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2 Institut für Theoretische Physik, Technische Universität Berlin,
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1 Introduction

Excitability is a well established phenomenon with applications in various
fields of science. Systems that, looked at superficially, have little in common,
like neurons [28], chemical reactions [4], wildfires [3], lasers [50], and many
others share this property. The variety and diversity of the many examples
demonstrates the importance of the concept of excitability.

Fluctuations are ubiquitous in nature. In excitable systems they are con-
sidered to be of uttermost importance since they are able to ”activate” these
systems. Especially if the magnitude of the fluctuations becomes compara-
ble to activation barrier of the system their influence will be determinant.
This is true for example in neurons where fluctuating input and fluctuating
membrane conductances are commonly agreed upon to functionally impact
on their dynamics.

We investigate the influence of fluctuations on excitable dynamics experi-
mentally and theoretically. This study is organized as follows. In section 2 we
give the general concept of excitability. The most important model for our
work, the FitzHugh-Nagumo model, is introduced and its key properties are
given. In section 3 we treat the analytical techniques that we used. Section
4 centers around single individual elements. An experiment on a chemical
excitable medium, the light-sensitive Belousov-Zhabotinsky reaction is in-
troduced. We show the setup and explain the experimental implementation.
The results from an experiment with fluctuating excitability parameter are
given. Results from investigations of coupled systems are given in section 5.
Globally as well as locally coupled systems are discussed.

2 Excitability: What is it and how can we model it?

2.1 General Concept

Consider a dynamical system with a stable fixed point. Since the fixed point
is stable a small perturbation (or stimulus) from the fixed point will decay. If
a perturbation exceeding a certain threshold is applied, an excitable system



responds not with a decay of the perturbation but with a large excursion in
phase space until finally re-approaching the stable fixed point. The form and
duration of the excitation is scarcely affected by the exact form of the pertur-
bation. Until the system is close to the fixed point again, a new perturbation
does hardly affect the system. The corresponding time is called the refrac-
tory time. A graphical representation of the scheme is given in Fig. 1. In a

Response of the system

a)

b)

c)

d)

External perturbation

Fig. 1. Response (right) of an excitable system to different stimuli (left). The
system has a stable fixed point. Panel a): A sub-threshold perturbation generates
a small system response. Panel b): A super-threshold perturbation initiates an
excitation loop. Panel c): The system can not be excited by a super-threshold
perturbation applied during the refractory state. Panel d): Two successive super-
threshold perturbations generate excitations only if both are applied to the system
in the rest state.

neuron, for example, the stable fixed point could represent a steady potential
drop over the cell membrane. A super-threshold perturbation (for example
via input from other neurons) leads to a large electric response of the neuron,
a so-called action potential or spike. After some time of insensitivity to new
signals the potential drop returns to its steady value.

The precise time from which on a new perturbation can excite the sys-
tem depends on the stimulus. One therefore usually talks about the relative
refractory time.



An excitable system is sometimes modeled to posses three distinct states:
The state in which the system is in the vicinity of the fixed point is called the
rest state, the state just after excitation is called the firing state, and the state
just before the system is close to the fixed point again is called the refractory
state. The firing and the refractory state differ by a high (firing) and a low
(refractory) value of the activation variable which has a major influence on
pattern formation in coupled excitable systems (For further details see project
A4.).

2.2 A Simple Model - The FitzHugh–Nagumo System

In this part we introduce the FitzHugh–Nagumo (FHN) system. Originally
derived from the Hodgkin-Huxley model for the giant nerve fiber of a squid, it
has extended its application beyond neuron dynamics to all kinds of excitable
systems and has by now become an archetype model for systems exhibiting
excitability. [1,14,35]. First, we neglect coupling and fluctuations and use the
following form:

dx

dt
=

1

ǫ

(
x− αx3 − v

)
(1)

dy

dt
= γx− y + b.

Here, the dot represents a derivative with respect to time. ǫ, a, and b are real,
positive parameters. ǫ is chosen small in order to guarantee a clear timescale
separation between the the fast x-variable (activator) and the slow y-variable
(inhibitor). The variables a and b determine the position of the so-called
nullclines, the two functions y(x) that are determined by setting ẋ = 0 and
ẏ = 0. Depending on the parameters the FHN system has different dynamical
regimes. Fig. 2 shows phase space portraits together with the nullclines and
timeseries for three qualitatively different cases.

In the upper row we see the excitable regime. The solid lines represent
the nullclines of the system, the dashed line a typical trajectory. Each dash
represents a fixed time interval, i.e. where the system moves faster through
phase space the dashes become longer. The system possesses one fixed point
(intersection of the nullclines) which is stable. Small perturbations decay. A
super-threshold perturbation leads to a large response (spike) after which the
system returns to the fixed point. After that a new perturbation is possible.

In the middle row the oscillatory regime is illustrated. The systems ex-
hibits continuous oscillations. Perturbations have at this stage little influence
on the dynamics.

In the lower row we find the bistable parameter regime. The system pos-
sesses two stable fixed points. A suitable perturbation from one of them
leads the system into the basin of attraction of the other one. The basin of
attraction of a fixed point is that part of phase space from which systems
without further perturbation evolve towards this point. Once the system is
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Fig. 2. Depending on the parameters the FHN can either exhibit excitable (upper
row), oscillatory (middle row) or bistable (lower row) kinetics. ǫ = 0.05.

in the vicinity of this second fixed point a new perturbation leads to a new
excursion which ends at the initial point.

The transition from the oscillatory to the excitable parameter regime can,
for example, be achieved via an increase of the parameter b. The system then
undergoes a Hopf bifurcation and the sole fixed point looses stability. The



location of the Hopf bifurcation in parameter space also depends on the pa-
rameter ǫ, which governs the separation of the timescales. An illustration for
different ǫ-values is shown in Fig. 3. With increasing ǫ the separation of the
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Fig. 3. Trajectories of the FitzHugh-Nagumo model for sub- and super-threshold
perturbations (red and blue curves respectively). Each point plotted at constant
time intervals ti = ti−1 + ∆t with ∆t = 0.005. Kinetic parameters b = 1.4, α = 1/3
and γ = 2. Left: high time scale separation for ǫ = 0.01. Right: low time scale
separation for ǫ = 0.1.

timescales of the fast activator and the slow inhibitor weakens. In Fig. 3 we
show typical trajectories for sub- and super-threshold perturbations (respec-
tively red and blue curves) for two different values of the parameter ǫ. In the
left panel (high time scale separation) a small perturbation (δu, δv) to the
stable point (u0, v0) triggers an excitation loop. It consists in a quick increase
of the activator until the right branch of the u-nullcline is reached, followed
by a slow inhibitor production: the excited state. After this, the activator u
decreases quickly to the left branch of the u-nullcline, and again moves slowly
along it towards the fixed point (u0, v0): The system is in the refractory state.
On the right panel we show a case with low time scale separation between
the two system variables. The same perturbation (δu, δv) now fails to excite
the system. The excitation loop in this case does not follow the u-nullcline.
As a consequence, the excited and refractory states are not clearly defined
anymore and the system responds only to strong perturbations.

2.3 The Oregonator model for the light-sensitive

Belousov-Zhabotinsky reaction

The model that we take into account has been firstly proposed by H. J. Krug
and coworkers in 1990 [29], to properly account for the photochemically-
induced production of inhibitor bromide in the Belousov-Zhabotinsky reac-
tion (BZ) catalyzed with the ruthenium complex Ru(bpy)2+3 [30, 31]. The



Oregonator model was proposed in 1974 [16] on the basis Tyson-Fife reduc-
tion of the more complicated Field-Köros-Noyes mechanism [15] for the BZ
reaction, the following modified model has been derived:

∂u

∂t
=

1

ǫ

[
u− u2 − w·(u− q)

]

∂v

∂t
= u− v (2)

∂w

∂t
=

1

ǫ′
[fv − w·(u+ q) + φ] .

The variable u describes the local concentration of bromous acid HBrO2, the
variable v the oxidized form of the catalyst Ru(bpy)3+3 , and w describes the
bromide concentration. Here the parameter φ represents the light intensity,
and the photochemically-induced production of bromide is assumed to be
linearly dependent on it, d[Br−]/dt∝φ [31]. ǫ, ǫ′ and q are scaling parameters,
and f is a stoichiometric constant [45]. This model can be reduced to the two-
component one by adiabatic elimination of the fast variable w (in the limit
ǫ′ << ǫ) [45]. In this case one gets the following two-component version of
the Oregonator kinetics

du

dt
=

1

ǫ

[
u− u2 − (fv + φ)· u− q

u+ q

]

dv

dt
= u− v. (3)

From the recipe concentrations we obtain ǫ = 0.0766 and q = 0.002, f is
chosen equal to 1.4.

When ǫ, f , and q are kept fixed, φ controls the kinetics in the same way as
b does in the FitzHugh-Nagumo model: For small φ the kinetics is oscillatory
and for φ > φHB = 4.43 ·10−3, it becomes excitable via a super-critical Hopf
bifurcation.

3 Stochastic Methods

Excitable systems as considered here are many particle systems far from equi-
librium. Hence variables as voltage drop (neurons), light intensity (lasers) or
densities (chemical reactions) are always subject to noise and fluctuations.
Their sources might be of quite different origin, first the thermal motion
of the molecules, the discreteness of chemical events and the quantum un-
certainness create some unavoidable internal fluctuations. But in excitable
systems, more importantly, the crucial role is played by external sources of
fluctuations which act always in nonequilibrium and are not counterbalanced
by dissipative forces. Hence their intensity and correlation times and lengths
can be considered as independent variables and, subsequently, as new control



parameters of the nonlinear dynamics. Normally they can be controlled from
outside as, via a random light illumination (chemical reactions) [26] or the
pump light (lasers) [47].

The inclusion of fluctuations in the description of nonlinear systems is
done by two approaches [48]. On the one hand side one adds fluctuating
sources in the nonlinear dynamics, transforming thus the differential equa-
tions into stochastic differential equations. The second way is the considera-
tion of probability densities for the considered variables and the formulation
of their evolution laws. Both concepts are introduced shortly in the next two
subsections.

We underline that the usage of stochastic methods in many particle
physics was initiated by Albert Einstein in 1905 working on heavy parti-
cles immersed in liquids and which are thus permanently agitated by the
molecules of the surrounding liquid. Whereas Einstein formulated an evolu-
tion law for the probability P (r, t) to find the particle in a certain position
r at time t Paul Langevin formulated a stochastic equation of motion, i.e. a
stochastic differential equation for the time dependent position r(t) itself.

3.1 Langevin equation

Let x(t) be the temporal variable of the excitable system which is also subject
to external noise. A corresponding differential equation for the time evolution
of x(t) is called a Langevin-equation and includes random parts. We spec-
ify to the situation where randomness is added linearly to modify the time
derivative of x(t), i.e.

ẋ(t) = f(x) + g(x)ξ(t) . (4)

Therein the function f(x) is called the deterministic part and stands for the
dynamics as introduced previously when considering the FitzHugh Nagumo
system or the Oregonator. The new term describes the influence of the ran-
domness or noise and ξ(t) is a stochastic process which requires further def-
inition. It enters linearly and is weighted by the function g(x). Hence, the
increment dx during dt at time t gets a second, stochastic contribution being
independent of the deterministic one. In case g(x) is a constant the noise
acts additively, otherwise it is called multiplicative (parametric) noise and
the influence of the noise depends on the actual state x(t) of the system.

The solution of eq. 4 depends on the sample of ξ(t). Formally one can
interprete the latter as a time dependent parameter and the variable x(t)
is found by integration over time. We note that integrals over ξ(t) need a
stochastic definition and are defined via the existence of the moments [48].
For this purpose the moments of ξ(t) have to be given.

In practical applications one uses Gaussian sources ξ(t) or the so called
Markovian random telegraph process. For both the formulation of the mean
and the correlation function is sufficient to define the stochastic process. Later



on we will define the value support of ξ(t) (Gaussian or dichotomic) and will
give the mean and the correlation function, i.e.

〈ξ(t)〉 = 0 (5)

and
〈ξ(t)ξ(t + τ)〉 = K(τ). (6)

Here we reduced to stationary noise sources. Without loss of generality the
mean is set to zero. For the later on considered types of noise this formula-
tion is sufficient to obtain general answers for ensembles and their averages
of the stochastic excitable system. Thus we can formulate evolution laws for
the probability densities and the other moments. We note that the gener-
alization to cases with more than one noise sources is straightforward and
crosscorrelations between the noise source have to be defined.

3.2 Stochastic processes: white and colored noises

Next we consider several noise sources. They are Gaussian sources if their
support of values is due to a Gaussian distribution. Contrary the dichotomic
telegraph process assumes two values , i.e. ξ1 = ∆ and ξ2 = ∆′. We will
always assume ∆′ = −∆.

The second classification of the noise classifies its temporal correlations.
In case of white noise the noise is uncorrelated in time which corresponds
to K(τ) = 2Dδ(τ) being Dirac’s δ-function. Here D scales the intensity of
the noise. The power-spectrum of the noise is the Fourier transform of the
correlation function. In case of the δ-function it is a constant and independent
of the frequency what was the reason to call it white noise. All other noise
sources with frequency-dependent power spectrum are thus colored.

The integral over the Gaussian white noise gives the Wiener process which
stands for the trajectory of a Brownian particle. The integral during dt

dW (t) =

∫ t+dt

t

dsξ(s) (7)

is the increment in the position of a Brownian particle in this interval. It
yields the basis of mathematical proofs. It is Gaussian distributed, the mean
vanishes and increments at different times are independent. The variance
increases linearly with dt and scales with the intensity 2D.

〈dW (t)2〉 = 2Ddt . (8)

In case of a Brownian particle D is the spatial diffusion coefficient.
The study of a Brownian particle suspended in a fluid lead also to the

introduction of the exponentially correlated Ornstein-Uhlenbeck process [46],
the only Markovian Gaussian non-white stochastic process [19,22]. We present



here the Langevin approach to this problem, hence we analyze the forces that
act on a single Brownian particle. We suppose the particle having a mass m
equal to unity, and we assume the force due to the hits with thermal ac-
tivated molecules of the fluid to be a stochastic variable. Moreover, due to
the viscosity of the fluid, a friction force proportional to the velocity of the
particle has to be considered. All this yields the following equation

dv(t)

dt
= −γv(t) + F (t), (9)

where γ is the friction constant. The random force F (t) is supposed to be
independent of the velocity v(t) of the Brownian particle and to have zero
mean. Moreover, the random force is supposed to be extremely rapidly vary-
ing compared to v(t). Hence we assume that F (t) = ξ and ξ is Gaussian
white noise.

We restrict to one spatial dimension, hence integrating with respect to
the time we get:

v(t) = v(0)e−γt + e−γt

∫ t

0

eγsF (s)ds. (10)

We suppose the random force to be Gaussian, and a linear operator does not
change this property. Thus the velocity v(t) is Gaussian as well if the initial
condition v(0) is a random Gaussian variable independent of the random
force. The mean value of the velocity reads

〈v(t)〉 = 〈v(0)〉e−γt + e−γt

∫ t

0

eγs〈F (s)〉ds = 〈v(0)〉e−γt. (11)

For the calculation of the correlation function of the velocity we exploit the
assumption that

〈F (t)F (s)〉 = 2Dδ(t− s). (12)

The correlation function of the velocity, considering ∆t > 0, is given by

〈v(t)v(t +∆t)〉 = e−γ(2t+∆t)〈v(0)2〉

+

∫ t

0

∫ t+∆t

0

eγ(t+s)eγ(s′−t−∆t)〈F (s)F (s′)〉dsds′

= e−γ(2t+∆t)〈v(0)2〉 +
D

γ
(e2γt − 1)e−γ(2t+∆t). (13)

Hence the stationary correlation function, obtained for the limit t→ +∞, is

〈v(t)v(t +∆t)〉 → C(∆t) =
D

γ
e−γ∆t. (14)

The correlation time of the process is given by

τ =
1

C(0)

∫ +∞

0

C(s)ds = γ−1. (15)



Another stochastic process which yields a non-vanishing correlation time
is the dichotomous random telegraph process [20,22]. It can be described by
a phase according to

η±(t) = sign [cos(γ±(t))]·∆, (16)

where the phase increases at each random time ti by an angle π. Thus the pro-
cess has zero mean and variance ∆2. Introducing the Heaviside step function
θ we can write the phase as

γ±(t) = π
∑

i

θ(t− ti), ti = ti−1 + t′. (17)

We assume the random variable t′ to be exponentially distributed, with dis-
tribution

p(t′) =
1

τ
exp

(
− t

′

τ

)
. (18)

With this assumption the process expressed in Eq. 16 has the correlation
function

〈η±(t)η±(s)〉 = ∆2 · exp

(
−|t− s|

τ

)
, (19)

where τ is the correlation time of the process η± [20, 22]. Thus the random
telegraph process, as well as the Ornstein-Uhlenbeck process shown before,
presents an exponentially decaying correlation function.

3.3 The Fokker-Planck equation

In case of Gaussian white noise the probability density obeys a diffusion
equation with a drift. In particular, the probability density is the conditioned
average [48]

p(x, t|x0, t0) = 〈δ(x − x(t))〉 (20)

that the sampled trajectories are started in x0 at time t0. Then starting from
the Chapman-Kolmogorov equation for Markovian processes one finds

∂P (x, t|x0, t0)

∂t
= − ∂

∂x
K1(x.t)P (x, t|x0, t0)+

∂2

∂x2
K2(x, t)P (x, t|x0, t0). (21)

Both the drift term K1(x) and the diffusion coefficient K2(x) are nonlinear
functions of the state variable x. They are defined as the moments of the
conditioned increments per unit time, i.e.

Kn(x, t) = lim
dt→0

〈(x(t + dt) − x(t))n〉
dt

=
1

n!
lim

dt→0

1

dt

∫
dx′(x′)nP (x′, t+dt|x, t)

(22)



with n = 1, 2. These moments can be calculated from the Langevin equation
(4). For additive noise g(x) = 1 it results in

K1(x) = f(x) , K2(x) = D . (23)

For multiplicative noise the determination of these moments requires a more
detailed consideration of the stochastic integral since white noise is too irreg-
ular for Riemann integrals to be applied. Application of Stieltjes integration
yields a dependence of the moments on how the limit to white noise is taken. If
ξ(t) is the limit of the Ornstein-Uhlenbeck -process with τ → 0 (Stratonovich
sense) the coefficients read [48]

K1(x) = f(x) +Dg′(x)g(x), K2(x) = Dg2(x) . (24)

Excitable systems have more than one dynamic variables. Hence the prob-
ability density will depend on these variables, i.e. P (x, y, .., t). In case of
Gaussian white noise the evolution operator remains a diffusion equation
with drift, but in a higher dimensional phase space. We will deal with addi-
tive noise in the FitzHugh-Nagumo model in chapter 4.2.

For colored noise sources the derivation of evolution equations for the
probability densities is more difficult. In a Markovian embedding. i.e. if the
Ornstein-Uhlenbeck process is defined via white noise (cf. chapter 3.2) and
v(t) is part of the phase space one again gets a Fokker-Planck equation for
the density P (x, y, ...v, t). Similarly, one finds in case of the telegraph process
balance equations for P (x, y, ..∆, t) and P (x, y, ..., ∆′, t) which are the densi-
ties of the two possible values of the noise ∆ and ∆′. They yield a drift term
from the deterministic part and a jump part which describes the hopping
between the two noise values.

3.4 Moment dynamics

In this part we will explain a method that we extensively used to describe
stochastic dynamical systems. It is based on the dynamics of the moments
of a distribution. We applied it successfully to a variety of globally coupled
systems. Advantages of the method are simple applicability and quick nu-
merical investigations. Let us consider a globally coupled stochastic system
that is described by the following set of Langevin equations:

ẋi = f(xi, 〈x〉) + g(xi)ξi(t) i = 1..N (25)

Here, 〈x〉 =
∑N

i=1 xi is the mean value of the system. Special focus will be
on systems where the function f has the form

f(xi, x̄) = f̂(xi) +K(〈x〉 − xj) (26)

with coupling constant K. ξi(t) represents Gaussian, white noise determined
by

〈ξi(t)〉 = 0 〈ξi(t1)ξj(t2)〉 = 2Tδi,jδ(t2 − t1) (27)



We interpret Eq. 25 in the Stratonovich sense.
We are especially interested in the mean of the ensemble 〈x〉. We therefore

average over Eq. 25 and make a Taylor’s expansion of the right hand side
around 〈x〉. We obtain:

˙〈x〉 =

∞∑

n=0

µn

n!

[
f (n)(x, 〈x〉)|x=〈x〉 + T [g(1)(x)g(x)](n)|x=〈x〉

]
(28)

the superscript in f (n) denotes the n-th derivative of f with respect to it’s
argument. In equation 28 we have made use of the central moments µn =
〈(x − 〈x〉)n〉. They are also time-dependent. For a closed description of the
ensemble we need their dynamics, too. It is given by:

µ̇n =
∞∑

m=0

n
µn−1+m

m!

[
f (m)(x)|x=〈x〉 + T (g(x)g(1)(x))m|x=〈x〉

]

+

∞∑

m=0

n(n− 1)
µn−2+m

m!
T (g2(x))(m)|x=〈x〉 (29)

Eq. 25 is not the most general form we can treat with the method of
the moment dynamics. Especially models with more than one dynamical
variable, like the FHN system, are important to us. In this case (Let us
call the second variable y) we have to introduce the mixed central moments
µn,m = 〈(x− 〈x〉)n(y − 〈y〉)m〉 (and equivalently for more variables).

If we look closely at Eqs. 28 and 29 we notice that in general they incor-
porate infinite sums. It is only for polynomials f and g that the sums break
off at some final value. Even if we deal with polynomials and the sums break
off we notice that the dynamics of the n-th central moment generally depends
on other, higher moments. The system of equations 29 forms an infinite set of
coupled ordinary differential equations. It is only for linear functions f and
g that the system decouples.

For more complicated functions we need to apply an approximation to
the system of equations 28 and 29. There are two main ways to do this. One
is to neglect the central moments from a certain order on. The other one
is to neglect cumulants from a certain order on, instead. The infinite set of
equations then reduces to a finite one. Most of the approximation methods are
incompatible with a normalizable, nonnegative probability distribution. It is
only the trivial method to neglect all moments or equivalently all cumulants
above zeroth order and therefore neglect all fluctuations and go with the
deterministic description and the Gaussian approximation that avoid this
problem. For a complete description of any other probability distributions
infinitely many cumulants or moments have to be taken into account. The
Gaussian approximation consists of neglecting all cumulants above second
order:

κn = 0 n ≥ 3 (30)



The dynamical description then reduces to the dynamics for the mean and
the variance (for more dynamical variables to the means, the variances and
the covariances).

4 Stochastic excitable elements

4.1 The Langevin approach: phase portraits under fluctuations

When the parameter that controls the excitation threshold of an excitable
element fluctuates, then we end up with a system of coupled equations of
Langevin type. In the case of the FitzHugh-Nagumo system this situation is
modeled by the following Eqs.:

dx

dt
=

1

ǫ

(
x− αx3 − y

)
(31)

dy

dt
= γx− y + b0 + ξ(t).

Due to fluctuations the stable fixed point can be destabilized and the system
is by chance brought out of the rest state. Here ξ(t) is an arbitrary zero mean
stochastic process that describes fluctuations in the excitability parameter
b → bξ(t) = b0 + ξ(t) around a mean value b0. In Fig. 4 we show different
realizations for the FitzHugh-Nagumo Eqs. 31, that permit us to describe its
essential properties.

• Small fluctuations result in sub-threshold perturbations, consequently the
system explores only a small portion of the phase space near the rest
state (x0, y0)b0 . This is shown both in panel A.1) and C.1) of Fig. 4. In
panel A.1) the system simply relaxes to the instantaneous fixed points
(x0, y0)bξ(t). In panel C.1), due to a high excitability, small stable limit
cycles are induced by noise 1. If the intensity of the fluctuations is in-
creased the system can occasionally escape the vicinity of the fixed point
and performs excitation loops, compare panel A.1) with A.2) or C.1) with
C.2).

• For fixed noise intensity, a process, which at low excitability fails to bring
the Eqs. 31 out of the fixed point vicinity, suffices to induce excitation
loops at higher excitability, compare panels A.1), B.1) and C.1).

• The number of states visited by the system during excitations increases
with the noise strength, panels B.1) and B.2) for example. Moreover
fluctuations of high intensity significantly affect the trajectory of the ex-
citation loops, see panel C.2).

1This is because the value b0 is near the Hopf bifurcation value bHB.
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Fig. 4. Stochastic trajectories for the FitzHugh-Nagumo model at low noise inten-
sity σ2 = 0.05 (left column), and high noise intensity σ2 = 0.45 (right column).
Panels A): ǫ = 0.01, b0 = 2. Panels B): ǫ = 0.01, b0 = 1.4. Panels C): ǫ = 0.1,
b0 = 1.4. The parameter γ is kept fixed equal to 2, the parameter α = 1/3.

