime∗ with two time scales

θ = 1 + ε2θ̂(z) + . . . ⇒ hsc

θ

dθ

dz
= O(ε2) ⇒ ∆θ

∣∣hsc
z=0
< 1 K



Design Regime (10 km / 20 min )

∗ Ogura & Phillips, JAS, 19, 173–179 (1962)

Characteristic (inverse) time scales

dimensional dimensionless

advection :
uref

hsc

1

internal waves : N =

√
g

θ

dθ

dz

√
ghsc

uref

√
hsc

θ

dθ

dz
=

1

ε

√
hsc

θ

dθ̂
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sound :

√
pref/ρref
hsc

=

√
ghsc

hsc

√
ghsc

uref

=
1

ε

Ogura & Phillips’ regime∗ with two time scales

θ = 1 + ε2θ̂(z) + . . . ⇒ hsc

θ

dθ

dz
= O(ε2) ⇒ ∆θ

∣∣hsc
z=0
< 1 K



Design Regime (10 km / 20 min )

∗ Ogura & Phillips, JAS, 19, 173–179 (1962)
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dimensional dimensionless

advection :
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hsc
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internal waves : N =

√
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√
hsc

θ

dθ

dz
=

1

ε

√
hsc

θ

dθ̂

dz

sound :

√
pref/ρref
hsc

=

√
ghsc

hsc

√
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ε

Ogura & Phillips’ regime∗ with two time scales

θ = 1 + ε2θ̂(z) + . . . ⇒ hsc

θ

dθ

dz
= O(ε2) ⇒ ∆θ

∣∣hsc
z=0
< 1 K



Design Regime (10 km / 20 min )

Characteristic (inverse) time scales

dimensional dimensionless

advection :
uref

hsc

1

internal waves : N =

√
g

θ

dθ

dz

√
ghsc

uref

√
hsc

θ

dθ

dz
=

1

εν

√
hsc

θ

dθ̂

dz

sound :

√
pref/ρref
hsc

=

√
ghsc

hsc

√
ghsc

uref

=
1

ε

Realistic regime with three time scales

θ = 1 + εµθ̂(z) + . . . ⇒ hsc

θ

dθ

dz
= O(εµ) (ν = 1− µ/2)



Design Regime (10 km / 20 min )

θ̃τ +
1

εν
w̃
dθ̂

dz
= −ṽ ·∇θ̃

ṽτ +
1

εν
θ̃

θ
k +

1

ε
θ∇π̃ = −ṽ ·∇ṽ − ε1−ν θ̃∇π̃

π̃τ +
1

ε

(
γΓπ∇ · ṽ + w̃

dπ

dz

)
= −ṽ ·∇π̃ − γΓπ̃∇ · ṽ

.

Key question:

Time scale of validity of sound-proof models
for internal waves ?



Design Regime (10 km / 20 min )

Fast linear compressible / pseudo-incompressible modes

θ̃ϑ + w̃
dθ

dz
= 0

ṽϑ +
θ̃

θ
k + θ∇π∗ = 0

εµ π∗ϑ +

(
γΓπ∇ · ṽ + w̃

dπ

dz

)
= 0

Vertical mode expansion (separation of variables)



θ̃
ũ
w̃
π∗


 (ϑ,x, z) =




Θ∗

U ∗

W ∗

Π∗


(z) exp (i [ωϑ− λ ·x])



Design Regime (10 km / 20 min )

† rigorous proof with D. Bresch K., Achatz, Bresch, Knio, Smolarkiewicz, JAS, 67, 3226–3237 (2010)

− d

dz

(
1

1− εµω2/λ2

c2

1

θ P

dW ∗

dz

)
+
λ2

θ P
W ∗ =

1

ω2

λ2N 2

θ P
W ∗

Internal wave modes
(
ω2/λ2

c2
= O(1)

)

• pseudo-incompressible modes/EVals = compressible modes/EVals + O(εµ) †

• phase errors remain small over advection time scales for µ >
2

3

The anelastic and pseudo-incompressible models remain relevant for stratifications

1

θ

dθ

dz
< O(ε2/3) ⇒ ∆θ|hsc0

<∼ 40 K

not merely up to O(ε2) as in Ogura-Phillips (1962)



Potential temperature contours

Breaking wave-test for anelastic models (Smolarkiewicz & Margolin (1997))
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Wave breaking regime

Achatz, Senf, K., JFM, 663, 120?-147, 2010

Large amplitude WKB theory:

• short wavelength wave packets

• modulated over ∼ 10 km distances

• θ–stratification of order O(1)

• scalings allow for overturning of θ-contours

Expansion scheme:

U(t,x, z; ε) = U(z) + U
(0)
1 exp

(
i
ϕε

ε

)
+ ε

2∑

n=0

U (1)
n exp

(
in
ϕε

ε

)

ϕε = ϕ(0) + εϕ(1) + o(ε)

(
U (i)
n , ϕ

(i)
)
≡
(
U (i)
n , ϕ

(i)
)

(t,x, z)



Regimes ... Summary

2πH/L

1 dθ
θ dz

1

Pseudo-incompressible

Anelastic
ε2/3

ε2

Ogura & Phillips (1962)