4.2 The Fokker-Plank approach: numerical solutions

In the previous section the stochastic FitzHugh–Nagumo system has been
treated using the Langevin eqs. 31. Alternatively it can be described by the
Fokker–Planck equation (FPE) (cf. subsec. 3.3). In the case of the FHN sys-
tem an analytic solution of this equation cannot be given. Here we therefore



use a numeric approach. The equation under study reads:

∂
∂tP (x, y, t) = − ∂

∂x
1
ǫ

(
x− x3 − y

)
P (x, y, t) − ∂

∂y

(
γx− y + b

)
P (x, y, t)

+Tx
∂2

∂x2 P (x, y, t) + Ty
∂2

∂y2P (x, y, t). (32)

where we have applied uncorrelated additive Gaussian white noise to the
activator- and to the inhibitor dynamics. Their intensities are given by Tx and
Ty, respectively. In this section we are interested in the stationary solution
of eq. 32

∂

∂t
P0(x, y) = 0 (33)

Eq. 32 is a linear FPE. The corresponding system is ergodic and we are
faced with a unique, globally attracting solution. Fig. 5 shows this solution
for varying intensities of the inhibitor noise Ty (Tx = 0). We find qualitative
changes in the combination of the extrema and saddle points of the stationary
probability density. For low noise we see a single maximum centered near the
fixed point of the deterministic system (cf. the intersection of the nullclines
in fig. 4). For increasing noise the probability density is mainly located close
to two elongated maxima. These maxima represent the outer branches of the
cubic nullcline. The probability distribution looks crater-like. Systems with
the corresponding parameters spend most of their time along the phase space
trajectory of a deterministic excited system. Once they enter the vicinity of
the fixed point they are quickly reexcited. The corresponding timeseries are
characterized by a large coherence. For further increasing noise the minimum
of the probability density along with one saddle point vanishes. The corre-
sponding system is not so closely bound to the deterministic trajectory any
more.

We want to mention that the probability density further off the maxima
becomes extremely small for small noise intensities so that numerical errors
will eventually dominate the obtained results. In particular we cannot exclude
a second maximum for the low noise case in Fig. 5. However we have also
performed simulations with varying ǫ (separation of the timescales). For high
ǫ (small separation) we find states with clearly one maximum only.

We thus find, depending on the noise intensity and the separation of the
timescale three qualitatively different regimes. In these regimes different com-
binations of maxima, minima, and saddle points in the stationary probability
distribution can be observed.

We have also performed simulations with noise in the activator variable.
The obtained results differ only quantitatively from the ones presented for
inhibitor noise.

4.3 The phenomenon of coherence resonance

First encountered in oscillatory systems as “stochastic resonance without

periodic forcing” [17], and later as “internal stochastic resonance” [23], it is



Fig. 5. Stationary probability distribution of the FitzHugh–Nagumo System. In-
hibitor noise intensity is varied (given above the panels). Other parameters: ǫ = 0.1,
γ = 2., b = 1.4.

with the work of A. Pikovsky and J. Kurths on the FitzHugh-Nagumo model
[39] that this phenomenon got its present name coherence resonance (CR) and
that it was associated with excitable systems. In this work the authors showed
that the regularity at which an excitable element fires under white noise
driving, has a non-monotonous resonant dependence on the noise intensity,
and that there exists an optimal noise intensity at which a sequence of noise-
induced excitations is most regular. This phenomenon has been studied since
more than one decade and has been observed in a huge variety of systems
of quite different nature as, for example, anti-CR in excitable systems with
feedback [32], CR in coupled chaotic oscillators [52], internal CR in variable
size patches of a cell membrane [42, 43], system size CR in globally coupled
FitzHugh-Nagumo elements [44], array-enhanced CR in a model for Ca2+



release [12], CR at the onset of a saddle-node bifurcation of limit cycles
[33] and of period-doubling bifurcations [37], and spatial CR in a spatially
extended system near a pattern-forming instability [11] (for a comprehensive
review see [34]).
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Fig. 6. Noise-induced excitations in the stochastic FitzHugh-Nagumo model under
white noise driving. Parameters for all plots: b0 = 1.05, ǫ = 0.01. Left top: σ2 =
0.001. Left center: σ2 = 0.009. Left bottom: σ2 = 0.064. In the right panels are
shown enlargements of the trajectories plotted on the left side. Time scales tp, te

and ta are discussed in the next two pages.

To characterize the level of coherence of noise-induced excitations we an-
alyze the time evolution of the activator concentration u in the FitzHugh-
Nagumo model, see Fig. 6. In this representation the excitation loops shown
previously in Fig. 4 become spikes spaced out by intervals during which the
system performs noisy relaxation oscillations around its stable state. The
phenomenon of coherence resonance manifests itself in the three realizations
of u(t) for different noise intensities given in Fig. 6. For very low noise in-
tensity (upper panel) an excitation is a rare event which happens at random
times. In the panel at the bottom, for high noise intensity, the systems fires
more easily but still rather randomly. In the panel in the center instead, at
an optimal noise intensity, the system fires almost periodically.

The typical oscillation period for the system is given by the mean inter-
spike time interval (ISI) 〈tp〉 between two successive noise-induced excitations



over many realizations, see enlargements in Fig. 6. To it we associate as
error the standard deviation. If the system fires regularly, say for simplicity
periodically, then the error associated to tp is zero and consequently the ratio
of the standard deviation srd(tp) to its mean value 〈tp〉, i.e. the normalized
fluctuations

Rp =

√
〈(tp − 〈tp〉)2〉

〈tp〉
, (34)

is equal to zero. On the other hand, if the firing is incoherent and takes place
at random times, then the error associated to tp is of the same order as the
mean ISI, so that Rp ≃ 1. Thus Rp is a measure of the coherence of the
system response and the minimum of Rp(σ

2) characterizes the optimal noise
intensity. We plot this dependence for the FitzHugh-Nagumo model in Fig. 7.
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Fig. 7. Normalized fluctuations of the inter-spike interval versus the noise intensity
for the FitzHugh-Nagumo model. Black curve reproduces the result shown in [39].
Parameters b0 = 1.05, ǫ = 0.01 in Eqs. 31. The fixed point is a stable focus. Same
results with b0 = 1.2 shown by the red curve, where the fixed point is a stable node.

The phenomenon of CR is due to the presence of two different charac-
teristic time scales in the system which are affected by noise in different
manner. One is the time during which the system just fluctuates around the
stationary state, which is needed to activate an excitation. We call this the
activation time ta. The second time scale, the excursion time te, is the typical
duration of an excitation loop, compare Fig. 6. Noise of low intensity does
not affect te, compare panels B.1 and B.2 of Fig. 4. Consequently, assum-
ing std(te) small and ta >> te (excitations are rare events), we can write
that Rp ≃ srd(ta)/〈ta〉. In this regime, the spikes are completely random
events, so that srd(ta)/〈ta〉 = 1, and, as noise increases, the coherence of
ta increases too, see Fig. 7. Only at moderate noise intensities the excursion



time te starts to get affected by noise. In this regime the excitation loops,
that at low noise intensities possess well defined trajectories, loose regular-
ity with increasing noise intensity, compare panels at the bottom of Fig. 6.
This phenomenon is also shown in panels B.1 and B.2 of Fig. 4. There the
trajectories of the noise-induced excitations spread out in the phase space
for increasing noise intensity. The transition between this two regimes takes
place where the quantity Rp displays its minimum. Then the coherence of
the system is highest.

4.4 Coherence resonance with respect to the correlation time

Most of the research on CR was focused on the case of white noise. White
noise is a good approximation as long as the intrinsic time scales of the
deterministic system are much larger than the correlation time of the exter-
nal fluctuations. This is the case for example in neuronal dynamics where
a neuron can be externally forced by another randomly bursting neuron. In
general, when deterministic and stochastic time scales are not well separated
from each other, not only the amplitude but also the temporal correlation
is expected to influence noise-induced phenomena as CR. In this Subsection
we show that also the correlation time of an external noise signal is a control
parameter of the coherence of the system. We show this first experimentally
employing the light-sensitive Belousov-Zhabotinsky reaction and then we con-
firm this result numerically performing calculations with the two-component
Oregonator model.

In Fig. 8 we show schematically the set-up in use in our experiment,
for details please see [7]. The set-up adopted for our experiments has as
central element an open gel-reactor, which allows to maintain constant non-
equilibrium conditions during the measurements, see Fig. 8. With it, and by
means of computer-based spectrophotometry [36], we analyze wave activity
in the BZ medium with sufficiently high spatial and temporal resolution.

Through a noise signal, precisely a random telegraph signal, we induce
nucleations of target patterns in the BZ medium. Under constant illumina-
tion I0 no wave nucleation occurs, but the medium can support excitation
waves. At light intensity I0 −∆I the medium is oscillatory and phase waves
are induced, which become trigger waves as they propagate towards the sur-
rounding medium maintained at high light intensity. The system is excitable
at light intensity I0 +∆I and supports traveling patters. In case of dichoto-
mous fluctuating light, nucleations occur randomly. The regularity of these
phenomena is measured recording the activity at a given point of the gel. In
this way we get a series of noise-induced nucleations at random time intervals,
see data reported in Fig. 9.

Already at a rough glance on the noise-induced spikes reported in Fig. 9
it is possible to recognize that the coherence is dependent on τ . The spikes
plotted in the middle panel show a better regularity than the other two above
and below it.
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Fig. 8. Top: Sketch of the exper-
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To get a deeper understanding of this phenomenon we perform experi-
ments for correlation times τ in the range between 2 and 60 seconds and we
estimate the time tp between two successive nucleations, and calculate its
mean and the standard deviation. In Fig. 10 the coherence of the nucleation
events is quantified through the normalized fluctuations of tp,

Rp =

√
〈(tp − 〈tp〉)2〉

〈tp〉
. (35)

Rp presents a minimum at τ ≃ 20 s, fingerprint of highest coherence. Hence
our experimental data give a clear evidence of the existence in the light-
sensitive BZ reaction of an optimal correlation time of the fluctuating light
driving at which the highest coherence is induced [7].

To validate numerically the above reported results, we perform calcula-
tions with the two-component Oregonator model introduced in Subsection
2.3, see Eqs. 3. Here also we are interested in how fluctuations with non-
vanishing correlation time in the excitability parameter affect the coherence
of the system response. Thus we assume the parameter φ, proportional to the
light-intensity, to be an exponentially correlated stochastic variable expressed
as

φ→ φη(t) = φ0 ·[η±(t) + 1], (36)
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being the stochastic process η±(t) a random telegraph signal. We choose φ0

in the excitable regime and analyze how the coherence of the Oregonator
system changes (Eqs. 3) as the correlation time of the process η± varies. We
choose the parameters φ0 and ∆ such that φ− = φ0(1−∆) to the oscillatory
regime. Then for φ(t) = φ+ = φ0(1 + ∆) the system is excitable, therefore
from any initial condition it reaches the stationary state and remains there
forever.

The results for Rp(τ) obtained for different values of ∆, see Fig. 11,
demonstrate that under a random telegraph signal the coherence of noise-
induced excitation is enhanced by an optimal choice of the correlation time.
Here, the optimal correlation time τopt decreases as the noise amplitude ∆
increases. Further simulations not shown here, confirm that this phenomenon
holds for a wide range of the bifurcation parameter φ0, covering almost the
whole excitable regime. We emphasize that for not well separated time scales,
noise-induced excitations are possible even if both φ− and φ+ belong to the
excitable regime, compare red curve in Fig. 11.
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Fig. 10. Coherence resonance with respect to the correlation time in the light-
sensitive BZ reaction. The normalized fluctuations of the inter-spike times tp are
reported versus the correlation time of the random telegraph signal.
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of the noise for the Oregonator model, Eqs. 3 with φ0 = 0.0075. Black curve ∆ = 0.1,
green ∆ = 0.8, gray ∆ = 0.6, blue ∆ = 0.4, red ∆ = 0.3. Each point is an average
over 5·103 inter-spike intervals.

5 Excitable elements with coupling

5.1 Local coupling: noise induced nucleations

Local coupling among excitable elements is realized trough diffusive coupling,
which introduces spatial degree of freedom in the system. Here we consider the
case of a one-dimensional Oregonator system in its three-component version.
Thus its local dynamic introduced in Subsection 2.3, see Eqs, 2 has to be



supplemented by diffusion terms. As in the experiment with the BZ reaction
the catalyst is immobilized in thin gel layer, there is no diffusion in the v
variable. This gives

∂u

∂t
=

1

ǫ

[
u− u2 − w·(u− q)

]
+Du

∂2u

∂x2

∂v

∂t
= u− v (37)

∂w

∂t
=

1

ǫ′
[fv − w·(u+ q) + φ] +Dw

∂2w

∂x2
.

We integrate numerically Eqs. 37 in a one dimensional spatial domain of size
L with periodic boundary conditions.

We are interested in the effects that fluctuating excitability induces in
the emergence of patterns in the spatially extended system. This issue has
been already tackled in previous works, most of them concentrating on the
non-excitable regime, where no structures can propagate under purely deter-
ministic conditions. In such a situation, an optimal amount of noise has been
seen to support patterns as spiral waves [24, 25], coherent structures [49],
traveling pulses [27], and pulsating spots [21]. In the excitable regime, noise-
induced spiral dynamics [18], spatio-temporal stochastic resonance [25], and
noise-enhanced phase synchronization [38] have been reported. Moreover also
globally coupled excitable media [40,51]. Here we focus our attention on how
both spatial and temporal correlations influence the process of pattern for-
mation. Thus the excitability parameter φ is not a constant value anymore
but it is given by

φ→ φη(x, t) = φ0[η(x, t) + 1]. (38)

Here η(x, t) is a spatio-temporally correlated noise process with zero mean,
characterized by noise intensity σ2, correlation time τ and correlation length
λ. For more detail on the numerical details see [5].

Suppose the medium is prepared in the homogeneous steady state. Even-
tually, fluctuations of the light intensity induce spontaneous nucleation of
pulse pairs. The pulses propagate in opposite direction and annihilate each
other in collision (periodic boundary conditions adopted). For the nucleation
of a pulse pair from a local perturbation of the homogeneous steady state a
critical nucleus has to be reached. Therefore, besides the correlation time, we
expect the correlation length of the stochastic field φ(x, t) to be an important
control parameter.

To characterize the coherence of noise-induced patterns in the distributed
excitable medium we calculate the relative fluctuations of the spatial average
UL(t) of the activator field u(x, t)

UL(t) =
1

L

∫ L

0

u(s, t)ds. (39)
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Fig. 12. Space averaged activator concentration uL, panels A.1) and B.1), and
corresponding realizations of the activator concentration u(x, t), panels A.2) and
B.2). Excitability φ0 = 0.01 and wavelength L = 45. Noise parameters in panels
A.1) and A.2): σ2 = 0.25, τ = 0.75 and λ = 1.125; in panels B.1) and B.2):
σ2 = 0.25, τ = 2 and λ = 2.25.

Typical space-time plots of u(x, t) and the corresponding behavior of UL(t)
are shown in Fig. 12.

The activator spatial average UL(t) exhibits pronounced spikes, analo-
gously to what was found for the activator u(t) of a single excitable element.
Although the variable UL has no spatial dependence, from its analysis we
get information about temporal coherence of the noise-induced patterns, as
well as about the spatial coherence. Fig. 12 shows indeed that for different
combinations of the noise correlations τ and λ the emerging patterns display
drastically different characteristics.

In order to quantify the temporal coherence of patterns arising at different
correlation lengths, we introduce the quantity

RT =

√
〈(Tp − 〈Tp〉)2〉

〈Tp〉
, (40)
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Fig. 13. Coherence resonance in the Oregonator model (Eqs. 37) with respect to the
correlation length for different values of the correlation time τ : gray curve τ = 0.3,
red curve τ = 2, blue curve τ = 5, yellow curve τ = 20. Excitability parameter
φ0 = 0.01, system size L = 45, noise intensity σ2 = 0.25.

which represents the normalized fluctuations of the inter-spike time Tp of the
variable uL(t). We keep the values σ2 and φ0 constant and we look at the
dependency RT (λ). Fig. 13 shows the influence of the correlation length on
the coherence of the noise-induced patterns. In the spatially extended system,
for all the considered values of the correlation time τ , we find coherence
resonance with respect to the correlation length of the noise driving, in other
words there exists an optimal value λopt of the correlation length at which
best coherence is reached. We find that the optimal value λopt is of the same
order of magnitude as the width of the pulse front.

5.2 Propagation of trigger waves in the presence of noise

We study in this Subsection the effect of noise on pulses propagating in
the two-component Oregonator model. Also here the excitability parameter
φ fluctuates, thus the noise enters multiplicatively in the system. The two-
component Oregonator model supplied with local diffusive coupling reads

∂u

∂t
=

1

ǫ

[
u− u2 − [fv + φ0 ·(η(x, t) + 1)]·u− q

u+ q

]
+Du∇2u

∂v

∂t
= u− v, (41)

where ∇2 denotes the Laplace operator and η(x, t) is a correlated stochastic
process with zero mean. Concentration profiles of a typical pulse solution
obtained in the excitable regime are shown in Fig. 14. In the case of periodic
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Fig. 14. Activator (black curve) and inhibitor (gray line) profile of typical pulse
solution of the two-component Oregonator model (Eqs. 41) in the excitable kinetic
regime (φ0 = 0.01) and with diffusion coefficient Du = 1. Calculations were per-
formed in a one-dimensional domain of size L = 50 applying periodic boundary
conditions. The propagation speed is c = 4.648.
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Fig. 15. Dispersion curve for periodic pulse trains at different levels of excitability
in absence of noise. Decreasing φ0 from relatively large values, normal dispersion
is replaced first by oscillatory and finally bistable dispersion (black curve for φ0 =
0.0065, gray curve for φ0 = 0.0048 and red curve for φ0 = 0.00433).

pulse trains, the dispersion relation c(L) connects the spatial extension of
the medium and the velocity of a pulse propagating in it. The slope of the
dispersion curve defines whether the interaction between pulses is attractive
(positive slope) or repulsive (negative slope). In excitable systems it has been
shown that different regimes of dispersion are reached upon variation of the
excitability parameter φ [8, 9], compare Fig. 15.

The same transition from normal to oscillating and bistable dispersion
can take place in the case of an excitable medium under fluctuations. In
Fig. 16 we show the emergence of bistability as the noise intensity of the
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Fig. 16. Emergence of bistability in the dispersion relation for increasing noise
intensity, black solid curve for the noiseless case with φ0 = 0.005. At the same
excitability, dot-dashed curve for σ2 = 0.005, dotted curve σ2 = 0.01, dashed curve
σ2 = 0.02, value at which the dispersion relation becomes bistable.

stochastic signal η(x, t) increases. These are results obtained in the framework
of a small noise expansion put forward by M. A. Santos, J. M. Sancho and
S. Alonso [2, 41]. The numerical calculations have been done employing the
continuation software AUTO2000 [13]. For more detail see [6].

5.3 Pattern Formation in Dichotomously Driven, Locally

Coupled FitzHugh-Nagumo Systems

In this subsection we study a spatially extended version of the FitzHugh–
Nagumo system:

ẋi = xi − x3
i − yi +Dx∆xi

ẏi = ǫ (xi − ayi − Ii(t)) +Dy∆yi, (42)

where ∆ is the discrete version of the Laplace operator. I(t) constitutes a
random telegraph process with correlation function (cf. also eq. 19)

〈Ii(t1)Ij(t2)〉 = d2e−2γτK(i, j). (43)

Here, K(i, j) describes the spatial correlation. We study the influence of the
switching rate γ on pattern formation in our system. If not explicitely men-
tioned otherwise the remaining parameters were kept constant at ǫ = 0.05,
a = 1.475, Dx = 0.02, Dy = 5.0, and d = 0.2. In order to provide inhomo-
geneities that might grow we additionally apply tiny additive Gaussian white
noise (intensity 10−6) to each side of the system. For these parameters the
effect of the random telegraph process is the following: For each state of the
telegraph process (+d or −d) an individual system (Dx = Dy = 0) possesses
a single stable fixed point and exhibits excitability. The two fixed points are



symmetrically placed around zero, each on a different outer branch of the
cubic nullcline (cf. Fig. 17). For small switching rates γ a homogeneous ex-
tended state approaches one fixed point until a switching occurs and is then
attracted by the other fixed point and approaches that one. A random motion
of the homogeneous state between the two fixed points is observed. For faster
switching rates a new phenomenon occurs. It is schematically shown in Fig.
17. Consider a system that for I = −d has reached the right fixed point. Due
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Fig. 17. Development of stationary patterns for medium switching rates - phase
space. The system with small inhomogeneities (indicated by a cloud) is initially
distributed around one of the fixed point. Once switching occurs (left panel) the
cloud starts to move to the second fixed point. If a second switching occurs just
as the cloud is quickly passing from the left to the right (middle panel) it can be
split into two. The second cloud then does not return to the fixed point of the
deterministic system but moves to the other side where it stays. A spatial structure
is formed.

to the tiny additive noise the systems form a ”cloud” around the fixed point.
Once a new switching occurs the cloud moves up the right outer branch of
the cubic nullcline to its maximum and then quickly towards the left outer
branch. If the next switching occurs just at that moment when the cloud
crosses the excitation threshold (there is no clear excitation threshold since
whether a system is excited or not depends not only on its state but also on
that of its neighbors) some of the systems are excited and some return to the
nearby fixed point. Due to the strong inhibitory coupling (vertical direction)
the excited states do not return to the first fixed point but get trapped on
the left outer branch. A spatial structure is formed.

In the limit of high switching rates a new phenomenon occurs. Here the
switching becomes too fast for the systems to follow. As predicted by Buceta
et al. [10] we find an effective dynamics that is obtained by substituting the
random telegraph process by its average value (I(t) = 〈I(t)〉 = 0. In this case
the system 42 has two stable and one unstable fixed point. Linear stability
analysis of the extended state shows that the homogeneous state becomes
unstable via the Turing mechanism.



The results for the three different switching rate regimes (slow - inter-
mediate - fast) are shown in Fig. 18 where we have in the low rate regime

t = 0 t = 550 t = 1197 t = 4853

t = 0 t = 32 t = 228 t = 2757

t = 0 t = 124 t = 134 t = 432

Fig. 18. Timeseries with different switching rates. The time is given above each
plot. Parameters: γ = 0 (upper row), 5.0 (middle row), 0.01 (lower row); ǫ = 0.05,
a = 1.475, Dx = 0.02, Dy = 5.0, d = 0.2.

artificially provided an inhomogeneity. The mechanism that creates the first
inhomogeneity occurs for arbitrary low rates but it may take extremely long.
For low switching rates we see that the border separating two homogeneous
regions is unstable. Inhomogeneities in the border grow until they fill the
pattern. This process is very slow (time is given above the pictures). For
intermediate switching we see that a new layer is added to the side of the in-
homogeneity for each switching of the telegraph process. The pattern evolves
much faster into the homogeneous part. For high switching rates the whole
homogeneous state becomes unstable. The pattern grows all over the region
simultaneously.



We have also applied frozen dichotomous disorder to the system 42 and
studied the effect of the correlation length of the disorder on pattern for-
mation. The limit of large correlation length corresponds to the limit of slow
switching. Here, too, inhomogeneities grow from the border between two large
homogeneous regions. The limit of small correlation length is equivalent to
the fast switching limit. Here we again find an effective bistability. The dy-
namics can be predicted by using the deterministic dynamics with (Ii = 0).
For intermediate correlations we again find nontrivial effects. Fig. 19 shows

Fig. 19. Coarse fluctuations support pattern formation, fine ones do not. In this
parameter regime the system with Ii(t) = 0 does not support Turing pattern for-
mation. Dy = 0.5, ∆r = 0.02 . 2000 × 2000 points are shown.

noise realizations with resulting patterns for small and intermediate correla-
tion length. For the simulations that lead to these results we have decreased
the inhibitor diffusion constant to Dy = 0.5. The deterministic dynamics
with Ii = 0 does not exhibit instability of the homogeneous state. This fits
well to the results shown in the upper line. For higher correlation length
the homogeneous state is destabilized and a labyrinth pattern emerges. We



have thereby significantly increased the parameter regime in which structure
patterns emerge.

5.4 Global coupling

In this subsection we study the following globally coupled system of equations:

ǫẋi = xi −
x3

i

3
− yi +K (〈x〉 − xi),

ẏi = xi + a+ ξi(t), i = 1, . . . , N. (44)

ξi(t) is Gaussian, white noise with intensity T and zero average, uncorre-
lated between the individual subsystems. We fixed the parameters ǫ = 0.01
and a = 1.05 to ensure excitability of the individual deterministic (K = 0,
T = 0) system. As order parameter we consider the mean of the N sys-
tems 〈x〉 =

∑
i xi. Fig. 20 shows results from direct simulation of eqs. 44 for

varying noise intensity. For low noise the fixed point of 〈x〉 is stable. Indi-
vidual systems spike very rarely and incoherently. For increasing noise these
spikes become more frequent until the systems start to move coherently. The
spikes of the mean are separated by several small amplitude oscillations. The
number of these intermediate oscillations decreases and uninterrupted spik-
ing occurs. For even higher noise intensities the coherence is destroyed again.
The individual systems still spike frequently but the mean does not.

In order to have a closer look at the observed phenomena we derive the
moment dynamics for the system 44 in Gaussian approximation:

ǫ
d

dt
mx = mx − m3

x

3
−my −mxDx

d

dt
my = mx + a

ǫ
d

dt
Dx = 2Dx(1 −Dx −m2

x −K) − 2Dxy (45)

d

dt
Dy = 2(Dxy + Tloc)

ǫ
d

dt
Dxy = Dxy(1 −Dx −m2

x −K) −Dy + ǫDx

Here, mx and my are the mean values, Dx and Dy the variances, and Dxy the
covariance of the distribution. Results from simulations of these equations
for small noise intensities are shown in Fig. 21. For small noise intensities
there exists a stable fixed point (not shown). This fixed point becomes un-
stable for larger noise and a small amplitude oscillation occurs. For further
increase of the noise we find a period doubling cascade until chaos emerges.
The size of the chaotic attractor is still comparable to the diameter of the
small amplitude oscillations. For further increasing noise the chaotic attrac-
tor quickly but continuously increases in size. This phenomenon resembles
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Fig. 20. Timeseries for different noise intensities. The left column shows the ensem-
ble average the right column a randomly chosen individual unit. For increasing noise
intensity the spike rate of the single element increases quickly and then remains on
a high level. The spike rate of 〈x〉 increases at first but then the synchronization
between the individual elements is lost and the spike rate decreases again. Note the
small range of noise intensities (from top to bottom): Tloc = 2.7×10−4 , 2.8×10−4,
2.9 × 10−4, 3.0 × 10−4, 3.1 × 10−4. Other parameters: K = 0.1.

the well-known Canard explosion. Here though, it is not a single limit cycle
whose size increases quickly but the chaotic attractor as a whole.

The moment dynamics method allows us to quickly discover the bifurca-
tion diagram. It is given in Fig. 22. We see that the transition from stable
fixed point of the mean to spiking and back to a stable fixed point is excep-
tionally complicated. We see a period-doubling cascade followed by a Canard
explosion of the chaotic attractor, then a reverse period adding sequence
towards a state of uninterrupted spiking. At higher noise intensities when
the spiking decays again there is a new period adding and an inverse period
doubling cascade towards the steady fixed point.

These results are supported by simulations of the Langevin equations 44.
Here the fluctuations in the order parameter are too large to discover the
transition in all its detail. Thus, the moment dynamics has has proved a
convenient way to increase the resolution of our investigations.
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Fig. 21. Phase space trajectories for different noise intensities. We see succes-
sive period doubling of the small amplitude oscillations until chaos emerges.
Soon after, spiking starts. Note the small parameter range (from a to e): Tloc =
0.00157, 0.00158, 0.0015826, 0.001585, 0.001586; K = 0.1. Subplot e is an enlarge-
ment of f.

6 Discussion and Conclusions
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1 Introduction

The impact of periodic signals on dynamical systems has widespread rele-
vance in different fields, ranging from technically generated periodic signals
in electronic circuits to the periodic modulation of the solar irradiation on
earth. Often the considered systems are intrinsically noisy or external noise
influences the dynamics together with the periodic signal. There are different
possibilities to quantify the response of such a stochastic system to a periodic
signal. Most prominent are spectral based measure like the spectral power
amplification or the signal to noise ratio [1, 5]. These measures describe the
quality of the system’s response to the periodic signal, based on the amplitude
of the periodic component in the system’s mean output. In many systems,
like bistable or excitable dynamics, this periodic component is maximally ex-
pressed at some non-vanishing noise level, a counterintuitive effect which is
termed stochastic resonance.

Another possibility to quantify the response of a stochastic system to pe-
riodic signals is to generalize the notion of synchronization, which is known
from deterministic nonlinear oscillators. We will pursue this idea in what
follows. To this end we review in section 2 the notion of effective synchro-
nization in stochastic systems. The mean number of synchronized system
cycles turns out to be an appropriate quantity to characterize the synchro-
nization properties of the system to the periodic signal. However the task
remains to calculate this quantity. This calculation will be based on discrete
renewal models for bistable and excitable dynamics. These discrete models
are introduced in section 3. We first recapitulate the well known two state
model for the stochastic dynamics of an overdamped particle in a double well
system [10] and afterwards introduce a phenomenological discrete model for
excitable dynamics. In section 4 a theory to calculate the mean frequency
and effective diffusion coefficient in periodically driven renewal processes is
presented. These two quantities allow to calculate the mean number of syn-
chronized cycles. Finally in section 5 we apply this theory to investigate
synchronization in bistable and excitable systems.



2 Stochastic synchronization in periodically driven
systems

2.1 Synchronization in deterministic systems

Synchronization is a fundamental phenomenon found in nonlinear oscilla-
tory systems [12]. The most prominent example, known since long time ago
(Huygens, 1665), is the adjustment to a common frequency of two pendu-
lum clocks with slightly different frequencies, coupled via a common support.
This type of synchronization between two coupled systems is called mutual
synchronization. In the following we are interested in the synchronization of
a system to a periodic driving, called forced synchronization. In a synchro-
nized state the systems dynamics is entrained to the signal, i.e. the system
inherits the very same frequency of the signal (1 : 1 synchronization) or the
frequencies are locked with some rational n : m relation. This corresponds
to the motion of the system’s coordinates together with the signal phase on
a resonant torus. Depending on the signal amplitude and the difference be-
tween system frequency and signal frequency one observes different m : n
synchronization regions. These synchronization regions, exhibiting a tongue
like shape, are called Arnold tongues. The concept of synchronization has to
be extended and revised in order to cope with stochastic systems as will be
done in the following subsection.

2.2 Effective synchronization in stochastic systems

The influence of noise on a dynamical system may have two counteracting
effects. On the one hand if the underlying deterministic systems is already
oscillatory, like a limit cycle oscillator or a chaotic oscillator, one expects
these oscillations to become less regular due to the influence of the noise.
On the other hand oscillatory behavior can also be generated by the noise in
systems which deterministically do not show any oscillations. A prominent
example are excitable systems but also the noise induced hopping between
the attractors in a bistable system can be considered as oscillations [1].

Let us consider a stochastic system, for which it is possible to define a
cycle, i.e. some behavior which repeatedly happens. This can be for example
one turn of a limit cycle oscillator, the hopping from one attractor to the other
and back again in a bistable system or an excitation from the rest state to the
excited state, followed by a relaxation back to the rest state in an excitable
system. As in the case of deterministic systems, forced synchronization of
stochastic systems is also considered as an adaption of the cyclic motion to
the periodic driving. However due to the stochasticity one can never expect
perfect synchronization. Instead there is always a finite probability that an
additional or missing cycle of the system with respect to the signal happens.
The rarer these phase slips occur, the better is the synchronization. Thus



synchronization in periodically driven stochastic systems is not an all or none
notion but gradually varies from no synchronization to synchronization.

One possibility to quantify the quality of the synchronization is to consider
the mean number Nlock of synchronized cycles of the system. The larger this
number, i.e. the rarer the phase slips happen, the better is the synchroniza-
tion. As in the case of deterministic synchronization one has to take different
frequency locking modes into account. m : n synchronization means that m
cycles of the system occur within n periods of the signal.

In order to obtain Nlock we introduce the random number Nt0(t) of cy-
cles performed by the system within the time interval (t0, t). Denoting the
period of the signal by T and its frequency by ν := 1

T , the mean time Tlock

between two subsequent phase slips, defined as the time after which the the
difference between system cycles and signal periods has grown to 1, can then
be determined by [4]

〈[
Nt0(t0 + Tlock) −

n

m

Tlock

T
]2〉

= 1. (1)

In this definition different m : n synchronization modes are already accounted
for. Eq.(1) can be rewritten as

〈Nt0(t0 + Tlock)
2〉 − 〈Nt0(t0 + Tlock)〉2 +

[
〈Nt0(t0 + Tlock)〉 −

n

m
Tlock

]2
= 1.

Defining the average frequency of the system as

v̄ = lim
t→∞

〈Nt0(t)〉
t

(2a)

and its effective diffusion coefficient by

D̄eff = lim
t→∞

〈N2
t0(t)〉 − 〈Nt0(t)〉2

2t
(2b)

and assuming that Tlock is large compared with the signal period T one
obtains [4]

2D̄effTlock +∆ν2T 2
lock = 1 (3)

where ∆ν := v̄ − ν n
m denotes the deviation between mean system frequency

and signal frequency. Eq. 3 reveals, that the mean time between phase slips
is determined by two effects, namely a drift part, caused by different frequen-
cies and a diffusion part which persists even if the mean frequency of the
system agrees with the signal frequency. This diffusive part part is due to the
stochastic nature of the system. Solving the quadratic equation for Tlock one
obtains

Tlock =
D̄eff

∆ν2

[
√

1 +
∆ν2

D̄2
eff

− 1
]
.



Assuming the mean frequency of the system to be entrained by the signal,
i.e. ∆ν → 0 the mean locking episodes are solely determined by the effective
diffusion coefficient

Tlock ≈ 1

2D̄eff
.

On the other hand if the effective diffusion coefficient vanishes, as is the case
for deterministic systems, we have

Tlock ≈ 1

∆ν
.

Stochastic m : n synchronization can thus be characterized as an adjustment
of frequencies, v̄ ≈ n

mν and a reduction in the diffusivity of the process, i.e.
a minimal effective diffusion coefficient D̄eff. The mean locking time Tlock

still depends on the absolute time scale of the process. In order to avoid this
dependence, it is reasonable to consider the mean number of locked cycles

Nlock = Tlockv̄

which gives the average number of system cycles until the difference between
system cycles and signal periods has grown to 1. In terms of the Péclet number
Pe = v̄/D̄eff, Nlock can be expressed as

Nlock = Pe

(
1 +

√
1 + Pe2∆ν

2

v̄2

)−1

(4)

If the frequency difference vanishes, ∆ν → 0 the mean number of locked
cycles equals half the Péclet number. Eq. (4) expresses Nlock in terms of
two quantities of the periodically driven system, namely the mean frequency
v̄ and its effective diffusion coefficient D̄eff. As an example we numerically
evaluated the mean frequency v̄ number of synchronized system cycles Nlock

of an excitable FitzHugh-Nagumo system

ẋ = x− x3 − y +
√

2Dξ(t) and ẏ = ǫ(x+ a0 − a1y − s(t)) (5)

subjected to a dichotomic periodic driving

s(t) =

{
A if t ∈ [nT , (n+ 1

2 )T )
−A if t ∈ [(n+ 1

2 )T , (n+ 1)T )

Tuning the signal frequency we observe different regions of frequency locking,
accompanied by a high number Nlock of synchronized system cycles, indicat-
ing stochastic synchronization (Fig. 1).

The following sections are devoted to the calculation of the mean fre-
quency and effective diffusion coefficient in periodically driven bistable and
excitable systems. Our approach is based on a modeling of these dynamics
as periodic renewal processes, which is presented in the following section.
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Fig. 1. Synchronization in the excitable FHN system. The left figure shows the
relation between mean frequency v̄ of the system and driving frequency ν = 1

T
,

the effective diffusion coefficient Deff and the mean number of locked cycles Nlock

according to eq. (4) as a function of the driving frequency f .
Right: For three different driving frequencies, corresponding to 1 : 1 (bottom),
2 : 1, (top) and no synchronization, we have plotted 20 realizations of the corre-
sponding number of cycles N0(t) which is chosen to increase by 1 at each excita-
tion time(right figure). Parameters of the FHN system eqs. (5): a0 = 0.405, a1 =
0.5, ǫ = 0.001, D = 1.0 × 10−5, and a dichotomic driving s(t) = ±0.015.

3 Discrete models of continuous stochastic dynamics

One possibility to simplify a continuous stochastic system is the reduction to
a description in terms of a few discrete states. The system’s behavior is then
specified by the transition times between these discrete states. For example
when investigating a neurons behavior, the important aspect are often only
the times when a spike is emitted and not the complex evolution of the
membrane potential [16]. In a double well potential system, depending on the
questions asked, it may be sufficient to know in which of the two wells the
system is located, neglecting the fluctuations in the wells as well as the actual
dynamics when crossing from one well to the other. In these cases a reduction
to a discrete description can be considered as an appropriate simplification.
We first review the two state description of bistable systems [10] and then
introduce a phenomenological discrete model for excitable dynamics.



3.1 The double well system – a discrete Markovian description

Let us consider a particle in a symmetric double well potential driven by white
noise and a signal s(t), Fig. 2. The dynamics of this system is described by

left state 1 right state 2V (x)

x

−√a

b

√
a

b

Fig. 2. A bistable system as described by eq. (6). The reduced two state description
is illustrated by the two differently colored half planes.

the Langevin equation

ẋ = −U ′(x) + s(t) +
√

2Dξ(t), U(x) = −a
2
x2 +

b

4
x4 (6)

where ξ(t) is white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t + τ)〉 = δ(τ). If we
consider the output (position) x(t) in the course of time (see Fig. 2) we
notice that the particle is jiggling most of the time in one of the two wells,
only occasionally jumping from one well to the other.

t

x
(t

)

t
(2)
i t

(1)
i+1 t

(2)
i+1 t

(1)
i+2 t

(2)
i+2

5. 1054. 1053. 1052. 1051. 105

10-1
Fig. 3. The output x(t) of a bistable system as described by eq. (6) with a = b = 1
and D = 0.025. The reduced two state description is illustrated by the gray line.

In order to simplify the description on this system one neglects the fast
dynamics in the potential wells and considers only the transitions from one
well to the other which happen on a much slower time scale. Under the



assumption that the potential barrier ∆U between the two wells is large
compared to the noise strength D, implying that the relaxation in the wells is
fast compared to the timescale of the jumps between the wells, the transitions
can be considered as a rate process. Such a rate process has a probability per
unit time to cross the barrier, which is independent on the time which has
elapsed since the last crossing event. The resulting dynamics in the reduced
discrete phase space which consists just of two discrete states left and right
is thus still a Markovian one, i.e. the present state determines the future
evolution to a maximal extent.

The transition rates γ(1) from the left to the right well and γ(2) from the
right to the left well, which are both equal for the symmetric double well
potential, are Kramers rates for the excitation over a potential barrier due
to white noise. They can be calculated as [7, 8]

γ(1) =
ω0ω

(1)

2π
exp(−∆U

(1)

D
) and γ(2) =

ω0ω
(2)

2π
exp(−∆U

(2)

D
) (7)

where ω0, ω
(1) and ω(2) are the frequencies (square roots of the modulus of

the second derivatives of the potential) at the potential barrier and the left
and right minimum respectively, while ∆U (1) and ∆U (2) are the potential
differences between the potential maximum and the left and right minimum
respectively. If the potential is modulated by a signal, which varies on a time
scale which is slow compared to the relaxation times in the wells and which
is sufficiently small such that ∆U (i)(t) ≫ D is satisfied at any time, the two
state description still constitutes a rate process, however with time dependent
rates

γ(i)(t) =
ω0(t)ω

(i)(t)

2π
exp(−∆U

(i)(t)

D
). (8a)

Let us consider the waiting time distributions w(i)(τ, t) to stay the time τ in
state i, if it was entered at time t. For a driven rate process they are known
to be

w(i)(τ, t) = γ(i)(t+ τ) exp(−
∫ t+τ

t

dt′γ(i)(t′)), (9)

which in case of a time independent rate reduces to the well known exponen-
tial distributions

w(i)(τ) = γ(i) exp(−γ(i)τ).

For a periodic signal s(t) = s(t+ T ) the waiting time distributions evidently
are also periodic with respect to the entrance time, w(i)(τ, t) = w(i)(τ, t+T ).
Eventually, the distribution of the times needed for a full cycle 1 → 2 → 1 of
the driven system is given by the generalized convolution of the waiting time
distributions in state 1 and 2

w(τ, t) =

∫ τ

0

dτ ′w(2)(τ − τ ′, t+ τ ′)w(1)(τ ′, t). (10)



This time dependent waiting time distribution will be our starting point for
the calculation of the synchronization properties in the bistable system in
sections 4, 5.1.

3.2 Excitable dynamics – a phenomenological discrete model

In contrast to bistable systems an excitable system is monostable, i.e. its dy-
namics has a single stable fixed point called rest state. Small perturbations
of this rest state are damped. However sufficiently large perturbations, which
may occur due to noise or an external signal, lead to a strong change in the
system’s state before it relaxes again to the rest state. Modeling excitable dy-
namics on a continuous plane phase space, the resulting system has to be at
least a two dimensional non potential systems, which already points out some
difficulties. However excitable dynamics can also be modeled as a dynamics
on a circle [19] or as a one dimensional dynamics, with a superimposed thresh-
old and reset condition, like the integrate-and-fire or leaky-integrate-and-fire
model [17]. In this section we propose a different approach, modeling ex-
citable dynamics as a discrete state system. A prototypical system exhibiting
excitable dynamics is the two dimensional FitzHugh-Nagumo system (FHN)
which was independently proposed by FitzHugh [3] and Nagumo, Arimoto
and Yoshizawa [11] to describe the membrane potential of a neuron. The
FitzHugh-Nagumo dynamics is governed by the Langevin equations

ẋ = x− x3 − y + sx(t)
√

2Dξ(t) (11a)

ẏ = ǫ(x+ a0 − a1y − +sy(t)) (11b)

where ξ(t) is white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t + τ)〉 = δ(τ) and sx(t)
and sy(t) denote external signals entering either into the x or y dynamics.
The nullclines ẋ = 0 and ẏ = 0 together with a typical trajectory are shown
in Fig. 4. Due to the small parameter ǫ in eqs. (11) the x-dynamics is much
faster than the y-dynamics.

Let us look in more detail onto the behavior of the FHN system: From the
stable fixed point at the intersection of both nullclines, which is also called
rest state in the neuronal context, the system is excited by a sufficiently
large perturbation, leading to a fast transition onto the right branch of the
cubic x-nullcline. On the right branch the system assumes a high x-value,
which at the neuronal level represents a high membrane potential, This state
is called firing state. After having moved along the right branch the system
returns back to the left branch. There the output (x variable) assumes again
a low value like in the rest state, however the system cannot be directly re-
excited, it first has to relax back to the rest state. Therefore this state is
called refractory. A typical output x(t) of the noisy FHN system showing the
spiking behavior is presented in Fig. 5,

Fig. 6 shows the inter spike interval distribution for different constant
values of the signal acting additively on either the x or y dynamics. We
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Fig. 4. An excitable FHN system subjected to an external driving sy(t) acting on
the slow recovery variable y (left) or sx(t) acting on the voltage variable x (right)
as described by eq. (11). The signal applied to y moves the y-nullcline upwards and
downwards, thus moving the stable fixed point towards the excitation barrier and
back again. The signal applied to x moves the x-nullcline upwards and downwards,
thus having a similar effect on the the excitation barrier.
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Fig. 5. Output x(t) of the FHN system eqs. (11) without signal sx(t) = sy(t) = 0.
Other parameters: a0 = 0.41, a1 = 0.5, D = 0.0001 and ǫ = 0.01.

observe that the inter spike intervals are composed of two parts, namely an
approximately fixed, and in particular signal independent time, which can
be assigned to the motion along the excitation loop, i.e. the stable branches
of the cubic nullcline. The second component is an exponentially distributed
time, which accounts for the noise induced excitation from the stable fixed
point. The corresponding rate strongly depends on the external signal. As
for the double well system, we assume that for a sufficiently slowly varying
signal, this process remains a rate process, however with a time dependent
rate. Assuming the time needed to move along the excitation loop to be
distributed according to some waiting time distributionwloop(τ) and denoting
the periodic excitation rate by γ(t) we obtain the cycle time distribution, also
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Fig. 6. Logarithmic plot of the inter spike interval distributions of the FHN system
eq. (11) for different constant values of the external signal sy(t) (left) or sx(t)
(right) and two different noise levels. sx/y(t) = 0.01 (∗), sx/y(t) = 0.0 (×) and
sx/y(t) = −0.01 (+). Other parameters a0 = 0.41, a1 = 0.5,D = 0.0002 and
ǫ = 0.01.

called inter spike interval distribution,

w(τ, t) =

∫ τ

0

dτ ′γ(t+ τ) exp
[
−
∫ t+τ

t+τ ′

dt′γ(t′)
]
wloop(τ ′) (12)

We mention that the inter spike interval distributions for the FHN system
in the different dynamical regimes, including excitable behavior, were already
presented in [9]. The calculations were performed under the assumption of
a perfect time scale separation and linearization of the nullclines, leading
to complex expressions for the Laplace transforms of the waiting time dis-
tributions in terms of the parameters of the original FHN model eqs. (11).
However our phenomenological model will be more amenable to further anal-
ysis of stochastic synchronization.

In the above considerations we silently assumed subsequent intervals to
be correlated only by the external signal and not due to the system dynamics
itself. In the undriven case this implies that the spiking times constitute a
renewal process, thus rendering subsequent inter spike intervals independent.
This assumption is justified for a sufficiently strong time scale separation
ǫ ≪ 1. In this case each excitation happens approximately along the same
trajectory in phase space, and thus the information about the duration of the
previous inter spike interval is lost upon excitation. Therefore subsequent
inter spike intervals cannot be correlated. If we the system is periodically
driven, subsequent inter spike intervals are certainly correlated, as it is this
correlation which leads to the observed synchronization. However the cor-
relation is generated only by the periodic driving. To render this statement
more precise, let τi and τi+1 denote two subsequent inter spike intervals and
ti the time when the first ends and the second starts. Then

〈τiτi+1〉 − 〈τi〉〈τi+1〉 6= 0



in general, i.e. subsequent intervals are correlated. However subsequent inter-
vals, conditioned on the time ti in between are independent,

〈τiτi+1|ti〉 − 〈τi|ti〉〈τi+1|ti〉 = 0.

The remaining part of this paper is devoted to the calculation of the mean
frequency v̄ and the effective diffusion coefficient D̄eff as defined in eqs. (2) for
the discrete model of bistable and excitable systems. To this end we introduce
a general theory to calculate these quantities for periodic renewal processes
in section 4. This theory is then applied to the driven renewal model eqs. (9),
(10) for the double well system and eq. (12) for the excitable system.

4 The effective diffusion coefficient and mean
frequency in periodically driven renewal processes

In order to calculate the mean frequency v̄ of system cycles and the effective
diffusion coefficient D̄eff defined by eqs. (2) we first consider the corresponding
instantaneous quantities

v(t) = lim
t0→−∞

d

dt
〈Nt0(t)〉 and Deff(t) = lim

t0→−∞

d

dt

〈N2
t0(t)〉 − 〈Nt0(t)〉2

2

For periodically driven renewal processes these quantities can be shown to
be periodic with the period of the driving. v̄ and D̄eff can then be obtained
by taking the period average,

v̄ =
1

T

∫ T

0

dtv(t) and D̄eff =
1

T

∫ T

0

dtDeff(t) (14)

In the following we present a method, which relates v(t) and Deff(t) to the
time dependent cycle time distribution w(τ, t), which governs the dynamics
of the system.

Let us consider the probabilities pk(t) to have had k cycles up to time
t. Furthermore let jk(t) be the probability flux from state k to state k + 1,
i.e. the probability per time that the k+ 1st cycle starts at time t. Taking as
initial condition that the first cycle started at time t0, i.e.

j0(t) = δ(t− t0), (15)

the relation between the probability fluxes jk(t) of the renewal process is
given by

jk(t) =

∫ t

t0

dt′jk−1(t
′)w(t− t′, t′), k ≥ 1. (16a)

Eventually the probabilities pk(t) are related to the probability fluxes jk(t)
by

pk(t) =

∫ t

t0

dt′jk−1(t
′)z(t− t′, t′), k ≥ 1 (16b)



where the survival probability

z(τ, t) = 1 −
∫ τ

0

dτ ′w(τ ′, t)

denotes the probability that the next cycle takes more time than τ , if the last
cycle was finished at time t. Based on the probabilities pk(t) we can define
the moments of the number of cycles as

M
[l]
t0 (t) :=

∞∑

k=0

klpk(t). (17)

These moments define the corresponding cumulantsK
[l]
t0 (t) from which finally

the asymptotic periodic growth coefficients of the cumulants

κ[l](t) := lim
t0→∞

d

dt
K

[l]
t0 (t) (18)

are obtained. The first coefficient κ[1](t) is the instantaneous mean frequency
v(t) while κ[2](t) is twice the instantaneous effective diffusion coefficient
Deff(t). In principle they can be calculated from the solutions of eqs. (16)
according to eqs. (17) and (18) . However, in practice this is not feasible, as
one has to calculate an infinite sum over the pk(t) where each pk, accord-
ing to eqs. (16b) and (16a), is a k-fold integral involving the waiting time
distributions w(τ, t) and the corresponding survival probabilities z(τ, t).