ε

wave
breaking
regime

WKB - Extension to Pot-Temp Scale Height

The pseudo-incompressible model wins marginally



Asymptotic modelling framework

Motion and structure of atmospheric vortices

Sound-proof flow models

Clouds and waves



Bulk microphysics closure

K., Majda, TCFD, 20, 525–552, (2006); K., Ann. Rev. Fluid Mech., 42 (2010); Hittmeir, K., TCFD, in press (2017)

Mass, momentum, energy equations

ρt + ∇|| · (ρu) + (ρw)z = 0

ut + u ·∇||u + wuz + ε (Ω× v)|| +
1

ε4 ρ
∇||p = Du

wt + u ·∇||w + wwz + ε (Ω× v)⊥ +
1

ε4 ρ
pz = Dw −

1

ε4

θt + u ·∇||θ + wθz = Dθ + Sθ

θ =
p1/γ

ρ
,

γ − 1

γ
= εΓ∗

Sθ = Ŝθ + Sqθ , Sqθ = ε2 θ

p
Γ∗L∗ (Cd − Cev) .



Bulk microphysics closure (Kessler, ...)

Moisture balances

qv,t + u ·∇||qv + wqv,z = (Cev − Cd) + Dqv

qc,t + u ·∇||qc + wqc,z = (Cd − Ccr − Cac) + Dqc

qr,t + u ·∇||qr + wqr,z + 1
ρ(ρqrVT)z = (Cac + Ccr − Cev) + Dqr

Cev = C∗ev

p

ρ
(qvs − qv) q1/2+δ∗

r H>(qr)

Cd =
C∗d
εn

(qv − qvs) (qc + qc
∗
n) H∗(qc, qv, qvs) (n� 1)

Ccr =
C∗cr

ε
qcq

(1+α∗)
r

Cac = C∗ac max (0, qc − q∗c )



Bulk microphysics closure

Saturation vapor mixing ratio∗

qvs(θ, p) = q∗vs exp

(
A∗

ε

T (θ, p)− 1

T (θ, p)− εT ∗1

)
.

Temperature
T (θ, p) = θ pεΓ

∗
.

∗ K. Emanuel, Atmospheric Convection, Oxford University Press, (1994),

slightly modified and scaled in terms of ε



Clouds and internal waves

∗Klein & Majda, TCFD, 20, 525–552, (2006)

Columnar clouds / internal wave time scales∗

general expansion scheme

U(x, z, t; ε) =
∑

i

εiU(i) (η,x, z, τ )

horizontal velocity scaling

u(0)(η,x, z, τ ) ≡ u(x, z, τ )

η = x/ε

τ = t/ε

x =
x′

hsc

, t =
t′uref

hsc

hsc

εhsc



Clouds and internal waves

Convective scale

uτ +∇xπ = 0

wτ + πz = θ

θτ + wN 2 =
ΓL∗∗

p0
C

ρ0∇x ·u + (ρ0w)z = 0

Cloud column scale
(
∂τ + u(0) ·∇η

)
w̃ = θ̃

(
∂τ + u(0) ·∇η

)
θ + w̃N 2 =

ΓL∗∗

p0
C̃ .

Moisture coupling

C = H(qc) Cd + [1−H(qc)] Cev

H(qc) ≡ 0

H(qc) ≡ 1



Clouds and internal waves

After averaging over the small scales ...



Clouds and internal waves

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Closed coupled micro-macro dynamics on convective scales
(with mean advection)

uτ +∇xπ = 0

wτ + πz = θ

θτ + (1− σ)wN 2 = w′N 2 − C

ρ0∇x ·u + (ρ0w)z = 0

w′τ = θ′

θ′τ + σw′N 2 = σ(1− σ)wN 2 + σC .

where

Dτ = ∂τ + u∞ ·∇x and σ(x, z), C(x, z), N(z) are prescribed



Clouds and internal waves

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Closed coupled micro-macro dynamics on convective scales
(with mean advection)

Dτ u +∇xπ = 0

Dτ w + πz = θ

Dτ θ + (1− σ)wN 2 = w′N 2 − C

ρ0∇x ·u + (ρ0w)z = 0

Dτ w
′ = θ′

Dτ θ
′ + σw′N 2 = σ(1− σ)wN 2 + σC .

where

Dτ = ∂τ + u∞ ·∇x and σ(x, z), C(x, z), N(z) are prescribed



Clouds and internal waves

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Clouds may narrow the spectrum of lee waves

B
ackground W

ind

Topography

Stratified Atmosphere

Topography

without cloud

kup =
N

u∞

with cloud

kup =
N

u∞
and klow =

√
σ
N

u∞



Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Lee waves over sin(x) + sin(2x)–topography



Cloud meets lee wave

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Vertical velocity at t = 5.0, U=0.5
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Cloud meets lee wave

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Vertical velocity at t = 10.0, U=0.5
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Cloud meets lee wave

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Vertical velocity at t = 15.0, U=0.5
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Cloud meets lee wave

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Vertical velocity at t = 17.5, U=0.5
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Cloud meets lee wave

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Vertical velocity at t = 20.0, U=0.5
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Cloud meets lee wave

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Vertical velocity at t = 22.5, U=0.5
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Cloud meets lee wave

Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

Vertical velocity at t = 5.0, U=0.5
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Ruprecht et al., J. Atmos. Sci., 67, 2504–2519, (2010)

From cumuli zu planetary waves:

Asymptotic multiscale analysis of atmospheric motions

Conclusions

Asymptotic modelling framework

Motion and structure of atmospheric vortices

Sound-proof flow models

Clouds and waves
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