To find a simpler relation between the periodic coefficients κ[n](t) and the
time dependent waiting time w(τ, t), which governs the microscopic dynamics,
we again construct a continuous embedding in the asymptotic limit t0 → −∞.
Consider the continuous probability density P(x, t) as an envelope of the
discrete probabilities pk(t). Thus, respecting the normalization, we adopt the
relation (cf. Fig. 7)

pk(t) =

∫ k+ 1
2

k− 1
2

dxP(x, t). (19)

We assume that asymptotically, i.e. when the pk(t) and P(x, t) approach
more and more a uniform distribution, this equation remains valid in the
course of time if the cumulants in both, the discrete and continuous setting
grow in the same way. To have the desired growth behavior of the cumulants
in the continuous description we assign a Kramers Moyal equation to the
evolution of the continuous probability density,

∂

∂t
P(x, t) =

∞∑

n=1

(−1)n

n!
κ[n](t)

∂n

∂xn
P(x, t) (20)

whose Kramers Moyal coefficients coincide with the periodic cumulant growth
coefficients κ[n](t) of the discrete description [18].
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Fig. 7. Schematic view of the discrete event dynamics pk(t) and the continuous
description in terms of x.

Having related the discrete and continuous probability we can likewise
relate the probability current jk(t) of the discrete system to the probability
current J (x, t) of the continuous envelope description. According to the re-
lation between the discrete and continuous probability eq. (19), the discrete
probability current jk(t) from k to k+1 is equal to the continuous probability
current J (x, t) at x = k + 1

2 (see Fig. 7),

jk(t) = J (k +
1

2
, t). (21)

The continuous probability current J (x, t) is related to the probability dis-
tribution P(x, t) by the continuity equation

∂

∂t
P(x, t) = − ∂

∂x
J (x, t). (22)

and therefore according to eq. (20)

J (x, t) = −
∞∑

n=1

(−1)n

n!
κ[n](t)

∂n−1

∂xn−1
P(x, t) . (23)

Thus from eq. (21) we deduce

jk(t) = −
∞∑

n=1

(−1)n

n!
κ[n](t)

∂n−1

∂xn−1
P(x, t)

∣∣∣
x=k+ 1

2

(24)

Having fixed the relation between the probabilities and probability fluxes
of the discrete renewal process and the continuous embedding, it is now pos-
sible to relate the coefficients κ[n](t) appearing in the continuous description
(20) to the waiting time distribution w(τ, t) of the renewal process, involved in
the microscopic dynamics (16a) and (16b). As we are considering the asymp-
totic behavior we have to pass to the asymptotic limit in eqs. (16a) and (16b)
by shifting the initial time t0 → −∞. This results in

pk(t) =

∫ ∞

0

dτjk−1(t− τ)z(τ, t− τ). (25)



and

jk(t) =

∫ ∞

0

dτjk−1(t− τ)w(τ, t − τ). (26)

Inserting eqs. (19) and (24) into the above eq. (25) we end up with

∫ 1
2

− 1
2

d∆xP(x−∆x, t) = −
∫ ∞

0

dτz(τ, t− τ) (27)

∞∑

n=1

(−1)n

n!
κ[n](t− τ)

∂n−1

∂xn−1
P(x− 1

2
, t− τ)

with x = k. The probability P(x − ∆x, t − τ) can be expressed in terms
of the probability P(x, t) and its derivatives ∂m

∂xmP(x, t) by performing a
Taylor expansion of P(x − ∆x, t − τ) around x, t and converting the time
derivatives to derivatives with respect to the state x using the Kramers-Moyal
equation (20). This results in [14]

P(x−∆x, t− τ) =

P(x, t) + c
[1]
t (τ,∆x)

∂

∂x
P(x, t) + c

[2]
t (τ,∆x)

∂2

∂x2
P(x, t) +O(3) (28)

where O(3) denotes terms proportional to ∂m

∂xm P(x, t) with m ≥ 3. The func-

tions c
[1]
t (τ,∆x) and c

[2]
t (τ,∆x) are given by

c
[1]
t (τ,∆x) =

∫ τ

0

dτ ′κ[1](t− τ ′) −∆x .

and

c
[2]
t (τ,∆x) =

∆x2

2
−∆x

∫ τ

0

dτ ′κ[1](t− τ ′)

−1

2

∫ τ

0

dτ ′κ[2](t− τ ′) +

∫ τ

0

dτ ′κ[1](t− τ ′)

∫ τ ′

0

dτ ′′κ[1](t− τ ′′)

Equating the coefficients of P(x, t) and ∂
∂xP(x, t) on both sides of eq.

(27), we end up with (v(t) ≡ κ[1](t) and Deff(t) ≡ 2κ[2](t))

∫ ∞

0

dτv(t − τ)z(τ, t− τ) = 1 (29a)

∫ ∞

0

dτDeff(t− τ)z(τ, t− τ) =

∫ ∞

0

dτv(t − τ)

∫ τ

0

dτ ′v(t− τ ′)z(τ, t− τ) − 1

2

(29b)

These two expressions relate the asymptotic drift and diffusion properties
of a periodically driven renewal process as expressed by v(t) and Deff(t) to



its microscopic properties defined by the time dependent survival property
z(τ, t) = 1−

∫ τ

0 dτ
′w(τ ′, t). From the periodic solution of these equations one

finally obtains the mean frequency v̄ and effective diffusion coefficient D̄eff

by taking the period average according to eqs. (14).
Equations which govern the higher cumulant growth coefficients κ[n](t), n ≥

3, can also be derived using this method [14] by evaluating the coefficients of
higher order derivatives of P(x, t).

4.1 System cycles involving driven rate steps

Consider one cycle of the system to consist of two independent steps. Exam-
ples of such systems include the discrete model for excitable systems, whose
cycles consist of an excitation step and the motion along the excitation loop,
as well as the bistable two state system, where a full cycle is composed of a
transition from left to right and a transition back from right to left again.
Denoting the distribution of the times needed for the first and second step
by w(1)(τ, t) and w(2)(τ, t) respectively the distribution of the cycle times is
given by the generalized convolution

w(τ, t) =

∫ τ

0

dτ ′w(2)(τ − τ ′, t+ τ ′)w(1)(τ ′, t). (30)

If we assume the second step to be a rate process with time dependent rate
γ(2)(t), i.e.

w(2)(τ, t) = γ(2)(t+ τ) exp
[
−
∫ t+τ

t

dt′γ(2)(t′)
]

(31)

the general eqs. (29) can be further simplified. To this end consider a time
dependent waiting time distribution w(τ, t) and corresponding survival prob-
ability z(τ, t) := 1 −

∫ τ

0
dτ ′w(τ ′, t). Then

d

dt

∫ ∞

0

dτf(t − τ)z(τ, t− τ) = f(t) −
∫ ∞

0

dτf(t− τ)w(τ, t − τ) (32)

and

d

dt

∫ ∞

0

dτf(t− τ)

∫ τ

0

dτ ′f(t− τ ′)z(τ, t− τ) (33)

= f(t)

∫ ∞

0

dτf(t− τ)z(τ, t− τ) −
∫ ∞

0

dτf(t− τ)

∫ τ

0

dτ ′f(t− τ ′)w(τ, t − τ).

For the special case of the waiting time distribution defined by eqs. (30)
and (31) we additionally have

w(τ, t − τ) = γ(2)(t)z(τ, t− τ) − γ(2)(t)z(1)(τ, t− τ) (34)



where z(1)(τ, t) := 1 −
∫ τ

0
dτ ′w(1)(τ ′, t) is the survival probability of step 1.

Making the Ansatz

v(t) = γ(2)(t)q0(t) and Deff(t) = γ(2)(t)q1(t) (35)

one can show from eqs. (29), using eqs. (32), (33) and (34) that the auxiliary
variables q0(t) and q1(t) obey

q0(t) +

∫ ∞

0

dτγ(2)(t− τ)q0(t− τ)z(1)(τ, t− τ) = 1 (36a)

q1(t) +

∫ ∞

0

dτγ(2)(t− τ)q1(t)(t− τ)z(1)(τ, t− τ) = −1

2
+ q0(t) (36b)

+

∫ ∞

0

dτγ(2)(t− τ)q0(t− τ)

∫ τ

0

dτ ′γ(2)(t− τ ′)q0(t− τ ′)z(1)(τ, t− τ).

If in addition the first step is also a rate process with a time dependent rate
γ(1)(t) i.e.

w(1)(τ, t) = γ(1)(t+ τ) exp
[
−
∫ t+τ

t

dt′γ(1)(t′)
]

eqs. (36) can be further simplified, finally leading to

d

dt
q0(t) = −

[
γ(1)(t) + γ(2)(t)

]
q0(t) + γ(1)(t) (37a)

d

dt
q1(t) = −

[
γ(1)(t) + γ(2)(t)

]
q1(t) −

γ(1)(t)

2
− γ(2)(t)q20(t). (37b)

In the following section eqs. (36) and (37) will be used to investigate syn-
chronization in excitable and bistable systems respectively.

5 Applications

5.1 Synchronization in a double well system

Consider the discrete model of the periodically driven double well potential
system. According to subsection 3.1 a cycle of this system consists of two
driven rate processes. Thus we can employ eqs. (35) and (37) in order to
evaluate the mean frequency and the effective diffusion coefficient. To be
more specific, we consider a symmetric double well potential with dichotomic
driving,

γ(1)(t) =

{
r0 if t ∈ [nT , (n+ 1

2 )T )
r1 if t ∈ [(n+ 1

2 )T , (n+ 1)T )
(38)



and vice versa for γ(2)(t). In this special case, eqs. (37) can be solved analyt-
ically leading after some cumbersome algebra to [4]

v̄ =
1

T

∫ T

0

dtv(t) = vst + αν tanhR (39)

and [2, 13]

D̄eff =
1

T

∫ T

0

dtDeff(t) (40)

=
vst
2

[1
2

+ α(
1

2
+ cosh−2R)

]
+
αν

2

[
α(

1

2
cosh−2R+ 1) − 1

]
tanhR

where we have introduced the mean frequency without driving vst := 1/( 1
r0

+

1
r1

), a quantifier for the driving strength α = (r0−r1)
2

(r0+r1)2
and some ratio between

inner time scale and driving frequency R = (r0+r1)
4ν . These results agree with

the results found independently in [2] using a different approach. Having
calculated the effective diffusion coefficient and the mean frequency we can
evaluate the mean number of locked cycles Nlock according to eq. (4).

The transition rates r0 and r1 can be calculated according to eqs. (7) for
the bistable Langevin dynamics eq. (6) with a dichotomic driving s(t) = ±A.
In Fig. 8 we have plotted v̄ and Nlock as a function of the noise strength D.
We observe a 1 : 1 synchronization region, where the frequency of the system
is locked to the driving and the number of locked system cycles Nlock becomes
very high. The maximum of Nlock is very pronounced leading to a more sensi-
tive measure of optimal synchronization than just considering the plateau in
the mean system frequency. The theoretical results according to eqs. (39) and
(40) agree perfectly with simulations of the discrete Markovian model and
also the simulations of the underlying continuous Langevin dynamics reason-
ably agree within the range of validity of the rate approximation. Finally we
consider Nlock as a function of driving frequency. This number, representing
some measure of stochastic resonance, shows a maximum as a function of
driving frequency, in contrast to spectral based measures of stochastic res-
onance, like the spectral power amplification (Fig. 9). The optimal driving
frequency is located between the frequency 1/( 1

r0
+ 1

r1
) of the adiabatically

slowly driven system and the frequency 1
2 (r0 +r1) of the infinitely fast driven

system.

5.2 Synchronization in the FHN model

One cycle of the excitable system was argued in subsection 3.2 to consist of
a signal independent time needed to move along the excitation loop, followed
by a rate excitation with signal dependent rate γ(t). Thus eqs. (36) apply,
which however can no longer be solved analytically. Instead we have we have
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) of the adiabatically slowly driven system vun of
the undriven system A = 0 as a function of noise strength.

to resort to numerically methods in order to obtain the periodic solutions
q0(t) and q1(t) of eqs. (36). This is most advantageously done in Fourier



space, leading to a infinite set of linear equations for the Fourier coefficients.
Truncating the system and solving the remaining finite set of linear equa-
tions numerically gives the desired results. Again we consider a dichotomical
driving, leading to an excitation rate

γ(t) =

{
r0 if t ∈ [nT , (n+ 1

2 )T )
r1 if t ∈ [(n+ 1

2 )T , (n+ 1)T )
(41)

We further assume a deterministic waiting time T needed to move along the
excitation loop (cf. Fig. 6), i.e. w(τ) = δ(τ − T ). In Fig. 10 we have plotted
v̄/ν and Nlock as a function of driving frequency. We observe various m : n
frequency locking regimes. The corresponding driving frequencies very much
depend on the excitation loop time T . Namely n : 1 locking is observed if
the period of the driving is approximately between 2(n− 1

2 )T and 2nT while
1 : n locking is observed if the period of the driving is approximately between
1
nT and 1

n−1/2T [13].

Compared with simulations of the two state model we find perfect agree-
ment. Fitting the time T on the excitation loop as well as the two excitation
rates r0 and r1 to the FHN system, also leads to a reasonable agreement
between theory and Langevin simulations of the FHN system.

5.3 Controlling molecular motors

Finally we apply our methods to investigate the control of molecular motors
by a periodic modulation of the fuel concentration. To this end consider a
simple two phase model of a molecular motor Fig. 11 [15]. The first phase
consists of the binding of some fuel molecule X , normally ATP, to the motor
protein. This step is a rate process with a rate γ = c[X ] proportional to the
concentration [X ] of the fuel molecules. After binding of a fuel molecule a
stroke is triggered. Such a stroke is due to a conformational change of the
motor protein, which leads to the advancement on the track by one step-size.
The time needed for the stroke is assumed to be distributed according to
some waiting time distribution wstroke(τ). As a quantifier for the regularity
of the motion of the motor protein we choose the Péclet number

Pe =
v̄

D̄eff
.

It gives the number of steps after which the variance of the number of steps
has grown to one. The higher the Péclet number the more regular is the
motion of the motor protein. In order to increase the regularity we consider
a periodic modulation of the binding rate γ = c[X ]. This can be obtained
by periodically varying the concentration [X ] of fuel molecules or likewise, if
possible, the reactivity c of the protein.

The resulting system has the very same dynamics as the discrete model
for excitable dynamics investigated in section 5.2, namely the triggering of a
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Fig. 11. One step of the Brownian stepper. The step is induced by the binding of a
fuel molecule X according to a rate process with a rate γ(t) which is proportional to
the concentration [X](t) of the fuel molecules. Afterwards the motor molecule un-
dergoes conformational changes, thereby releasing the used fuel X∗ and advancing
by one step Length ℓ.

stroke which is a rate process with periodically modulated rate followed by the
stroke whose time to perform is distributed according to some waiting time
distribution wstroke(τ). We can therefore use eqs. (35) and (36) to numerically
evaluate v̄ and D̄eff in order to finally obtain Pe = v̄

D̄eff
.



In the following we consider Γ -distributed stroke times with mean T and
variance T 2/n, i.e.

wstroke(τ) =
1

Γ (n)

(τn
T

)n exp(− τn
T )

τ
. (42)

We further assume a harmonic modulation of the fuel concentration [X],

[X(t)] =
[X ]max + [X ]min

2
+

[X ]max − [X ]min

2
cos 2πνt.

The Péclet number as a function of the modulation frequency is shown in Fig.
12. We observe that for optimal modulation frequencies, the regularity of the
motor can be strongly enhanced. The resulting Péclet numbers exceed the
Péclet number obtained by just applying a constantly high fuel concentration,
thereby reducing the stochasticity of each step..
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Fig. 12. Péclet number as a function of driving frequency (top, solid line) for the
molecular motor with a harmonically modulated fuel concentration (bottom right).
The stroke time was chosen to be distributed according to a Γ -distribution eq. (42)
with n = 100. The fastest excitation time γ([X]max)

−1 is 20 times smaller than the
mean stroke time T while the slowest excitation time γ([X]min)−1 is 5 times larger
than the mean stroke time T . The dashed and dotted lines in the top plot show the
Péclet number for a constant excitation rate γ([X]max) and γ([X]min) respectively.



6 Conclusion

We have presented a method to calculate the mean frequency and effective
diffusion coefficient of the numbers of cycles(events) in periodically driven re-
newal processes. Based on these two quantities one can evaluate the number
of locked cycles in order to quantify stochastic synchronization. Applied to a
discrete model of bistable dynamics the theory can be evaluated analytically.
The system shows only 1 : 1 synchronization, however in contrast to spectral
based stochastic resonance measures the mean number of locked cycles has
a maximum at an optimal driving frequency, i.e. the system shows bona fide
resonance [6]. For the discrete model of excitable dynamics, the theory can
be evaluate only numerically. These systems show different n : m synchro-
nization regions, whose corresponding driving frequencies sensitively depend
on the time needed to move along the excitation loop.
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1 Phenomena

In nature, spatio-temporal patterns in excitable media occur in seemingly
unlimited variety. As early as 1946 Wiener and Rosenblueth [WR46] intro-
duced the concept of excitable media to explain the propagation of electrical
excitation fronts in the heart. Waves of electrical activity in the heart muscle
assist its rhythmic contractions. The presence of spiral waves can indicate
dangerous fibrillation. This is one of the motivations why the dynamics and
control of spiral waves are studied. Furthermore spiral waves are typical,
almost ubiquitous, patterns in excitable media; see [ZE06] in this volume.
Mathematically, self-organized spiral patterns are a striking phenomenon of
reaction-diffusion systems, in its own right, motivated by a large variety of
application areas.

Slime mold aggregation is another example. As long as food in form of
bacteria is present the slime mold cells live independently in the soil. As food
becomes rare they form a multicellular “organism”. This “organism” moves
in order to find appropriate conditions for production and dispersal of spores.
During the early phase of aggregation, chemotactic movement can proceed
in form of spiral waves [FL98].

Spiral waves also arise in the oxidation of carbon-monoxide on platinum
surfaces [BM03]. In 1972 they have been dicovered by Winfree [Win72] in
the photosensitive Belousov-Zhabotinsky (BZ) reaction, see for recent inves-
tigations for example [ZBB+03, ZBB+04,ZE04]. Both reactions are studied
in the SFB 555. The classical BZ reaction is a catalytic oxidation of malonic
acid, using bromate in an acidic environment. Experimentally it exhibits well
reproducible drift, meander and “chaotic” motions of the spiral wave and its
tip.

In several experiments and numerical simulations, transitions from rigidly
rotating spiral waves to other more complicated waves have been observed.
The dynamics near rigidly rotating waves and their transition to mean-
dering and drifting spirals has been studied extensively; see, for instance
[SS91,Bar94b,SS01]. The transition from planar meandering spirals to seem-
ingly three frequencies has been studied numerically in [PM95] by calculating
the Fourier spectrum of the waves. Analyzing the parameter space of the un-
derlying partial differential equation, different frequency branches have been



Fig. 1. Outward moving spiral wave (left) with different associated tip motions
(right: rigid rotation, drift and meander).

identified. These frequencies determine the coarse structure and geometry of
the pattern. The effect of periodic forcing on rigidly rotating spiral wave so-
lutions has been investigated experimentally in [NvORE93] for catalysis on
platinum surfaces. The periodic forcing has been realized via an externally
modulated temperature. Periodic forcing of a photosensitive variant of the
BZ reaction has been studied experimentally in [BE93b, ZSM94]. The forc-
ing is achieved by periodically changing light intensity. In both experimental
settings, meanders and resonant drifts occur.

Varying the light intensity enables effective control of the motion of spiral
waves, see [BBSE00,KGZM01,SZM93,ZE06]. Controlling the motion of spiral
waves is an important challenge, for example, for the defibrillation of cardiac
tissue. The elimination of spiral waves by multiple shocks of external current
has been investigated numerically in [PZMK00].

Although the examples presented above are of very diverse nature they
generate astonishingly similar phenomena. We have chosen the photosensitive
BZ reaction as the main experimentally accessible paradigm in the SFB 555;
see [ZE06] in this volume. Therefore our paper aims at the mathematical
analysis of the dynamics of complex spatio-temporal patterns in nonlinear
excitable, spatially or temporally heterogeneous media, with the BZ reaction
in mind.

Depending on the space dimension different but related resulting dynam-
ics can be observed. One example are the emission centers of pulse chains in
one space dimension. In two space dimensions there are emissions of target
patterns and the phenomena of rotating, meandering and drifting spirals. In
three space dimensions, formally, these correspond to oscillating and drifting,
possibly twisted, filaments of scroll waves.

There are two alternative methods commonly used to model the dynamics
of spiral waves. The first one is a description by parabolic partial differential
equations (PDEs), specifically reaction-diffusion systems. This has been one



of the settings used by Wiener, originally, in [WR46]. The other method is
a description of the wave fronts by reduced (mean-)curvature flows of curves
and surfaces. This approach, known as kinematic theory, also dates back as
far as Wiener’s original paper [WR46]. The special case of an eikonal theory
assumes the normal propagation velocity of the wave front to be independent
of curvature, as stated in Huygens’ principle and in geometric optics. For more
detailed mathematical investigations, and partial justifications in a singular
perturbation setting, see also [KT92], [Kee92], [MZ91], [MDZ94], the survey
[Mik03], and the references there.

Either approach has advantages and disadvantages when tackling rotat-
ing, meandering and drifting spiral wave phenomena.

Reaction-diffusion systems encounter difficulties even for the seemingly
simple question of mere existence of rigidly rotating spiral waves. With the
technically demanding tool of spatial dynamics in the (logarithmic) radial
direction, this difficulty has been overcome for small amplitude waves in a
celebrated paper by Scheel [Sch98]. Subsequently, interesting consequences
have been derived; most notably a first classification of possible instabilities
of defect dynamics, relating to core and far-field break-up [SS04].

Moreover, under the assumption of pure point critical spectrum, a cen-
ter manifold description of the associated meandering, drifting, and reso-
nance phenomena has been achieved; see [FSSW96], [SSW99], and the sur-
vey [FS03]. We give a brief exposition in section 2.1. Specific calculations,
however, require disproportionate computational effort to account for the
two-dimensional time dependent problem in large (theoretically unbounded)
domains.

The unbounded domain causes difficulties, on the one hand, via continu-
ous spectrum which may - and does - interfere with the pure point spectrum
required for our bifurcation analysis. The unbounded domain is necessary,
on the other hand, to correctly incorporate the Euclidean symmetry of the
problem under translations and rotations. In section 2 below we will specif-
ically address competing and coexisting pinning and drifting phenomena.
Such phenomena are predicted for the light-sensitive BZ system, when full
Euclidean symmetry is broken towards a mere translational lattice symmetry,
by choosing a spatially periodic lighting.

Kinematic theory, the alternative approach sketched in section 3, has the
advantage of working with partial differential equations (PDEs) in a single
space dimension: a half line which extends from the tip, at s = 0, to the
Archimedean far-field s → +∞. Here arc length s parametrizes the wave
front. See (40) for a PDE for curvature κ = κ(t, s) as a function of time
t and arc length s. A description by curvature κ(t, s), rather than position
(x(t, s), y(t, s)) of the wave front, has the advantage of incorporating Eu-
clidean equivariance into the description, a priori. Indeed, translated and
rotated wave fronts are described by identical curvature functions κ(t, s). It
is therefore surprising, perhaps, that a consistent purely kinematic theory



which includes meandering and drifting phenomena has remained elusive, so
far. In section 3 we first derive existence and multiplicity results for rigidly
rotating Archimedean spirals, fairly directly, from a center manifold argu-
ment in the associated singular second order ordinary differential equation
(ODE) of the kinematic theory; see [FGT04, FGT06]. For periodic forcing
of the wave speed, we then overcome the meandering/drifting barrier of the
curvature-independent eikonal theory by modification of the tip dynamics,
only, following the presentation in [MDZ94]. Following [Jan06] we also de-
rive supersipral patterns, together with a strong stability property, in the
periodically forced eikonal case. In addition, we present super-superspirals
of higher order, caused by nearly resonant quasi-periodic forcing functions.
These eikonal results are based on constant velocity wave propagation, alone,
independently of the curvature of the wave front. Such an approach has been
suggested in [WR46], in the guise of wave fronts and Huygens’ principle, even
though the meandering/drifting effects which we now address were unknown,
then.

2 Reaction-diffusion spirals

2.1 Center manifold reductions

An important feature of dynamics and bifurcations of spiral waves is the Eu-
clidean symmetry SE(2) of the plane. The special Euclidean symmetry group
SE(2) consists of all planar translations and rotations. Barkley [Bar94a] was
the first to notice the relevance of this group for meandering spiral wave
dynamics. Indeed, let u(t, x), x ∈ R2, be any solution of a spatially homo-
geneous reaction-diffusion system. Let R denote any fixed rotation matrix,
and S ∈ R2 any fixed translation vector. Then u(t, R−1(x− S)) is a solution
of the same reaction-diffusion system. Barkley therefore proposed, but could
not justify, that the dynamics of planar rigidly rotating or meandering spi-
rals is governed by an SE(2)-equivariant vector field. Phenomenologically, he
could then interpret the transition to meandering or drifting spiral waves as
a Hopf bifurcation. Indeed, he numerically verified the crossing of a pair of
simple eigenvalues of the linearization of rotating waves through the imagi-
nary axis. Similarly, Mantel and Barkley [MB96] described periodic forcing of
meandering spirals by periodically forced equivariant equations on the group
SE(2) itself. The mathematical tool to justify such reduced descriptions by
low-dimensional systems of ODEs, which was still missing at the time, is an
SE(2)-equivariant version of center manifold theory.

Center manifold theory has become an indispensable tool for the study of
ODEs. An equilibrium is called hyperbolic if the linearization of the vector
field at that equilibrium does not possess spectrum on the imaginary axis.
The local dynamics of ODEs near a hyperbolic equilibrium is determined by
that linearization. In particular there exist stable and unstable manifolds.



Their tangent spaces at the equilibrium are given by the stable and unsta-
ble eigenspaces of the linearization, which are the generalized eigenspaces
to eigenvalues with (strictly) negative and positive real parts, respectively.
These invariant manifolds contain all solutions which locally approach the
equilibrium exponentially fast in forward time and backward time, respec-
tively. The dynamics becomes much more interesting if the equilibrium is
non-hyperbolic, i.e., if the linearization possesses purely imaginary eigenval-
ues. Generically, conserved quantities, time reversibility, or parameters in
the system may lead to purely imaginary eigenvalues. These eigenvalues give
rise to a local center manifold. The tangent space of the center manifold at
the equilibrium is given by the center eigenspace, which is the generalized
eigenspace to the purely imaginary eigenvalues. Solutions on the center man-
ifold have only sub-exponential growth or decay. Furthermore all solutions
which stay bounded and small for all time are contained in the center man-
ifold [Van89]. Local center manifolds are not unique, in contrast to stable
and unstable manifolds. But center manifold theory simplifies the system.
It reduces the dimension and preserves the interesting solutions. One ap-
plication of center manifold theory is the Hopf bifurcation theorem. Under
generic assumptions the Hopf bifurcation theorem states that an equilibrium
with a simple pair of purely imaginary eigenvalues, at a specific parameter
value, possesses periodic solutions on a center manifold, for nearby parameter
values.

Center manifold theory extends to many infinite-dimensional systems, like
certain partial differential equations (PDEs). Center manifold reductions can
be obtained locally or globally. For local center manifolds of parabolic PDEs
see Vanderbauwhede and Iooss [VI92]. Dimension reductions via global center
manifolds for spatially inhomogeneous planar media have been achieved by
Jangle [Jan03,GJ05]; more details will be presented below.

The central question, which we will pursue in the present section, asks
for the consequences of symmetry breaking from full SE(2)-equivariance
to a mere translational lattice symmetry. Experimentally this question is
motivated by the photosensitive BZ reaction; see [ZBB+03, ZBB+04, ZE04,
ZBBE05, KM05]. In these experiments, the excitability of the BZ medium
in a gel reactor depends sensitively on the intensity of light exposure. This
intensity can be varied, both spatially and temporally. For time indepen-
dent light intensity, for example, with slight spatial variation in form of a
checker board light-dark pattern, the spatial homogeneity of the underlying
reaction-diffusion system is broken to a mere lattice periodicity, spatially.
Mathematically, SE(2)-equivariance is thus perturbed to a mere lattice sym-
metry. This motivates our mathematical study of the possible consequences
of equivariance breaking perturbations for the dynamics of rotating wave pat-
terns.

But what are possible dynamic consequences of such an equivariance
breaking perturbation to a lattice group? As many authors before us, we



describe such consequences in terms of the tip motion of meandering spi-
rals. We would like to keep in mind, however, that the prominently visible
phenomenon of the tip motion only amounts to a visualization of the trans-
lational component of the SE(2) coordinates, which we will derive in section
2.2 via an associated center manifold reduction. The additional investment
towards a clean, mathematically well-founded framework is amply rewarded.
All ambiguities as to various ad-hoc definitions of the spiral tip, for exam-
ple, are going to disappear in our setting – along with the mystery of their
phenomenological equivalence.

Drifting versus pinning are the most prominent spiral tip motions in ge-
ometries with lattice symmetry. By pinning we denote tip motions which
come to rest, converging to a fixed spatial location, as time t → +∞. Drift-
ing, in contrast, indicates motions which are unbounded in the underlying
lattice geometry.

In practice, of course, drifting motions will simply sweep the spiral tip
to the domain boundary where the spiral will annihilate. Such boundary
annihilations - a highly desirable effect in the context of defibrillation - can
be understood as a cancellation with the anti-rotating mirror image spiral
after local reflection through the Neumann boundary condition. Below, we
do not pursue such modifications due to bounded domains.

Instead, we show below how pinning and drifting motions may coexist,
within the same center manifold of the same underlying system and at the
same parameter values. In fact an ever so slight variation of initial conditions
may kick the solution from drifting to pinning mode, or back. The respec-
tive initial conditions for these behaviors will be interwoven in a Cantor-like
structure.

More generally, we will address the question of realizing any flow on the
2-torus T 2 = R2/Z2, which can and should be viewed as the space of tip
positions in the plane R2 modulo the lattice periodicity Z2. The coexistence
of drifting and pinning motions then becomes a corollary to the realization
of Cherry flows on 2-tori, see [PdM82], by spiral tip dynamics in lattice
symmetries.

2.2 Center manifolds in unbounded domains

Chemical systems are traditionally modeled by reaction-diffusion systems on
suitable domains. As was explained above, our main modeling assumption
is that the domain is actually unbounded, that is, we consider governing
partial differential equations on the entire plane. This assumption may seem
unrealistic: neither experiments nor numerical simulations can be performed
on unbounded domains. In our particular context of spiral waves in the BZ
reaction, however, experiments indicate that spiral waves behave much as if
there were no boundaries. Therefore until boundary annihilation sets in –
typically within only one to two wavelengths from the boundary itself – we



consider reaction-diffusion systems:

∂tu(t, x) = D∆xu(t, x) + F (u(t, x)), u : [0,∞) × R
2 −→ R

N , (1)

where x ∈ R2 denotes space, t ≥ 0 is time, and u = u(t, x) ∈ RN is the
concentration vector. The nonlinearity F : RN −→ RN is a Ck+2-function,
k ≥ 1, and D is a constant diagonal matrix with strictly positive entries.

Under appropriate growth conditions on F there exists an α ∈ [0, 1)
such that F ∈ Ck+2(Xα, X), where X := L2(R2,RN ). The fractional power
space Xα is an interpolation space which is more regular than L2(R2,RN )
but less regular than the Sobolev space H2(R2,RN ) of functions u(t, ·) with
square integrable second spatial derivatives. By Henry [Hen81], equation (1)
generates a Ck+2 semiflow φt on Xα. Thus the solution to equation (1) at
time t ≥ 0 with initial condition u0 is given by a function u = u(t, x) such
that u(t, ·) = φt(u0).

Equation (1) exhibits the symmetry of the homogeneous BZ reaction,
namely equivariance under the Euclidean group SE(2) of all translations S
and rotations R in the plane. The group multiplication of (Ri, Si) ∈ SE(2)
is given by

(R1, S1)(R2, S2) = (R1R2, S1 +R1S2). (2)

The group action ρ : SE(2) −→ GL(Xα) of the group SE(2) on the function
space of spatial profiles u(t, ·) ∈ Xα is defined by

(ρ(R,S)u)(x) := u(R−1(x − S)). (3)

Thus, an element g = (R,S) of SE(2) simply rotates and translates the
profile u. The seemingly strange inverses in (3) ensure, together with (2),
that ρg1g2

u = ρg1
ρg2

u. Given this bounded linear group action, equivariance
of the vector field in equation (1) can be stated as:

D∆(ρgu) + F (ρgu) = ρg(D∆u+ F (u)) for all g ∈ SE(2), u ∈ H2. (4)

The equivariance property (4) simply means: whenever u(t) ∈ Xα solves
reaction-diffusion system (1), then ρgu(t) ∈ Xα is also a solution, for any
fixed choice of g = (R,S) ∈ SE(2). In terms of the semiflow φt this property
can be expressed as

φt(ρgu) = ρgφt(u) for all g ∈ SE(2). (5)

Substantial mathematical difficulties arise because the group action ρ is only
strongly continuous. Moreover the group SE(2) is non-compact due to its
translational component. We suppress these technicalities in the following.

Supported by experimental and numerical evidence, we assume there ex-
ists a rigidly rotating solution of (1). In other words, there exists u∗ ∈ Xα

such that the time evolution of this initial condition is a pure rotation with
non-zero frequency ω∗:

φt(u∗) = ρ(Rω∗t,0)u∗. (6)
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imaginary part
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1 (triple)

Fig. 2. Floquet multipliers µ of Dφ2π/ω∗
(u∗) in the complex plane.

This assumption implies that φt(u∗) is a time-periodic solution of (not neces-
sarily minimal) period 2π/ω∗. An element u∗ of our phase space Xα is called
a relative equilibrium if the time evolution φt(u∗) lies inside the group orbit
ρg(u∗). Hence the periodic solution of u∗ consists of relative equilibria.

Spectral analysis of the linearized semiflow along a periodic solution is
called Floquet theory. The eigenvalues µ of the linearized period map are
called Floquet multipliers. A Floquet exponent is a complex β such that
exp(βτ) is a Floquet multiplier of the system, where τ denotes the mini-
mal period. A periodic solution is hyperbolic if, and only if, it possesses only
the trivial Floquet multiplier µ = 1 on the unit circle, and this multiplier has
algebraic multiplicity one. Otherwise it is called non-hyperbolic. In ODEs hy-
perbolic periodic solutions possess stable and unstable manifolds, similarly to
the case of hyperbolic equilibria. Non-hyperbolic periodic solutions possess
center manifolds.

We now return to our setting (1) and assume that µ = 1 is a Floquet
multiplier of the periodic solution φt(u∗), with three-dimensional generalized
eigenspace. The remaining spectrum we assume to lie strictly in the interior of
the complex unit circle. Due to Euclidean symmetry there exist at least three
eigenvectors of Dφ2π/ω∗

(u∗) corresponding to the eigenvalue 1, see Figure 2.
The eigenvectors are the three partial derivatives ∂tu, ∂x1

u and ∂x2
u, of the

solution φt(u∗), at t = 0.

Our spectral assumption can also be expressed in a rotating coordinate
frame ( [Wul96], [SSW97]). Let

L := D∆+ ω∗
∂

∂ϕ
+DuF (u∗), (7)

where ∂
∂ϕ denotes the partial derivative with respect to the angular compo-

nent, i.e. ∂
∂ϕ = x1∂x2

− x2∂x1
. In a co-rotating coordinate frame, the relative

equilibrium u∗ becomes an equilibrium. Eigenvalues of L are therefore Flo-
quet exponents of the periodic solution φt(u∗). The equivalent spectral as-
sumption is basically that zero is a triple eigenvalue of L and the remaining



spectrum has negative real part, uniformly bounded away from the imaginary
axis.

The symmetry of equation (1), which causes the non-hyperbolic eigen-
value zero to be triply degenerate, gives rise to a three-dimensional invariant
manifold of φt(u∗). This is the center manifold which coincides with the group
orbit of u∗, namely SE(2)u∗ := {ρgu∗; g ∈ SE(2)}. Thus the center manifold
of u∗ is simply the set of all translations and rotations of the initial rotating
wave u∗. See [SSW97] for this result and some generalizations.

2.3 Lattice symmetry

The main mathematical feature of the above invariant center manifold SE(2)u∗
is its normal hyperbolicity. An invariant manifold is called normally hyper-
bolic if the linearized dynamics in the normal directions are of faster expo-
nential rate than those in tangential direction. Normally hyperbolic invariant
manifolds persist under small perturbations [HPS77].

To account for static, lattice periodic light patterns in the photosensitive
BZ reaction, we add a symmetry breaking perturbation εH(u) to equation (1)
as follows:

ut = D∆u+ F (u) + εH(u). (8)

We assume that ε is small and H ∈ Ck+2(Xα, X) keeps only a transla-
tional lattice symmetry Z2, but breaks the rotational symmetry. Therefore
the semiflow φε

t of the perturbed equation (8) is only lattice equivariant:

φε
t (ρ(0,S)u) = ρ(0,S)φ

ε
t (u) for all S ∈ Z

2. (9)

For example H could be a superposition operator (H(u))(x) = h(x, u(x)),
where h : R2 × RN → RN is a Ck+2-function that satisfies mild growth
conditions. Translational equivariance then requires h(x+ S, u) = h(x, u) for
all S ∈ Z2.

In the photosensitive BZ reaction this corresponds to a lattice symmet-
ric lighting pattern of the BZ medium. We recall our fundamental question:
Which motions of the spiral tip can be realized by choosing an appropriate
perturbation H? According to equivariance condition (9) the lighting pat-
tern in the photosensitive BZ reaction can only be chosen freely on a unit
square of the underlying media. The function H is then determined on the
entire plane, by Z2-periodic extension. The main result below asserts, that
for every prescribed ODE motion of the perturbed spiral wave tip there is
a lighting pattern, represented by H , such that this prescribed motion can
be realized, to leading order in the perturbation parameter ε. An example
of an “illumination” functional H will be given such that, both, pinning and
drifting of the perturbed spiral tip, coexist.

We now state the center manifold theorem of the perturbed system:



Theorem 1 [Jan03] Assume the existence of a rotating wave solution u∗
of the unperturbed system. Suppose 1 is a triple Floquet multiplier of the
linearized flow and the remaining spectrum lies strictly in the interior of the
complex unit circle. Then, for ε sufficiently small, there exists a lattice- and
flow-invariant three-dimensional manifold Mε ⊂ Xα. The manifold Mε is
a locally exponentially attracting manifold. Differentiability of Mε is Ck,1,
including dependence on the parameter ε: the manifold can be represented by
maps with Lipschitz continuous k-th derivatives.

We briefly comment on the basic steps in the proof of theorem 1. For
homogeneous lighting of intermediate strength a rigidly rotating spiral wave
solution was assumed to be given by u∗. The manifold Mε is close to the un-
perturbed normally hyperbolic center manifold SE(2)u∗ given by the trans-
lations and rotations of the spiral wave u∗. The existence of the manifold
Mε implies that the spiral shapes will stay close to that of u∗, even un-
der slightly lattice periodic lighting patterns which destroy the full Euclidian
equivariance. The symmetry breaking will cause the slightly deformed spirals
to move. Projecting the dynamics of Mε onto the 3-dimensional reference
manifold SE(2)u∗ yields the dynamics of the perturbed spirals, via the rota-
tional component R and the two translational components S of SE(2). The
rigid rotation of the unperturbed spiral u∗ is replaced by a slow modula-
tion of the rotation frequency. The translational component becomes time
dependent and is responsible for non-trivial tip dynamics.

The center manifold in theorem 1 is constructed by applying the method
of the graph transform. We give a brief summary here; for further background
see Shub [Shu87]. First we choose appropriate local coordinates in a neighbor-
hood of the group orbit. The neighborhood of the group orbit SE(2)u∗ is a
vector bundle over SE(2)u∗. Therefore every profile u ∈ Xα sufficiently close
to the group orbit SE(2)u∗ can be written as the sum of an element of the
group orbit SE(2)u∗ and a small element of an infinite-dimensional subspace
V of Xα which corresponds to the stable eigenspace of the linearized flow.
See also Figure 4 below. Thus u has a shape close to (a translated or rotated
version of) the spiral wave solution u∗. A section of the vector bundle is a
function mapping every element of SE(2)u∗ to the complementary infinite-
dimensional stable eigenspace. The perturbed flow φε

T applied to the graph of
a section will again be a section of the bundle due to normal hyperbolicity of
SE(2)u∗ if T is large enough. This graph transform, which maps sections to
sections, becomes a contraction on the space of Lipschitz-continuous sections
equipped with the metric induced by the sup-norm. Hence it has a unique
fixed point and the graph of the fixed point is the perturbed center manifold
Mε.

Using graph transforms, Mε automatically becomes time- and flow-in-
variant. Smoothness of the manifold Mε is a very delicate question and has
been settled in [Jan03].



As an example we state the two-component Oregonator model of the
photosensitive BZ reaction with external forcing, see for example [ZBB+04]:

du

dt
= ∆u+

1

ε

[
u− u2 − (fv + I(t))

u − q

u + q

]
,

dv

dt
= u− v.

(10)

Here u corresponds to the concentration of the autocatalytic species, bromous
acid HBrO2, and v corresponds to the oxidized form of the catalyst. The
parameters ε = 0.05, q = 0.002, and f = 2.0 are fixed and I = I(t), induced
by external light intensity, describes the bromide production.

2.4 Spiral tip dynamics

Many definitions of spiral tips are in use. One of them considers the spiral
tip as “the” point of the spiral wave front with maximal curvature [BE93a].
A practical way to determine the tip position in an experiment is to look
at spiral wave fronts extracted from two consecutive frames of a digitized
recording. The intersection of these lines is also considered a tip position
[KGZM01]. For several other definitions see [Zyk87,JSW89] and Figure 3.

In this section we clarify the mathematical relation – and equivalence –
of all this zoo of tip definitions; see (11)–(21) below. The main point is that
any tip function z∗ : Xα → C should associate a tip position z∗(u) to a
spatial profile u ∈ Xα, such that shifted or rotated profiles u give rise to a
correspondingly shifted and rotated tip position z∗. Any reasonable defini-
tion of a tip function z∗ will certainly have to satisfy at least this minimal

(a) (b)

(c)

(d)

Fig. 3. “Tips” of spiral wave pattern in the BZ reaction: a) core center, b) maximum
curvature, c) rotation center, d) inflection point; see [MZ94].



condition of equivariance with respect to the Euclidean group SE(2). It turns
out, below, that any tip definition then gives rise to the same basic form of
the reduced ODE on a center manifold near the unperturbed reference spiral
wave shape SE(2)u∗, as long as the tip faithfully represents the translation
action in SE(2).

We discuss the interpretation of the tip function z∗ for the spatially ho-
mogeneous, fully SE(2)-equivariant case first. The modifications for the pho-
tosensitive case with lattice symmetry will be discussed in section 2.5 below.

¿From [SSW97] we recall the existence of a center manifold M associated
to a rigidly rotating reference spiral, alias a relative equilibrium SE(2)u∗;
see also (1)–(7) above. In fact, the center manifold M accounts for all so-
lutions which remain in a neighborhood of the relative equilibrium SE(2)u∗
for all positive and negative times. In particular, all bifurcations due to point
spectrum on the imaginary axis of the linearization L from (7) occur in the
finite-dimensional center manifold M. For simplicity of presentation, how-
ever, we then suppress the dependence of M, and of the flow on M, on any
extra bifurcation parameters.

To perform any specific calculations, and to clarify the zoo of possible
tip functions z∗, we need good coordinates on M: coordinate free abstract
nonsense will not suffice here. Palais has constructed good coordinates near
group orbits of proper, but not necessarily compact, group actions. We apply
these coordinates to the group SE(2) and the reference group orbit SE(2)u∗
of rigidly rotating waves. Let g ∈ SE(2) and let v ∈ V denote elements of a
local section V, transverse to the group orbit SE(2)u∗ in the center manifold
M. Clearly gv, or more precisely ρgv, then cover a tubular neighborhood of
SE(2)u∗, see Figure 4. Notationally, we may let v = 0 correspond to u∗ itself
here.

In [FSSW96] the resulting ODEs in the center manifold M of a relative
equilibrium SE(2)u∗ were derived, in these Palais coordinates. Suppressing
extra parameters, again, the result is

ġ = a(v)g

v̇ = ϕ(v).
(11)

Here a : V → alg(SE(2)) is a function from the section V to the Lie algebra
of SE(2), and ϕ(v) denotes a vector field on V . Anyway, please read on. To be
more specific, we rewrite (11) in terms of suitable coordinates g = (R,S) on
the Euclidean group SE(2). Using complex notation, we write g = (R,S) =
(eiα, z). Here R = eiα, acting multiplicatively, denotes rotations of x ∈ R2 ∼=
C. The translation component S = z ∈ R2 ∼= C, acting additively, denotes
translations. In coordinates (α, z, v) ∈ (R/2πZ) × C × V , system (11) now
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V

Fig. 4. The construction of local Palais coordinates (g, v) for a tubular neighbor-
hood of a group orbit SE(2)u∗.

demystifies and reads

α̇ = ω(v)

ż = eiασ(v)

v̇ = ϕ(v).

(12)

with given functions (ω, σ) : V → R × C.
How to interpret systems (11), (12)? First of all, let us interpret the

Palais coordinates (g, v) = (eiα, z, v) ∈ SE(2) × V themselves. Obviously,
the definition of Palais coordinates implies that elements u1, u2 in the same
group orbit have the same component v. Therefore v parametrizes the shape
of spatial profiles, in our setting. Indeed, spatial profiles u1, u2 ∈ Xα which
have the same v-component differ only in g, viz. by a rotation and translation
of their spatial profiles:

u2(x) = (ρgu1)(x) = u1(e
−iα(x− z)). (13)

The group coordinates g = (eiα, z) then correspond to a translation of the
spatial profile by z, and a rotation by an angle α ∈ R/2πZ.

In Palais coordinates (g, v) = (eiα, z, v), systems (11), (12) have skew
product structure: the pure shape dynamics v̇ = ϕ(v) of the shape variable v
is autonomous, and is not influenced by the group coordinates g = (eiα, z) of
rotation angle α and (complex) translation z. On the other hand, the shape
variable v acts as a forcing on the group variables (eiα, z).

We are now ready to clarify the role of tip functions z∗ : M → R2 ∼= C.
We only assume equivariance

z∗(ρg(u)) = gz∗(u) (14)

for any g ∈ SE(2), u ∈ M. In fact we reduce attention to the center manifold
M because all bifurcation phenomena must occur in M. We claim that we



may substitute z∗ = z∗(u) for the translation component z in the Palais
coordinates (eiα, z, v), without changing the skew product structure of the
ODE (12) on the center manifold M.

Indeed, equivariance condition (14) on the tip function implies that

z∗ = z∗(u) = z∗(ρ(eiα,z)v) = (eiα, z)z∗(v) = eiαz∗(v) + z. (15)

This defines a transformation

(eiα, z, v) 7→ (eiα, z∗, v) (16)

with inverse given explicitly by

z = z∗ − eiαz∗(v). (17)

Thus the tip position z∗ may indeed be considered as the translation compo-
nent z of the Palais coordinates, directly, up to a coordinate transformation
(16). Let us calculate, briefly, the resulting skew product ODE component
for z∗:

d

dt
z∗ =

d

dt
(eiαz∗(v) + z) = iα̇eiαz∗(v) + eiαz∗′(v)v̇ + ż =

= eiα(iω(v)z∗(v) + z∗′(v)ϕ(v) + σ(v)) =: eiασ∗(v)
(18)

with the obvious definition for the new function σ∗(v). Therefore the tip func-
tion z∗ satisfies a transformed ODE of the same structure as the translation
component z itself.

For illustration purposes, let us now interpret meandering and drift in
terms of the Palais coordinates (eiα, z, v). First note that the relative equi-
librium v = 0, which corresponds to the rigidly rotating spiral, becomes an
equilibrium ϕ(0) = 0 of the shape ODE v̇ = ϕ(v) in (12). Indeed the group
orbit SE(2)u∗, which corresponds to one and the same shape variable v = 0,
contains the time orbit of the rigidly rotating spiral u∗. Therefore

α̇ = ω(0)

ż = ei(ω(0)t+α(0))σ(0)
(19)

indicates a rigid rotation frequency ω∗ = ω(0) and a circular tip motion z(t);
see Figure 1.

Now assume the shape dynamics v̇ = ϕ(v) undergoes a Hopf bifurca-
tion from this trivial (relative) equilibrium v = 0, albeit with suppressed
parameters. Then v(t) will be periodic, say with “breathing” frequency ω1 of
the pure shape dynamics. Multiplying (12) by the nonzero Euler multiplier
ω∗/ω(v) ≈ 1 and redefining σ(t) := σ(v(t)) ω∗/ω(v(t)) we obtain the tip
equation

ż = eiα(t)σ(t) = eiω∗tσ(t). (20)



Obviously, σ(t) has inherited minimal period 2π/ω1 from the shape equation.
Fourier expansion of σ(t) and direct integration of (20) implies that z(t)
undergoes a 2-frequency bounded meandering epicycle motion, unless the
frequencies

ω∗ = mω1 (21)

are in integer resonance, for some m ∈ N. In the latter case, nonvanishing
(−m)-th complex Fourier coefficients of σ(t) will provide an unbounded drift-
ing motion which is linear in t. Note that the rotation frequency ω∗ must be
an integer multiple of the breathing frequency ω1 of the pure shape dynamics
v̇ = ϕ(v), for drifting tip motion to occur. Both, meandering and drifting spi-
rals change their shape v(t) periodically and are therefore also called relative
periodic orbits.

By our above considerations, these meandering/drifting effects can be in-
terpreted as tip motions, directly. The results are universal, at the same time,
in the sense that the observed motions do not depend on the particular choice
of a tip function z∗(u) from the large zoo of SE(2)-equivariant possibilities.

Nonautonomous time-periodic forcings with frequency ω1 can be treated
analogously. Indeed, ω = ω(t) and σ = σ(t) then depend on time t directly
and our remarks on (20), (21) apply. We will return to this observation when
we describe the alternative kinematic approach, in section 3.

Some arbitrariness is still involved in the choice of the transverse Palais
section V in Figure 4. This geometric arbitrariness can in fact be used to
further simplify the skew product form (11). Such an approach, which first
simplifies v̇ = ϕ(v) to Poincaré-Birkhoff normal form, and then redefines V
to further simplify the cross term a(v), has been pursued in [FT98].

2.5 Reduced tip equations for the photosensitive system

As above, we consider an unperturbed reference spiral wave SE(2)u∗ which
is rigidly rotating with constant frequency ω∗. In this section we adapt the
considerations of section 2.4 on the tip dynamics z∗(t), and the skew product
flow (12) in the center manifold M, to lattice periodic perturbations εH(u);
see (8). We recall that such perturbations account for slight, spatially periodic
but temporally constant, variations of light intensity in the photosensitive BZ
reaction.

Under the spectral assumptions of section 2.3, theorem 1, it is now possible
to reduce the perturbed dynamics to a three-dimensional center manifold Mε

which is modeled over the group SE(2) itself. In Palais coordinates

α̇ = ω∗ + εγ(α, z, ε)

ż = εh(α, z, ε).
(22)

As was justified in section 2.4, the angle α denotes the phase and z the
position of the spiral tip. The Palais section coordinate v ∈ V is absent



here, because the critical spectrum is now three-dimensional, only, and is
accounted for by the three-dimensional group SE(2) itself. Therefore the
center manifold Mε is a graph over the group coordinates (eiα, z) ∈ SE(2).
A rigorous derivation of the reduced equation (22) has indeed been achieved
in [Geo03, Jan03], under the assumption that the unperturbed spiral wave
u∗(·) is spectrally stable with the exception of a triple critical eigenvalue
due to symmetry; see theorem 1. Note that the nonlinearities γ(α, z, ε) and
h(α, z, ε) obey the lattice symmetry relic of full Euclidean symmetry, namely

γ(α, z + k, ε) = γ(α, z, ε)

h(α, z + k, ε) = h(α, z, ε)
(23)

for every angle α ∈ S1, z ∈ C ∼= R2 and integer k ∈ Z2 ⊆ R2. See also (9).
In fact (22) therefore induces a (nonautonomous) flow on the 2-torus

z ∈ C/Z2, by reinterpreting the angle α as the new “time”. This is possible
because α̇(t) 6= 0 for ε sufficiently close to zero and all real t. Multiplying
(22) by the nonzero Euler multiplier 1/(ω∗ + εγ(α, z, ε)) therefore provides
the nonautonomous tip equation

ż = εh̃(α, z, ε) (24)

Here we have replaced h/(ω∗ + εγ) by a new function h̃, and we can consider
α as new time because α̇ = 1. The lattice symmetry (9), (23) is inherited

by the new nonlinearity h̃. Therefore (24) indeed defines a nonautonomous
slow flow on the 2-torus z ∈ T 2 = R2/Z2. Passing to slow time t = εα, (24)

transforms to the rapidly periodically forced system ż = h̃(t/ε, z, ε), where h
is 2π-periodic in its first argument α = t/ε. Standard averaging procedures
then reduce (24) to the autonomous system

ż = h(z, ε), (25)

up to any finite order in ε, with a suitably defined new vector field h, [SV85].
For example,

h(z, 0) =
1

2π

∫ 2π

0

h̃(α, z, 0)dα (26)

turns out to simply be the average of the nonautonomous vector field h̃ over
its fast periodic forcing variable α = t/ε – hence the name averaging for this
procedure. For more advanced results on averaging see for example [FS96]
or [GL01,Gel02] and the references there.

As expected, one easily recovers the unperturbed spiral tip motion

ż(t) = 0 (27)

in equation (24), by setting ε = 0. Of course, the precise form of h̃ and h
in (24) and (22) depends crucially on the exact choice of the original PDE



perturbation H . We write h = h(z, ε;H) in (22) to emphasize this important
dependence. In particular, the choice of H determines the vector field (22)
which itself determines the (averaged) spiral tip dynamics (25).

Expanding h(z, ε) with respect to small ε yields

h(z, ε;H) = h1(z;H) + εh2(z;H) + . . . (28)

We study the dependence of h1 on H, because h1 governs the dynamics (25)
of the perturbed spiral wave tip, to leading order in ε. Therefore we consider
the map

L : H 7→ h1(H) (29)

where h1(H) = h1(·, H). For the perturbation H we choose any bounded
Ck+2-functional which satisfies the lattice symmetry. Then L maps H into
the space of all vector fields h on R2 of class Ck which satisfy

h(z + k) = h(z), (30)

for every z ∈ C ∼= R2 and k ∈ Z2.
The range of L has an interesting interpretation: It represents the vector

fields of all possible motions of the perturbed spiral wave tip z(t), to leading
order in ε. Indeed, a vector field h in the range of L allows one to find a
function H with h = h1(H) and thus determines the motion of the spiral tip
to leading order; see (22).

The main result now states that the mapping L is linear, continuous
and surjective; see [Geo03,GJ05]. Note that this result does not depend on
the particular coordinates which have to be introduced in order to obtain the
reduced averaged equation (25). Continuity and linear dependence of L on the
function H is very intuitive: By slightly changing the light intensity pattern
one expects the motion of the spiral wave to change only slightly. Also a
superposition of two different light intensity patternsH1 andH2 should result
in a superposition of the corresponding motions of the spiral tip positions,
at least to leading order. Although the surjectivity of L may sound just as
reasonable, from a physical point of view, we have to keep in mind that h =
h1(H) for some H is the leading order term which governs the time averaged
dynamics of the perturbed spiral tip, see (28). From a mathematical point of
view it could happen, that certain changes in the light intensity pattern, and
thus in H , influence the spiral tip motion only in the second order terms of
(28) with respect to ε. Moreover, local perturbations H(u)(x) = H(x, u(x))
which merely evaluate the pattern u(x) at any given point x, may not suffice
to ensure surjectivity of L. Within the larger class of functionals H , rather
than just functions, however, the strong property of surjectivity prevails.

We repeat that the construction of the functional H in [Geo03] involves
quantities such as the group orbit SE(2)u∗ of the unperturbed spiral wave. In
particular, H will be a nonlocal functional, in general. Keeping in mind that
the experimentalist has only a few control parameters at hand, it remains a
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Fig. 5. Cherry flows: (a) irrational winding; (b) rational winding with stable and
unstable periodic drifts. Basins of A = pinning (grey), and drifting region (white).

challenging task to adjust the light intensity pattern in order to obtain the
desired spiral tip motion. For specific results in this direction see [ZBB+04,
ZE04,ZBBE05,KM05,ZE06], and our brief discussion in section 4.

Up to these difficulties, we have seen that there is a certain lattice pe-
riodic perturbation pattern, represented by a functional H , which realizes a
prescribed averaged tip motion (25).

2.6 Pinning versus drifting

It was shown in the previous section that every vector field of the perturbed
spiral tip motion can be realized, to leading order, by choosing an appropriate
pattern which is represented by a lattice periodic, nonlinear perturbation
functional H . We recall from (25) that the motion of the perturbed spiral
wave tip is governed by the averaged differential equation

ż = h(z, ε) (31)

on the 2-torus z ∈ C/Z2

We now consider a particular such vector field, where pinning of the per-
turbed spiral tip occurs, and coexists with drifting motions. This particular
flow on the torus is called the Cherry flow, see Figure 5(a) and, for further
background, [PdM82]. The Cherry flow features two equilibria, a saddle S and
a sink A. Every solution z(t) with initial tip position z(0) in the open grey
basin gets attracted to the sink A, eventually. The stable manifold W s(S) of
the saddle S marks the boundary of the basin of attraction of A and denotes
points which converge to S, eventually. For other initial values (white region)
the solution neither gets attracted to the saddle S nor to the sink: the spiral
keeps drifting.

We state an explicit example of such a vector field for z = (z1, z2):

ż1 = c1 − sin(2πz1) + c2(1 − cos(2πz2))

ż2 = −sin(2πz2)
(32)



with constants 0 < c1 < 1 and c2 6= 0. Because the vector field (32) is
1-periodic in z1,z2, it indeed defines a vector field on the 2-torus.

Keeping in mind that the dynamics of (31) represents the motion of the
perturbed spiral wave tip, this example shows that there are indeed open sets
of initial positions z(0) for which the spiral tip z(t) finally gets pinned to the
sink A. Coexisting are regions for which the spiral tip never gets attracted to
any specific point and undergoes a drifting motion on the 2-torus, which is
unbounded in R2. The regions are interwoven in a Cantor-like structure. It
should be mentioned that the drifting region has zero Lebesgue measure in
the above example; see also [Men91,MR92]. Zero Lebesgue measure implies
that almost every spiral tip eventually becomes pinned, but possibly after
a very long transient phase of drifting. In general, however, it seems that
drifting can also prevail on regions of positive Lebesgue measure.

At least in presence of periodic orbits on the 2-torus, drifting and pinning
can coexist with positive measure; see Figure 5(b). Indeed the pinning region
of the attracting equilibrium (A) is now trapped between two unstable peri-
odic orbits. The unstable periodic orbits also bound the basin of attraction of
a stable periodic orbit. The stable periodic orbit signifies stable unbounded
drift of the spiral tip across the lattice periodic perturbation pattern.

3 Kinematics

3.1 Curves and tips

The kinematic approach to the propagation of planar excitation waves ideal-
izes the wave front location to be given by a one-dimensional curve

z = Z(t, s) ∈ R
2 ∼= C. (33)

The curve Z is parametrized by arc length s at any given time t. The basic
modeling assumption is then the hypothesis that the curve Z(t, s) moves in
normal direction n := iZs with a normal velocity U ∈ R which depends on
the curvature

κn := −Zss. (34)

We abbreviate this modeling assumption as

U = U(t, κ), (35)

where the explicit dependence on t allows for external forcing. We will obtain
rigidly rotating curves as well as meanders and drifts in this setting.

In the mathematical literature, the special case of a power law dependence

U = U(κ) = −κβ , (36)

with β, κ > 0 has attracted much attention under the name of “curve shorten-
ing”; see for example [GH86,Ang90,Ang91,FM02] and the references there.



Closed convex curves Z, for example, shrink to a point in finite time, for
β = 1, and become asymptotically circular before they disappear. A cel-
ebrated generalization of this fact to convex surfaces under mean curva-
ture flow was obtained by [Hui93]. Much excitement has been caused in the
mathematical community, recently, by Perelman’s contributions relating flows
of compact three-dimensional manifolds under their Ricci curvature to the
Poincaré conjecture [Per06a,Per06b,Per06c].

Due to their parabolic PDE nature, curvature flows have a smoothing
effect on the curves Z(t, ·). Curvature flows are therefore also used in image
processing to smoothen ragged boundaries [MS95,CM01,Mik01]. Of partic-
ular interest in image processing is the case β = 1/3, which is in addition
affine equivariant: initial curves which are affine images of each other retain
this property under their evolution (36).

As we have noted in the introduction, experimental evidence for a kine-
matic description of excitable wave fronts is rich. Based on hyperbolic wave
equations and the Huygens principle, [WR46] recommend the eikonal ap-
proach of geometric optics: waves propagate at a constant normal speed

U(t, κ) = c(t), (37)

which does not depend on the curvature of the wave front. In section 3.3
below, we will describe meander and drift of spirals under this very restrictive
assumption. More general affine linear dependencies

U(t, κ) = c(t) −D(t)κ, (38)

albeit with constant coefficients c, D, have been proposed by several authors,
both for BZ systems ( [TK88, MZ91]) and for surface waves in catalysis (
[IIY98,Mer92]). Motivated by the photosensitive BZ reaction we modify these
models to include time dependent coefficients c(t), D(t) which account for
external forcing.

In section 2 we have seen how rigid rotations, meanders, and drifts are
closely tied to equivariance with respect to the Euclidean group SE(2) of
planar rotations and translations. We therefore prefer to not describe our
curvature flows in terms of the position vector Z(t, s) ∈ C, directly. Instead,
we work with the curvature scalar

κ = κ(t, s), (39)

which eliminates the SE(2)-action. Indeed, curves Z1(t, s) and Z2(t, s) are
Euclidean images of one another, under some fixed (R,S) ∈ SE(2), if and
only if their curvature functions κ coincide. Therefore the parametrization by
κ can be viewed as a particularly suitable choice of a Palais shape coordinate
v, in the terminology of section 2.4; see (11), (12) and Figure 4.

An important modification to the standard approaches concerns our treat-
ment of the spiral tip. Traditionally, waves in excitable media are thought



of as arising from a singular perturbation cycle in the reaction term. This
view point readily identifies a “front” and “back” for the wave. Serious dif-
ficulties obstruct joining these curves in the sense of matched asymptotic
expansions [Kee92]. Instead, we merge “front” and “back” to be represented
by a single curve. In other words, we view the excitation excursion as a single
narrow pulse phenomenon, rather than a widely separated succession of first
a front and then a back transition. The problematic core junction of front
and back is then distilled into a single point, say s = s0(t), where the pulse
curve z = Z(t, s) terminates, or rather initiates. The above curvature flow
then accounts for the dynamics of Z(t, s), for s ≥ s0(t). It is natural to call
the end point s = s0(t) of the curve its tip. Certainly, such a definition is
compatible with our discussion of tip choices in section 2.4. Moreover, the
tip location can be seen as a degeneracy point of the singular perturbation
excitable cycle, see [FM00] or, in the terminology of Winfree [Win01], as a
phase singularity.

But what is the proper dynamics of the tip itself? Based on experimental
evidence, we make the following three modeling assumptions:

(T1) the normal velocity of the tip is given by U(t, κ), as everywhere else;
(T2) the tangential velocity of the tip is given by a function G(t);
(T3) the curvature at the tip is given by a function κ0(t) > 0.

Here (T1) is just a continuity assumption. Assumptions (T2), (T3) are based
on observations of initial conditions which prepare an excitable cycle across an
interval, in the x-plane, which terminates at two endpoints. The interval then
propagates, while the two end points extend and curl inward to produce a pair
of spiral-antispiral cores. See [RGS+96,ZE00,BBSE00]. Careful examination
of such experiments should reveal the values of G and κ0, quantitatively.
For a theoretical attempt at a derivation of tangential speeds G(t) of spiral
tips see also [Pis06]. Although the more general case G = G(t, κ) could be
incorporated, we assume G, κ0 to depend on t, only, for simplicity and for
lack of experimental detail and mathematical derivation, alike.

Summarizing our discussion we arrive at the following PDE description
of the dynamics of excitable media waves:

κt + U(t, κ)ss +

(
κ

∫ s

0

κU(t, κ)dσ

)

s

+G(t)κs = 0 (40)

for s ≥ 0, with the boundary condition

κ = κ0(t) at s = 0. (41)

Here the Dirichlet boundary condition (41) follows from modeling assumption
(T3). The drift term Gκs in (40) arises from (T2) when we normalize the tip
to occur at s = 0 instead of s0(t). Likewise the integral term accounts for
reparametrization by arc length, which is necessary as the propagating curve
extends or contracts. See [Mer92,MDZ94,BT96] for detailed derivations.



In section 3.2 we discuss rigidly rotating wave solutions for autonomous
velocity functions U = U(κ); see also [MDZ94, IIY98] for earlier partial
analysis of the affine case U(κ) = c − Dκ. In section 3.3 we discuss the
κ-independent, but forced, eikonal case U = U(t) = c(t) to obtain meanders,
drifts and superspiral patterns in the kinematic setting.

3.2 Rigidly rotating spirals

In this section we discuss stationary solutions κ = κ(s) of the curvature
flow (35) for autonomous normal velocity functions U = U(κ) and constant
κ0 > 0, G 6= 0. More precisely we solve (40), (41) for relative equilibria, alias
rotating waves κ = κ(s), in the integrated form

U(κ)s + κ

∫ s

0

κU(κ)dσ +Gκ = ω

κ(0) = κ0

(42)

with some suitable real integration constant ω. In (60), (61) below, we will see
that ω is in fact the rotation frequency of the rotating Archimedean spiral
given by the solution κ(s) of (42). Differentiating (42) with respect to arc
length s and using (42) itself to eliminate the integral term, we obtain the
G-independent equation

U(κ)ss +
κs

κ

(
ω − U(κ)s

)
+ κ2U = 0 (43)

with parameter ω.
Our discussion of (43) follows the global and rather complete existence,

multiplicity, and bifurcation analysis in [FGT04, FGT06]. This analysis as-
sumes U ′(κ) 6= 0 and invertibility of the relation U = U(κ) between normal
velocity and curvature by an inverse function

κ = Γ (U). (44)

Mimicking the affine case U(κ) = c−Dκ, for which Γ (U) = (c− U)/D, we
assume Γ ∈ C4 satisfies Γ ′(U) < 0 for all U , and Γ (c) = 0 for some c > 0.
This allows us to rewrite (43) as a second order equation of Lienard type,

Uss +
ΓU

Γ
Us(ω − Us) + Γ 2U = 0, (45)

with singular behavior at U = c where Γ (U) = 0. The eikonal case U(κ) ≡ c,
where such an inversion is not possible, will be addressed in section 3.3.

Our alert reader will have noticed how we “forgot” the Dirichlet boundary
condition κ(0) = κ0 in passing from (42) to (45). In fact we will supplement
(45) by the Neumann boundary condition

Us(0) = ω −Gκ0, (46)



which readily follows from (42). We now give a bifurcation result for the
special case G = 0; see [FGT06, Theorem 1.1] in terms of the bifurcation
parameter ω > 0 in (45), (46). We comment on the general case of nonzero
G and the translation to the original problem (42) at the end of this section.

Theorem 2 [FGT06, center manifold] Under the above assumptions on the
normal velocity U = U(κ) as a function of curvature κ, all solutions U =
U(s) of (45), (46) with bounded normal velocity U and nowhere vanishing
curvature, for all values of the rotation frequency ω > 0, are contained in the
bifurcation diagram of Figure 6.

U(0)

U

U

Fig. 6. A global bifurcation diagram of rotating Archimedean spirals with rotation
frequency ω > 0 and normal tip velocity U(0).

More precisely, there exists a strictly decreasing sequence ω1 > ω2 >
· · · ց 0 and associated functions U±

n (ω), for 0 < ω ≤ ωn, with the following
property. A C3-solution U = U(s), s ≥ 0 of the curvature equation (45), (46)
as above exists if, and only if, the tip velocity U(0) and the derivative Us(0)
at the tip s = 0 satisfy

U(0) ∈ {U−
n (ω), U+

n (ω)}, Us(0) = ω (47)

for some positive integer n.

The associated curves z = Z(t, s) = r exp(iϕ) are right winding, left rotat-
ing spirals which are asymptotically Archimedean, for s→ ∞. The tip Z(t, 0)
rotates on a circle of radius ρ = |U(0)/ω|. The asymptotic wave length of the
Archimedean spiral in the far field r → ∞ is given by 2πc/ω.

The functions ω 7→ U±
n (ω) possess the following properties, for every

n ∈ N:



(i) the union of the graphs of U±
n forms a C3-curve, with nonvanishing cur-

vature at ω = ωn;
(ii) U±

n (ω) = 0, and U±
n (ω) → ±c for ω ց 0;

(iii) for all angular rotation speeds 0 < ω < ωn we have the strict ordering

U+
1 (ω) > U+

2 (ω) > . . . > U+
n (ω) > 0 > U−

n (ω) > . . . > U−
2 (ω) > U−

1 (ω);
(48)

see Figure 6.

The results of theorem 2 are based on a center manifold analysis after
regularization of the degenerate pendulum system (45). Rewriting (45) as a
system for U and V := Us, and multiplying the right hand side by the Euler
multiplier κ = Γ (U) to eliminate the vanishing denominator Γ (c) = 0, we
obtain

U̇ = Γ · V
V̇ = −ΓU · V (ω − V ) − Γ 3U.

(49)

Equilibria sit at U = 0 and at U = c, where Γ = 0, each together with
V = 0. Under our assumptions ΓU < 0 < ω the equilibrium at (U, V ) = (0, 0)
is an unstable node or focus. The equilibrium at (U, V ) = (c, 0), in contrast,
possesses one zero eigenvalue and one negative eigenvalue. Finite-dimensional
center manifold analysis, much in the spirit of section 2.1 above, produces a
center manifold M which is given as a graph

V = Φ(ω,U) =
c

ω
ΓU (c)2(c− U)3 + . . . (50)

near U = c, V = 0.
It turns out that all solutions of theorem 2 must lie in this center manifold,

under just the boundedness and sign conditions imposed there. As an easy
consequence all such solutions are asymptotically Archimedean in the far field
s→ +∞. Indeed this follows directly from the first order ODE

Us = V = Φ(ω,U) =
c

ω
ΓU (c)2(c− U)3 + . . . (51)

Substituting κs = ΓU (c) ·Us + . . . and
(
ΓU (c) · (c−U)

)3
+ · · · = −Γ 3 = −κ3

for U near c and for small κ, we obtain

κs = − c

ω
κ3 + . . . (52)

in the far field κ→ 0. For s→ +∞ this of course implies

κ(s) = as−1/2 + . . . , with a =
( ω

2c

)1/2

. (53)



The asymptotics (53) for the curvature κ readily identifies Archimedean
spirals. Indeed, arc length parametrization of the position vector z = Z(t, s)
in (33) implies that we can write the unit vector Zs(t, s) in the form

Zs(t, s) = exp(−iw(t, s))Zs(t, 0) (54)

for a suitable real angle variable w(t, s). Recalling the definition κiZs = −Zss

of curvature, from (34), we observe that

w(t, s) =

∫ s

0

iZss/Zsdσ =

∫ s

0

κdσ. (55)

In the present case, where κ does not depend on t, we obtain the explicit
expansion

w(s) = 2as1/2 + . . . (56)

for s→ +∞, from (53). Elementary integration of (54), once again, provides
the explicit expansion

Z(t, s) = Zs(t, 0) ·
( i
a
s1/2e−2ias1/2

+ . . .
)
. (57)

Writing Z = r exp(iϕ) in polar coordinates (r, ϕ), expansion (57) readily
identifies Z to be asymptotically Archimedean with

lim
s→∞

dr

dϕ
= − 1

2a2
= − c

ω
. (58)

In particular, this also determines the asymptotic wave length in the far
field to be 2πc/ω, as claimed. The minus sign in (58) indicates that the
Archimedean spiral Z is indeed right winding in outward direction.

We now show that the rotation speed ω̃ of the rigidly rotating spiral
Z(t, s) = exp(iω̃t)Z(s) indeed coincides with the integration constant ω in-
troduced in (42) above. The normal velocity U is given by the scalar product
with the normal vector n, in complex notation and polar coordinates, as

U = (Zt, n) = (iω̃Z, iZs) = ω̃Re(Z · Zs) = ω̃rrs. (59)

We now argue in the far field s → ∞, where U → c and κ = Γ (U) → 0. In
particular, (59) implies

lim
s→∞

rrs = c/ω̃, (60)

and rs → 0 because r → ∞. On the other hand, (rϕs)
2 + r2s = 1 holds for arc

length parametrization, and implies lims→∞ rϕs = ±1. Therefore the right
winding ϕs < 0 and the asymptotics (58) imply that

lim
s→∞

rrs = lim
s→∞

r
dr

dϕ
· ϕs = c/ω. (61)



Together, (60) and (61) prove ω = ω̃ is the rotation frequency, indeed.
We conclude this section with some remarks on the relation of our bifurca-

tion analysis of (45) with the original problem (42). Expressing the left center
manifold M of the equilibrium (U, V ) = (c, 0) of (49) by V = Φ(ω,U), as in
(50), the bifurcation diagram of Figure 6 is the solution set of the equation

ω = Φ(ω,U(0)). (62)

Indeed V (0) = Us(0) = ω − Gκ0 = ω for G = 0, by (46). The different
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(a) (b)

v = ω

V

V

U

Fig. 7. Archimedean spiral (b) for Γ (U) = 1 − 2U , ω = 0.05. For the underlying
center manifold in the plane (U, V ) = (U, U ′) see (a).

branches of the bifurcation diagram correspond to the different intersection
points of the line V = ω with the center manifold M in the phase portrait
of Figure 7(a). The original boundary condition

κ(0) = κ0 = Γ (U(0)) (63)

can easily be satisfied: we only have to rescale the vertical U -axis of Fig-
ure 6 by the diffeomorphism Γ to represent κ0. The horizontal ω-axis then
provides all rotation frequencies, if any, of rigidly rotating wave solutions
with prescribed Dirichlet boundary condition κ = κ0 at the spiral tip. As
a caveat, we add that some of the rigidly rotating spirals in the global bi-
furcation diagram of Figure 6, although asymptotically Archimedean in the
far field r, s → ∞, turn out to be self-intersecting. See [FGT06] for further
discussion.

For nonzero G, similarly, the relevant bifurcation diagram corresponds to
the solution set of

ω −G · Γ (U(0)) = Φ(ω,U(0)), (64)

again with U(0) = Γ−1(κ0) and with Φ representing the various branches
V = Φ(ω,U) of the same center manifold M of (49). We omit a detailed
analysis of this case. Instead, we note how G affects the angle γ at which the



spiral emanates from the circle of its tip motion. An elementary trigonometric
calculation at the tip shows

tanγ = −U(0)/G = −Γ−1(κ0)/G. (65)

The spiral therefore emanates perpendicularly if, and only if, G = 0.

3.3 Eikonal meanders and drifts

We return to Wiener and Rosenblueth [WR46] in this section to study the
propagation of spirals under periodically forced normal velocity

U = U(t, κ) = c(t) > 0 ; (66)

see (35), (37). We review [MDZ94] and present new results from [Jan06].
Under the modeling assumptions (T1), (T2), (T3) of section 3.1 we obtain
meandering and drifting motions of the spiral tip. For simplicity of presen-
tation, we assume the normal velocity U to not depend on curvature. Dif-
ferently from section 3.2, where the resulting equation (40) for our curva-
ture flow was essentially parabolic, we now obtain an eikonal equation famil-
iar from geometric optics. Throughout this section we consider the case of
positive tangential tip velocity G, where the tangential tip motion extends
the curve. Unlike [MDZ94] we do not impose restrictive assumptions like
G(t) = G0(t) − γκ0(t), γ = const > 0. As we will see, spiral wave solutions
then correspond to smooth regular solutions of the resulting nonlinear hy-
perbolic equation. We will have to consider growing solutions, however, and
their response to periodic forcing.

Equation (40) now becomes

κt + c(t)
(
κ

∫ s

0

κdσ
)

s
+G(t)κs = 0, (67)

again with Dirichlet boundary condition κ(t, 0) = κ0(t) > 0 at s = 0. As in
our discussion (54)–(58) of resulting spiral shapes Z(t, s), we introduce the
negative tangent angle w =

∫ s

0
κdσ, and rewrite (67) as

wt + (c(t)w +G(t))ws = G(t)κ0(t)

w(t, 0) = 0.
(68)

Note how the boundary condition ws(t, 0) = κ(t, 0) = κ0(t) follows from (68),
for G(t) 6= 0. We are interested in time-periodic forcing functions c(t), G(t),
κ0(t). The characteristics of the nonlinear hyperbolic balance law (68) satisfy

ṡ = c(t)w +G(t)

ẇ = G(t)κ0(t)
(69)



0=(s,   (s))τ
0(s (t), t)

4π/ω
2π/ω

t

s0
1

1

Fig. 8. Characteristics of (68) in t ≥ 0, s ≥ 0 for G > 0.

with ˙ = d/dt, t ≥ 0, s ≥ 0. In the following we discuss the case of positive
c, G, κ0. For other signs see section 4.

In case G(t) > 0, for all t, the characteristics at the boundary s = 0, where
w = 0, are pointing inwards towards s > 0. We can therefore propagate the
Dirichlet boundary data (68) to obtain the explicit solution

w(t, s(t, t0)) =

∫ t

t0

G(τ)κ0(τ)dτ, at

s(t, t0) =

∫ t

t0

(
G(τ) + c(τ)

∫ τ

t0

G(τ ′)κ0(τ
′)dτ ′

)
dτ,

(70)

parametrized by 0 ≤ t0 ≤ t. Note that (t, t0) 7→ (t, s(t, t0)) is a diffeomor-
phism onto its image, because c,G, κ0 > 0. Hence (70) indeed defines w
uniquely in the region T above the characteristic s0(t) := s(t, 0); see Fig-
ure 8. Moreover, T -periodicity of G and κ0 implies s(t+T, t0 +T ) = s(t, t0),
and therefore T -periodicity of the solution w holds in T :

w(t + T, s) = w(t, s), for s ≤ s0(t). (71)

Below the characteristic s0(t), only, the initial conditions w(0, s)=
∫ s

0 κ(0, σ)dσ
are relevant.

To avoid shock solutions, we assume

ws(0, s) = κ(0, s) > 0. (72)

It is easy to see that this condition, which prevents shocks to occur, locally,
propagates globally. Indeed we only have to differentiate (68) with respect to
s. We then observe that y := ws propagates along the same characteristics
(69) as w itself, and satisfies ẏ = −c(t)y2 with c > 0.

We conclude that any solution w(t, s) coincides with the unique periodic
solution of (68), as soon as s0(t) ≥ s, independently of the initial condition.
This is a very strong stability statement of finite time convergence, uniformly
on bounded subsets s. For further details see [Jan06].



To render our convergence statement more quantitative and, at the same
time, exhibit the Archimedean spiral character of our solutions, we now ad-
dress the asymptotics of the characteristic s0(t). We claim

τ0(s) =

(
2

〈c〉 〈Gκ0〉

)1/2

s1/2 + . . . (73)

for the inverse function τ0 := s−1
0 , where 〈·〉 denotes time average over period

T .
Indeed,

∫ t

0 a(τ)dτ = 〈a〉 t+ . . . for any periodic function a. The remainder
is bounded periodic. Applying this simple observation to s0(t) = s(t, 0) in
(70), twice, we obtain

s0(t) =
1

2
〈c〉 〈Gκ0〉 t2 + . . . (74)

with a remainder of order t. This proves (73).
To exhibit the Archimedean spiral character of the T -periodic solution w,

we evaluate w(t, s) along characteristics as in (70). Because w(t + kT, s) =
w(t, s), it suffices to restrict attention to the fundamental band τ0(s) ≤ t ≤
τ0(s)+T , where 0 ≤ t0 ≤ T . The relevant asymptotics of w is therefore given
by

w(t, s) = w(τ0(s), s) + . . . = 〈Gκ0〉 τ0(s) + . . .

=
(
2 〈Gκ0〉 / 〈c〉

)1/2
s1/2 + . . .

(75)

with bounded remainder. Extending the above estimate to include s-deriva-
tives we obtain the curvature asymptotics

κ(t, s) = ws(t, s) =

(
1

2
〈Gκ0〉 / 〈c〉

)1/2

s−1/2 + . . . (76)

By the curvature analysis of section 3.2, (53)–(61) this shows that our periodic
solution w(t, s) represents a periodically fluctuating Archimedean spiral of
time independent asymptotic (average) rotation frequency

ω = 〈Gκ0〉 (77)

and asymptotic wavelength 2π 〈c〉 / 〈Gκ0〉 in the far field.
It may be worth interpreting the characteristic front s0(t) in the Archi-

medean spiral geometry. Let r(t) = r(t, s0(t)) denote the distance of the
characteristic point on the spiral from its origin. For large s, t, we then have
a radial propagation speed ṙ of the stability zone which is given by

1

2

d

dt
r2 = rṙ = rrsṡ0 + . . . =

〈c〉2
ω

〈Gκ0〉 t+ . . . (78)



Here we have used (74) and, for the asymptotically rigidly rotating spiral,
also (61). Moreover we have omitted the term rrt which is zero under rigid
rotation. With (77), integration of (78) yields

ṙ = 〈c〉 + . . . (79)

This perhaps intuitive result asserts that the stable core region of the spiral
synchronizes the far field at the average radial speed of propagation of the
spiral itself. For further details see [Jan06].

What is the resulting tip dynamics, then? In the notation of section 3.2,
let z(t) = Z(t, 0) denote the tip position and exp(iα(t)) := Zs(t, 0) the tip
tangent. Then

α̇ = G(t)κ0(t)

ż = eiα(ic(t) −G(t)).
(80)

Indeed, ż results from the normal and tangential velocities c and G which are
rotated by α into the appropriate coordinate frame. Since the normal velocity
c(t) is identically constant along the curve, the only contribution to the angle
change dα comes from the extension of the curve by an arc of curvature
radius 1/κ0 at the tip and of length Gdt. This provides the equation for α̇.
It is perhaps helpful to compare this derivation with the rigidly rotating case
of (46), where the rotation frequency ω – alias α̇ – was given by the sum of
Gκ0 and the now vanishing term Us(0).

Comparing with section 2.4 we see how the tip dynamics (80) takes on
the skew product form (12). Indeed we only have to assume the variable v to
be T -periodic, as Hopf bifurcation had caused it to be there, and our current
tip dynamics (80) fits right in. Defining ω∗ := 〈Gκ0〉, the analysis (20), (21)
of meanders and drifts applies with

σ(t) := (ic(t) −G(t)) 〈Gκ0〉 /(G(t)κ0(t)) (81)

of frequency ω1 = 2π/T .
In summary, we have shown that the periodically forced eikonal flow (67)

exhibits Archimedean spirals with very strongly stable meandering and drifting
tip motions, if the normal velocity c(t), the tangent tip speed G(t), and the
tip curvature κ0(t), are all positive [PGP93,MDZ94,Jan06].

As mentioned in the introduction, meandering and resonant drift of spiral
waves in the photosensitive BZ reaction can be achieved experimentally by
a periodically changing light intensity [BE93b, ZSM94]. The Doppler effect
imposes superspiral structures in the case of spiral wave dynamics other than
rigid rotation. These superspiral structures have been observed in experi-
ments; see for example [PAV+91,LOPS96,BOF97,ZO00,OSL00]. See [SS01]
for a mathematical analysis based on linearized analysis and eigenfunctions.

Numerical evidence for superspirals in the kinematic theory has first been
presented in [PGP93]. The normal velocity U and the tangential tip velocity



Fig. 9. Meandering superspiral for δ = 1.1 (left) and drifting spiral for δ = 1 (right)
with tip dynamics in the close-up view (top) and Doppler effect (bottom). Forcing
is at frequency 1, near-resonant to the rotation frequency δ.

G have been assumed to be curvature dependent and a meandering tip trajec-
tory was prescribed, a priori. Superspiral patterns have then been observed,
numerically, via a stepwise reconstruction of the spiral wave shape.

In our setting of curvature independent but time dependent normal ve-
locity U = U(t) = c(t), as in (66), the analysis of the eikonal equation (67)
reveals superspirals if the normal velocity c(t), the tangent tip speed G(t) or
the curvature at the tip κ0(t) are positive and time periodic near resonance.
To be explicit, we choose for example c(t) = 1 + ε sin(t), G(t) = δ c(t) and
κ0(t) = 1/c(t) with ε = 0.3 and δ = 1.1 or δ = 1. Note that δ = Gκ0 denotes
the rotation frequency of the spiral, via α̇ = δ in (80), and the forcing fre-
quency is fixed to be 1, via the term sin(t). Then equations (67) and (80) can



Fig. 10. Drifting superspiral: Meandering and drifting spiral with tip dynamics in
the close-up view (left) and Doppler effect (right).

be solved analytically. For resulting tip motions and superspiral patterns see
Figure 9.

Even for periodic functions c(t), G(t) and κ0(t) more complicated tip
motions and superspiral structures of higher order can be prescribed. Choose
for example c(t) = 1+2 ε sin(t)+3 ε sin(1.1 t), G(t) = c(t)/5, κ0(t) = 1/G(t)
with ε = 0.15. The rotation frequency is thus fixed at 1, because α̇ = Gκ0 = 1.
The near resonant component of c(t) with forcing frequency 1.1 is expected to
produce a superspiral, as in the left part of Figure 9. The resonant component
of c(t) with frequency 1 superimposes a linear drift with an associated Doppler
effect on, both, the spiral and the superspiral as in the right part of Figure 9.
We choose initial conditions z(0) = 0 for the tip position and α(0) = 0 for
the tip tangent angle. Solving equation (80) yields exactly:

α(t) = t

z1(t) = −2081

1400
− 3

20
t− 9

4
sin(0.1 t) − 1

5
sin(t) +

3

40
sin(2 t) +

3

28
sin(2.1 t)

+
9

20
cos(0.1 t) + cos(t) +

3

200
cos(2 t) +

3

140
cos(2.1 t)

z2(t) =
125

56
− 3

100
t− 9

20
sin(0.1 t) + sin(t) +

3

200
sin(2 t) +

3

140
sin(2.1 t)

− 9

4
cos(0.1 t) +

1

5
cos(t) − 3

40
cos(2 t) − 3

28
cos(2.1 t).

(82)

An explicit expression for the evolution of the curve Z(t, s(t, t0)) along the
characteristics can be derived from (70); for a visualization see Figure 10. The
two different Fourier frequencies 1 and 1.1 of the forcing in c(t), indeed, cause
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Fig. 11. Control of the spiral wave dynamics: Tip dynamics (left) induced by con-
trol function h(t) (right).

superimposed meandering and drifting tip dynamics, see the tip trajectory in
Figure 10. In the far field we recognize the superspiral structure induced by
the meandering of the tip, which is drifting due to resonance. Similar obser-
vations apply to quasi-periodic superspirals supported by an incommensurate
2-frequency forcing. Superspirals of infinite order can then be achieved, due
to the resulting arbitrarily small difference frequencies. For further analysis
see [Jan06].

Can the tip dynamics be designed, arbitrarily? Linearly dependent nor-
mal and tangential tip velocities, c(t) = const · G(t), and a constant tip
curvature κ0 admit rigid rotation, only. This follows by integration of (80),
independently of the choices for c(t), G(t). For κ0(t) = 1/G(t), on the other
hand, we can prescribe the spiral path, arbitrarily. For example, choose
c(t) = 1 − 0.1 sin(π/2 h(t) − t), G(t) = 0.2 − 0.1 cos(π/2 h(t) − t). At any
time t, the control function h(t) assigns a tip drift which superimposes the
rotational dynamics. For a control function h(t) as sketched in Figure 11, we
obtain a desired “SFB”.

4 Concluding remarks

We first comment on several aspects of eikonal meanders; see section 3.3.
Specifically we mention the relation to tip control experiments [ZBB+04,
ZE04, ZBBE05, KM05, ZE06], discuss the occurrence and interpretation of
shock waves, the role of the signs of G and κ0, possible generalizations to
dynamics of scroll wave filaments in three dimensions, and the role of diffusion
and viscous regularization in the sense of section 3.2. We then return to the
reaction-diffusion view point of section 2 and discuss the chances of a reduced
eikonal description of autonomous meanders by relative Hopf bifurcation in
the Euclidean group SE(2).

To describe control of tip motion, in the spirit of [ZBB+04,ZE04,ZBBE05,
KM05,ZE06], we return to the tip dynamics

α̇ = G(t)κ0(t)

ż = eiα(ic(t) −G(t)).
(83)



as derived in (80); see also (20), (21). Our derivation did not depend on time
periodicity of c, D, κ0, of course. Control of z can now be effected as follows.
By external lighting, the triple λ := (c,G, κ0) ∈ {λ0, λ1} is set to two different
values λ0 and λ1, depending on time. Mostly λ = λ0 with corresponding rigid
rotation of (α, z). When the wave front passes a sensor point z0, lighting is
changed to λ1, briefly, and then resumes λ0. As (α, z) pass through their λ0

cycle, a small offset dz is thus effected during each period. The offsets add
up to a superimposed drift

dz

dτ
= f(z − z0) (84)

on a slow time scale τ . Here f(z) := exp(ir + βϕ+ a0) for polar coordinates
z = exp(iϕ). Indeed, f reflects the asymptotically Archimedean character of
the spiral expressed by Gκ0r + cϕ = const., with values λ0; see also (58).
The constant a0 measures the resulting offset between lighting λ0 and λ1.
Similarly, triggering lighting at several sensor positions zk superimposes to a
slow drift

dz

dτ
=
∑

k

f(z − zk) (85)

with correspondingly richer possibilities for control. Alternatively, and more
efficiently, active control can be based on the temporal pattern of sensor
signals, within one period, to explicitly reconstruct – and control – position
z(t) and phase α(t) of the spiral tip.

Balance laws (68) are known to exhibit shock waves, i.e. solutions w with
discontinuities of the (negative) tangent angle w at shock positions s(t).
See Figure 12 and, for some qualitative remarks, also [Pis06]. The Rankine-
Hugoniot condition specifies the shock speed ṡ(t) to satisfy

ṡ = G+
1

2
c

[w2]

[w]
, (86)

where [w] = w+ −w− measures the jump of w from the left value w− to the
right value w+ at the discontinuity. The Lax entropy condition requires [w] <
0, for positive c. See for example [Lax73,Smo94] and the references there. In
(72) we have excluded shocks, imposing the initial condition ws > 0. At col-
lision of spirals, however, shocks may occur; see Figure 12. Indeed (54) then
indicates a jump in the tangent direction Zs(t, s) = exp(−iw(t, s))Zs(t, 0) of
the joined spiral-antispiral curve Z(t, s) at the interface of the two counter-
rotating spirals. The interface evolves according to the Rankine-Hugoniot
condition (86) until the shock strength [w] has decayed to zero and the solu-
tion regains regularity.

In section 3 above we have imposed positive sign conditions c,G, κ0 > 0.
Other combinations of signs are of course conceivable. We only mention the
case c,G < 0 < κ0 briefly. Reversing time, t 7→ −t, then converts the char-
acteristics to the previous ones of section 3.3; see (69). Therefore asymptot-
ically Archimedean spirals still exist, as a periodic response to the periodic



shock

Fig. 12. Collision of spirals and shocks in solutions w of balance laws (68).

forcing by c, G, k0. However, they now rotate backwards compared to the
previous case. Moreover, these spirals are now extremely unstable, just as
they were extremely stable before. Indeed, any perturbation in the far field
now propagates inwards at negative radial velocity ṙ = 〈c〉 + . . . , see (79),
and destructively reaches the spiral tip after some finite time. Afterwards
the Archimedean spiral disappears and the initial conditions reign. This may
account for far-field break-up of spiral waves.

The eikonal approach of section 3.3 suggests generalizations to scroll wave
dynamics in three space dimensions. For beautiful experimental results based
on computer tomography see [BS06]. For numerical simulations in an ex-
citable media reaction-diffusion setting see [FM00], for example, and the
references there. For experimental and numerical investigations of chemi-
cal turbulence of scroll waves see [AKMS04,ASM06,MS06]. Indeed we may
consider an embedded oriented surface S in R3, called a scroll wave, with
one-dimensional boundary curve γ, called a filament. Of course, the surface
S generalizes our rotating planar curve Z(t, s), and the curve γ corresponds
to the tip z of Z. We may then propagate S and its boundary γ with speed c
in the (oriented) normal direction. The propagation of the boundary curve γ
will also occur with speed G along the outward tangent of S, and with pre-
scribed sectional curvature of S. Several variants of mean or Gauss curvature
flows may also be invoked to generalize the curvature dependence of normal
velocity to the surface S, see also [Mik95,ASM06]. As a result, meandering,
drifting, and even colliding scroll wave filaments should be observed.

Eikonal curvature flow precludes relative Hopf bifurcation. Indeed the re-
sulting tip dynamics

α̇ = Gκ0

ż = eiα(ic−G).
(87)

of (80) generates purely exponential dynamics of (exp(iα), z) ∈ SE(2) with
circular motion, for Gκ0 6= 0. This excludes meanders and drifts. At present,
it is unknown whether the curvature dependent normal velocities U = U(κ)
of section 3.2 are able to remedy this modeling difficulty. It only seems clear
that affine linear dependencies U(κ) = c − Dκ as in (38) will not remedy
the problem, as long as D > 0 remains small. Indeed small D act as a
viscous regularization in (40) and, analogously, for the balance law (68). For



monotone solutions ws = κ > 0 which are regular, however, small positive D
act as a regular perturbation which should not be strong enough to produce
meanders and drifts which are absent for D = 0.

An easy remedy for this problem would be the introduction of additional
“hidden” variables which influence the dynamics of the curve, notably via c,
D, G, or κ0. A modification of G or κ0 at the tip alone, for example, might
be sufficient. Specifically we may introduce a hidden scalar variable v at the
tip, alone, together with some hypothetical interaction dynamics

κ̇0 = g(κ0, v)

v̇ = h(κ0, v)
(88)

which undergoes Hopf bifurcation as a (suppressed) parameter is varied. Here
κ0 = κ0(t) is supposed to provide the Dirichlet boundary condition (41) for
the curvature PDE (40). The resulting periodic fluctuation κ0(t) would then
drive and synchronize the Archimedean spiral, globally, into meandering and
drifting motions.

For the moment, a coupling like (88) remains speculation. Only reaction-
diffusion systems as studied in section 2 provide a modeling description which
is based on reasonably “first” principles. The mathematically proper ap-
proach to autonomous meanders and relative Hopf bifurcation, which are
present in the reaction-diffusion setting, would then be a derivation of re-
duced systems like (88), (40), (41) from reaction-diffusion systems which
model excitable media. The relevant techniques, vaguely, are to include sin-
gular perturbation theory. But details still require much future effort.
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1 Introduction

Cells translate extracellular signals in intracellular responses, such as changes
in metabolic activity or the expression of specific genes. The signaling sub-
stances bind to receptor proteins in the cell membrane, which transmit the
incoming information into the inner of the cell using diffusible messengers.
Ca2+ ions serve as a ubiquitous second messenger that control the activity of
several key proteins that convey the desired cellular response. In unstimulated
cells, the cytoplasmic Ca2+ concentration is kept low by the action of Ca2+

pumps (∼ 100 nM, which is orders of magnitude below typical Ca2+ content
of drinking water). Due to the energy-consuming transport of Ca2+ across
the cell membrane and into an intracellular compartment, the endoplasmic
reticulum (ER), large concentration gradients are generated. The binding of
a hormone to its receptor at the plasma membrane initiates a signaling cas-
cade that finally activates Ca2+ channels in the ER membrane, triggering
Ca2+ release.

Interestingly, the presence of a constant external signal produces periodic
increases in the intracellular Ca2+ concentration ([Ca2+]c). This phenomenon
of Ca2+ oscillations has been intensively studied experimentally as well as
theoretically in the last twenty years and the molecular key players have
been identified. However, one of the central questions, namely the nature of
the oscillatory mechanisms, is still controversial. On the one hand, it has
been argued that the Ca2+ oscillations are generated by Ca2+ feedbacks
on the Ca2+ channels. These channels are fast activated at low and slowly
inhibited at high Ca2+ concentrations. On the other hand, recent studies
have shown that inositol-1,4,5-trisphosphate (IP3), the molecule activating
the Ca2+ channels, also oscillates in time, indicating that the oscillatory
mechanism may lie in the signaling cascade.

We will first introduce the biological system and briefly review previous
work. Then an approach to identify the oscillatory mechanism(s) is developed.
Chiefly, it consists in perturbing the IP3 dynamics by introducing an IP3

binding protein into the cell. The realization of this experiment shows that



oscillations in the IP3 signaling cascade are essential for [Ca2+]c oscillations.
Finally, we speculate on the physiological role of the proposed oscillatory
mechanism. In particular, we show that it enables the frequency encoding of
the hormone stimulus and facilitates cell-cell communication.

2 Background

Cells are composed of different intracellular compartments embedded in the
cytoplasm, and are bounded by the plasma membrane. One of this compart-
ments, the endoplasmic reticulum (ER), acts as intracellular store for Ca2+

ions. In a resting cell the Ca2+ concentration in the cytoplasm ([Ca2+]c) is
kept low (∼ 100 nM) and in the ER high (∼ 20 µM) by active transport
through the ER and plasma membrane. Binding of agonist to its receptor
at the the plasma membrane activates phospholipase C (PLC). This enzyme
is responsible for the production of the second messenger IP3, which can
freely diffuse in the cytoplasm. IP3 activates Ca2+ channels located in the
ER membrane, the IP3-receptors (IP3R), and causes an outflow of Ca2+ into
the cytoplasm increasing its concentration by about 10 fold (∼ 1 µM). In a
multitude of cell types one does not observe a simple increase of [Ca2+]c to a
new steady state but a sequence of [Ca2+]c spikes, [Ca2+]c oscillations. The
strength of the extracellular stimulus is encoded primarily in the frequency
of the [Ca2+]c oscillations, which increases with the degree of stimulation.
For example, in rat hepatocytes, the periods of [Ca2+]c oscillations range
over one order of magnitude, from above 250 sec for low concentrations of
hormones, such as vasopressin and noradrenalin, to about 30 sec for higher
hormone doses [?]. Cells can be coupled with their next neighbors via chan-
nels, gap junctions, that allow for the diffusion of small molecules. In the liver,
one observes that cells which are uncoupled oscillate with different periods,
whereas they oscillate with equal period when coupled. This coordination be-
comes manifest as repetitive intercellular waves initiating from specific sites
in the liver [?,?].

A long-standing question has been whether the oscillations are generated
by the cellular Ca2+ transporters and channels themselves or whether they
originate upstream in the signal transduction machinery, between hormone
binding to its receptor and the activation of Ca2+ fluxes. It has been pro-
posed that the periodic release of Ca2+ ions from the ER can be brought
about through the regulatory properties of the IP3R [?,?,?,?]. Mathematical
models have demonstrated how fast activation and delayed inhibition of the
IP3R by cytoplasmic Ca2+ can drive repetitive Ca2+ spiking [?,?,?]. In these
models, IP3 is required to initially open the IP3R and sensitize the channel
toward feedback activation by cytoplasmic calcium. Therefore, Ca2+ oscilla-
tions can occur when IP3 concentration is held at a constant value. However,
models based on a simple description of the IP3R dynamics generally produce
[Ca2+]c oscillations with short periods (∼ 10-60 sec) and, thus do not repro-
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Fig. 1. Interactions between Ca2+ transport processes and IP3 metabolism. The
solid, and dashed arrows indicate transport/reaction steps and activations, respec-
tively. The model variables are bold faced: IP3, cytoplasmic IP3; Ca(cyt), free cy-
toplasmic Ca2+; Ca(ER), free Ca2+ in the ER; IP3Ra, active conformation of the
IP3R. Reproduced from [?].

duce the long inter-spike intervals observed experimentally. Recently, it has
become possible to monitor IP3 changes in intact cells. These experiments
have shown that the IP3 concentration is highly dynamic and can oscillate
together with cytoplasmic calcium [?,?,?,?]. There exist both positive and
negative feedbacks of Ca2+ on IP3 metabolism which could mediate fluctua-
tions in cellular IP3 levels. The principal positive feedback is the activation of
IP3 production via a Ca2+ sensitive PLC [?,?]. The principal negative feed-
back acts through Ca2+ dependent degradation of IP3 via phosphorylation
by the IP3 3-kinase (IP33K) [?,?,?]. All described interactions are shown in
Fig. 1.

It is presently not clear what effects such feedbacks have on Ca2+ oscilla-
tions. Importantly, it is not known which of the feedbacks is predominant and
whether the involvement of these Ca2+-dependent feedbacks on IP3 serves a
physiological role. For the identification of Ca2+ feedbacks on IP3 we suggest
to perturb the IP3 turnover time. This will first be illustrated using a sim-
ple model that allows to derive analytical results. Then a detailed model is
presented and the results of slowing the IP3 turnover with an IP3 binding
molecule are compared to experimental data. The physiological role of Ca2+

feedbacks on IP3 will be studied with respect to how an IP3-Ca2+ oscillator
(i) generates long-period oscillations that underlie the efficient frequency-
encoding of the hormone dose, and (ii) may favor the coordination of Ca2+

signals in a multicellular system.



3 Identification of feedbacks on IP3

In order to understand the role of IP3 oscillations we proposed to perturb
the system by modifying the turnover time of IP3. The turnover time can be
accelerated by over-expressing IP3 degrading enzymes or slowed by expressing
IP3 binding molecules (see section 3.2). We will first show, for a general model
that captures the main properties of the Ca2+-IP3 oscillator and which allows
the derivation of analytical results, that slowing the turnover time of IP3 is
the method of choice to unravel the Ca2+-IP3 feedback structure. In the
second part, we present experiments with an IP3 binding protein and use a
detailed model to simulate its effects.

3.1 General properties of Ca2+-IP3 oscillators

A simple model for coupled Ca2+-IP3 oscillations contains three variables
(see Fig. 1): cytoplasmic and total calcium concentration c and z, and the
IP3 concentration p. Here we assume that the (in)activation of the IP3R by
Ca2+ and IP3 is fast compared to other processes. The Ca2+ concentration
in the ER s is related to the total concentration by s = (z − c)/β, where β
is the ratio of effective cytoplasmic volume to effective ER volume. The time
changes of the three variables are described by

dc

dt
= f(c, z, p),

dz

dt
= g(c), and

dp

dt
= w(c, p). (1)

The functions f(c, z, p) and g(c) include the transport fluxes of cytoplasmic
Ca2+ across the ER and plasma membrane, w(c, p) the production and degra-
dation of IP3. For realistic functions f , g and w the existence of a limit cycle
must generally be shown numerically. However, the local stability properties
of the steady state give an idea. One can show that, due to the Ca2+ trans-
port across the plasma membrane, there is a unique steady state (c̄, z̄, p̄) [?].
Therefore, changes in stability of the unique steady state are likely to be
connected with an Hopf bifurcation and the birth/death of a limit cycle.
Generally, if the steady state is unstable it is to be expected that the trajec-
tories move toward a stable limit cycle. Note that a stable limit cycle and a
stable steady state can coexist. Our analysis can make no predictions in this
regard.

In the following we will focus on how the IP3 dynamics can contribute to
destabilizing or stabilizing the steady state and so possibly generate or abolish
Ca2+ oscillations. The goal is to find the appropriate strategy to unmask the
importance for Ca2+ oscillations of Ca2+ feedbacks on IP3 metabolism in (1).
The local stability of the steady state is determined by the Jacobian

J =



fc fz fp

gc 0 0
wc 0 wp


 . (2)



The subscripts denote the partial derivatives at the steady state e.g. fc =
∂f
∂c

∣∣
(c̄,z̄,p̄)

.

The properties of the IP3R gating and of the transport processes allow to
fix the signs of some of the terms

• fz > 0, the Ca2+ concentration in the cytoplasm increases when the total
concentration increases.

• fp > 0, an increase in IP3 causes the opening of the IP3R and outflow of
Ca2+ from the ER into the cytoplasm.

• gc < 0, a high Ca2+ concentration in the cytoplasm favors the transport
of Ca2+ outside the cell.

• wp < 0, IP3 is degraded proportional to its concentration.

The sign of wc is positive when Ca2+ activates IP3 production (positive
feedback), negative in the presence of Ca2+ dependent degradation of IP3

(negative feedback), and vanishes in the absence of feedbacks of Ca2+ on IP3.
When accelerating the IP3 dynamics, e.g. by overexpressing IP3 metabolizing
enzymes, wc and wp increase in magnitude without changing sign. Conversely,
slowing the IP3 dynamics, e.g. by expressing an IP3 binding protein, decreases
wc and wp.

The stability of the steady state is determined using the Routh-Hurwitz
criterion which states that the Eigenvalues of the Jacobian have all negative
real parts when

a0 = fzgcwp

a1 = −fzgc − fpwc + fcwp

a2 = −fc − wp

a3 = a2a1 − a0

are all positive. Due to the previous assumptions a0 > 0. The other terms
simplify when the IP3 dynamics is fast compared to the other processes
wp, wc ≫ 1, then a1 ≈ −fpwc + fcwp and a2 ≈ −wp. When the IP3 dy-
namics is slow wp, wc ≪ 1, then a1 ≈ −fzgc and a2 ≈ −fc. We compare
three models: positive feedback, negative feedback and absence of feedbacks
of Ca2+ on IP3. If the three models have an identical steady state then the
partial derivatives, except of course wc and wp, are identical for the three
cases considered. Depending on the magnitude of the positive feedback of
Ca2+ on the IP3R and on the transport processes that remove Ca2+ fc can
be either positive or negative; both cases will be discussed.

The stability properties of the steady state when fc > 0 are summarized
in Table 1. If the system can oscillate in the absence of Ca2+ feedbacks on the
IP3 metabolism, i.e. the steady state is unstable, slowing the IP3 dynamics
does not stabilize the system, i.e. abolish the oscillations, in either positive
or negative feedback models. Overexpressing the enzyme IP33K, which cor-
responds to accelerating the IP3 dynamics in the negative feedback model,
can stabilize the steady state and so may abolish the oscillations.



If fc > 0

IP3 dynamics a0 a1 a2 a3 stability

no feedback, wc = 0 + ± ± − unstable

positive feedback, wc > 0
slow dynamics + + − − unstable
fast dynamics + − + − unstable

negative feedback, wc < 0
slow dynamics + − − − unstable
fast dynamics + ± + ± stable/unstable

Table 1. Stability properties of the steady state when fc > 0 in a model without
feedback, positive or negative feedback of Ca2+ on IP3. In the negative feedback,
for fast IP3 dynamics, the steady state is stable when fpwc − fcwp < 0.

If fc < 0

IP3 dynamics a0 a1 a2 a3 stability

no feedback, wc = 0 + + + + stable

positive feedback, wc > 0
slow dynamics + + + + stable
fast dynamics + ± + ± stable/unstable

negative feedback, wc < 0
any dynamics + + + + stable

Table 2. Stability properties of the steady state when fc < 0. For fast IP3 dynamics
and in the presence of Ca2+ activation of IP3 production the steady state is unstable
when fpwc − fcwp > 0.

The stability properties of the steady state when fc < 0 are summarized
in Table 2. When the steady state is stable in the absence of feedbacks,
the presence of positive feedback on IP3 can destabilize the system and so
generate oscillations. For this to occur the IP3 dynamics must be sufficiently
fast and fpwc − fcwp > 0. In the last formula one recognizes that the mutual
activation of IP3 and Ca2+, fpwc, needs to be strong compared to processes
responsible for the clearance of Ca2+ and the degradation of IP3, which enter
fcwp. Slowing of the IP3 dynamics stabilizes the system, and so abolishes the
oscillations. The presence of negative feedback does not affect the stability of
the steady state and so may not give rise to Ca2+ oscillations.

These conclusions are independent of specific expressions for the rates. In
particular, they show that slowing the IP3 dynamics may unmask a critical
role of positive feedback of Ca2+ on IP3 in the oscillatory mechanism. The
slowing of the IP3 dynamics is predicted to cause a transition from oscillatory
to non-oscillatory behavior.



Reference parameters

Positive feedback

IP3 dynamics parameters:
IP3 dephosphorylation rate constant, k5P 1/s
Half-activation constant of PLC, KPLC 0.2 µM
Ca2+ transport and structural parameters:
Ratio of volumes ER/cytosol, β 0.185
Maximal SERCA pump rate, Vserca 0.9 µM/s
Half-activation constant, Kserca 0.1 µM
Maximal PMCA pump rate, Vpm 0.02 µM/s
Half-activation constant, Kpm 0.12 µM
Constant influx, v0 0.004 µM/s
Stimulation-dependent influx, φ 0.002/s
IP3R parameters:
Maximal rate of Ca2+ release, k1 1.11/s
Ca2+ leak, k2 0.0203/s
Ca2+ binding to activating site, Ka 0.08 µM
Ca2+ binding to inhibiting site, Ki 0.4 µM
IP3 binding, Kp 0.13 µM
Characteristic time IP3R inactivation, τr 6 s

Table 3. Parameters are taken from literature [?, ?, ?, ?, ?]. The maximal rate
of PLC, VPLC , is a stimulation-dependent control parameter. The half-activation
constant of PLC, KPLC , is used to tune the positive feedback of Ca2+ on IP3. See
also [?].

3.2 A detailed model for Ca2+-IP3 interactions

In a detailed model we consider the three variables mentioned before (Ca2+

and IP3 in the cytoplasm, c and p, and total Ca2+ concentration z) and ad-
ditionally the activity state of the IP3R, denoted by r. The positive feedback
model is described in detail in [?]. Here we give a summary of the rate ex-
pressions used. According to Fig. 1 the time changes in the four variables are
given by

dc

dt
= f(c, z, p, r) = vrel − vserca + vin − vout (3)

dz

dt
= g(c) = vin − vout (4)

dp

dt
= w(c, p) = vPLC − v5P (5)

dr

dt
= h(c) = vrec − vinac. (6)



Where

vrel − vserca =

(
k1

(
r

c

Ka + c

p

Kp + p

)3

+ k2

)
(z − c(1 + β))/β

−Vserca
c2

K2
serca + c2

(7)

and

vin − vout = v0 + φVPLC − Vpm
c2

K2
pm + c2

(8)

For the IP3 dynamics we take

vPLC − v5P =

(
1 +

BKp

(Kp + p)2

)−1(
VPLC

c2

K2
PLC + c2

− k5P p

)
. (9)

The latter equation includes the effect of an IP3 binding molecule, the IP3

buffer. We assume that binding of the buffer to IP3 is fast compared to other
processes. Using a rapid-equilibrium approximation one obtains the first term
of Eq. 9, where B is the IP3 buffer concentration. The parameter KPLC

characterizes the sensitivity of PLC to Ca2+ and is used to tune the strength
of the positive feedback. For the IP3R, we assume that their activation by
Ca2+ and IP3 is fast, whereas the inactivation is slow [?]

vrec − vinac =
1

τr

(
1 − r

Ki + c

Ki

)
. (10)

This equation indicates that for high Ca2+ the fraction of activable receptors
r decreases with a characteristic time τr. The parameter values are listed in
Table 3.

3.3 Expression of an IP3 buffer suppresses Ca2+ oscillations

To test experimentally the model predictions made in section 3.1, we used a
molecular IP3 buffer which consists of the N-terminal ligand binding domain
of rat type 1 IP3R linked to enhanced green fluorescent protein (EGFP-
LBD). Chinese hamster ovary (CHO) cells were transiently transfected with
EGFP (control) or EGFP-LBD then challenged with submaximal and maxi-
mal ATP concentrations. The subsequent [Ca2+]c responses were monitored
using a fluorescent probe, fura-2. EGFP fluorescence was utilized to distin-
guish transfected from non-transfected cells in a given field of view and to
estimate the intracellular concentration of the transgene.

The addition of low ATP concentrations elicited periodic [Ca2+]c spikes
in > 85% of the CHO cells expressing EGFP (Fig. 2A, B) or non-expressing
cells from cultures transfected with EGFP-LBD (not shown). The presence
of EGFP-LBD had a dose-dependent effect on the agonist dependent Ca2+



oscillations in CHO cells (Fig. 2A). High levels of EGFP-LBD expression
correlated with a loss of repetitive [Ca2+]c spiking and the appearance of low
amplitude [Ca2+]c increases (Fig. 2A, B). Moreover, EGFP-LBD expression
significantly slowed the rate of [Ca2+]c rise (Fig. 2C; p < 0.01) and signifi-
cantly broadened the width of the [Ca2+]c spike (Fig. 2D; p < 0.05) compared
to EGFP expressing cells.

According to the theoretical results, section 3.1, the disappearance of
Ca2+ oscillations after slowing the IP3 dynamics, may indicate that IP3 os-
cillations, driven by positive feedback of Ca2+ on IP3 production, are in-
volved in this system. We performed simulations using the detailed model
for the Ca2+-IP3 oscillator with positive feedback of Ca2+ on IP3 (section
3.2). The concentration of the IP3 buffer and the degree of stimulation are
varied by changing B and the maximal rate of IP3 production VPLC (Eq. 9).
Without IP3 buffer (B = 0) the model exhibit Ca2+ oscillations where the
frequency increases with increasing stimulation (Fig. 2E, Control). At high
concentrations of IP3 buffer (Fig. 2E, B = 13 µM), the model exhibits single
transients (for lower agonist dose), and repetitive truncated spikes (for high
agonist dose). Both responses closely resemble the experimentally observed
patterns in cells expressing high amounts of EGFP-LBD. The Ca2+ oscilla-
tions at lower concentrations of IP3 buffer (Fig. 2F) exhibit a broadening of
the individual spikes, which is very similar to the experimental observation
in cells expressing low amounts of EGFP-LBD. Also the observed decrease of
the rate of Ca2+ rise is reproduced by the model (not shown). These results
are corroborated by a more detailed analysis of the theoretical system. A
detailed model with negative feedback through Ca2+ dependent degradation
of IP3 mediated by IP33K could not account for any of the experimental
findings (see [?]).

4 Physiological role of Ca2+ feedbacks on IP3

metabolism

4.1 The wide range of oscillation periods is due to interactions

of IP3 and Ca2+ dynamics

The experiments with the IP3 buffer indicate that Ca2+ feedback on PLC
plays a crucial role in the oscillatory process. To elucidate the possible physi-
ological role of this feedback we varied its strength. This is done by changing
the sensitivity of PLC for Ca2+ (i.e. changing KPLC , see Eq. 9). For KPLC

being much lower than the basal [Ca2+]c, PLC is always saturated with Ca2+

and its activity is independent of variations in [Ca2+]c. In particular, by set-
ting KPLC = 0 positive feedback will effectively be eliminated. This model
with constant IP3 concentration shows fast calcium oscillations with a pe-
riod of 10-15 sec (Fig. 3A, dashed line). Introducing positive feedback by
setting KPLC > 0 causes oscillations with long periods at low stimulation.
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Fig. 2. The traces
in (A) show typical
ATP-evoked [Ca2+]c
spikes in CHO cells
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The IP3 buffer concentration B is increased as indicated. An increase in ATP
(arrowheads) is simulated by an increase in the maximal activity VPLC of PLC,
Eq. 9 . (F) We also observe a significant increase in spike width as shown in D.
Parameters listed in Table 3. All rates have been slowed by a factor of 10. In
(E) VPLC = 0.125, 0.2, 0.4 µM/s. Initial condition at VPLC = 0.05 µM/s. In (F)
VPLC = 0.2 µM/s. Reproduced from [?].

The frequency encoding of the stimulus becomes very pronounced when the
sensitivity of PLC to changes in [Ca2+]c is just above basal [Ca2+]c (Fig. 3A,
solid lines, KPLC = 0.1 and 0.2 µM). This indicates that positive feedback of
Ca2+ on IP3 may serve a physiological role by greatly enhancing the range
of frequency-encoding of the agonist stimulus and promoting long period os-
cillations.
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Fig. 3. Frequency encoding of agonist stimulus. (A) Oscillation periods observed
at different stimulation strengths (varying VPLC). Increasing the half-saturation
constant of PLC for Ca2+, KPLC , from 0 (no functional positive feedback) to 0.2 µM
(functional feedback) greatly enhances frequency encoding. (B) Control coefficients
for the oscillation period of Ca2+ exchange across the ER membrane (Cer, solid line)
and plasma membrane (Cpm, dash-dotted line), IP3 metabolism (Cp, dashed line),
and IP3R dynamics (Cr, dotted line). A positive period control coefficient signifies
that a slowing of the corresponding process increases the period. Parameter as in
Table 3 except τr = 12.5 s, v0 = 0.0004 µM/s, φ = 0.004, k5P = 0.66/s. Reproduced
from [?].

We also quantified the relative control of the IP3 dynamics and the other
processes present in the model on the oscillation period. To this end, we used
the following sensitivity measure

Ci =
τi
T

∂T

∂τi
for i = er, pm, p, r (11)

which we refer to as period control coefficients (see also [?]). The Ci set the
change of the oscillation period T in proportion to the change in a characteris-
tic time τi of an individual process i. We analyzed the control of the following
processes: IP3 metabolism, the IP3R dynamics, Ca2+ transport across the ER
membrane, and Ca2+ transport across the plasma membrane. A positive pe-
riod control coefficient implies that a slowing of the respective process (i.e.
increase in τi) raises the period. At any point, the period control coefficients
sum to unity, Cp + Cr + Cer + Cpm = 1, so that each coefficient quantifies
the relative contribution of a single process to the oscillation period [?].

The control coefficients were calculated for various levels of stimulation.
Because these levels correspond to different oscillation periods, we can plot
the Ci against the period (Fig. 3B). There are several notable features. The
control is distributed mainly between the IP3 dynamics (dot-dashed line),
IP3R dynamics (dotted line), and the fluxes through the ER membrane (solid
line). The fast oscillations are dominated by the exchange fluxes through the
ER membrane and the IP3R dynamics. Interestingly, there is an overall ten-
dency that the IP3 dynamics is more relevant for slow oscillations indicating
its role for long-period oscillations. We also found a rather counter-intuitive



behavior at intermediate periods where acceleration of the IP3R dynamics
would result in a slowing of the oscillations (Cr < 0).

This quantification of period control reveals that no process can be sin-
gled out as a unique period controlling factor. Depending on the oscillation
mechanism and the reference period, the IP3 turnover, the ER Ca2+ fluxes
and the IP3R dynamics can all exert strong control.

4.2 Intercellular coupling

In the intact liver, cells can communicate with their neighbours by diffusion of
small molecules through intercellular channels (gap junctions). This is a pre-
requisite for a coordinated response to the external stimulation, where one ob-
serves repetitive Ca2+-waves propagating through a large number of cells [?].
Isolated liver cells, conserving gap-junctional coupling with one or two of their
neighbours, show upon stimulation synchronous (1:1 phase-locked) [Ca2+]c
oscillations. If the gap-junctional coupling is disrupted each cell oscillates in-
dependently and the oscillation frequencies can differ by a factor of up to
two [?]. There are indications that this is due to variations in the amount
of agonist receptors and so in the maximal IP3 production rate. In models
whithout feedbacks of Ca2+ on IP3 (i.e. IP3 is not oscillating), intercellular
diffusion of Ca2+ alone is sufficient to account for the coordinated response
observed in coupled cells [?,?]. For this the gap-junctional Ca2+ permeability
must be higher than a critical value. When IP3 is not oscillating its intercel-
lular diffusion smooth out the differences between cells. This decreases the
value of the critical Ca2+ gap-junctional permeability and, if the Ca2+ per-
meability is to low, allows coordination for a limited number of spikes [?, ?].

In vivo, the theoretically estimated Ca2+ gap-junctional permeability nec-
essary for intercellular coordination may not be attained as Ca2+ is strongly
buffered in the cytoplasm so that its permeability is reduced by a factor of ∼
10-20 [?]. Our results show that Ca2+ exerts feedback on IP3 by activating
its production, and we were interested how this influences the response to
hormone of coupled cells.

We present the results for two coupled cells. The equation for IP3 and
Ca2+ dynamics in the first cell changes to

dc1
dt

= f(c1, z1, p1, r1) + γc(c2 − c1) (12)

dz1
dt

= g(c1) + γc(c2 − c1) (13)

dp1

dt
= w(c1, p1) + γp(p2 − p1). (14)

The gap-junctional diffusion rate constant of Ca2+ and IP3 are denoted re-
spectively by γc and γp. The subscripts 1 and 2 indicate the concentrations



in the first and second cell respectively. The symmetric expression is used for
the second cell.

The permeability for Ca2+, γc, and IP3, γp, are parameters which are
difficult to measure. We use them as control parameters together with the
maximal production rate VPLC of IP3. For two identical cells one can identify
four different coupled oscillatory modes. The stimulatory region and stability
of these modes is shown in Fig. 4A. Only two modes, regular synchronous
(diamonds) and regular asynchronous (triangles) oscillations (Fig. 4B and
C respetively), were found to be locally stable. We were not able to find a
parameter combination where the two types of irregular asynchronous oscil-
lations (squares and circles in Fig. 4A) are stable. These oscillatory modes are
characterized by different amplitudes in the two cells (Fig. 4D-E). Interest-
ingly, for two identical cells stable regular asynchronous oscillations have not
been observed in a similar model without feedback on IP3 [?]. In the region
near the first hopf bifurcation HBs1, opaque diamands, we found oscillations
with very long interspike intervals characteristic for canards [?].

It turns out that the stable asynchronous oscillations crucially depend on
the IP3 and Ca2+ coupling. In Fig. 5 we systematically varied the two per-
meabilities γp and γc and looked whether, by changing VPLC , one could find
regular asynchronous oscillations. Only when the Ca2+ permeability is low
is this oscillatory mode stable (region a). For larger Ca2+ permeabilities the
regular asynchronous oscillations are unstable (region b) or even completely
disappear (region c).

If the Ca2+-IP3 oscillators are not identical the possible collective dynam-
ics becomes more complicated. We were interested in the parameter region
where synchronous oscillations are observed, as this is the behavior observed
for hepatocytes duplets [?]. The oscillations in the two cells are of course not
identical but their phase difference is locked and the spike ratio is 1:1. The
two cells differ in their intrinsic frequencies due to differences in their IP3

production rate VPLC . As shown in Fig. 6 stable synchronous solutions are
obtained either by increasing the IP3 or Ca2+ intercellular permeability. We
will denote by critical permeability the permeability over which the oscilla-
tions are synchronous. One notices that if the difference between cells is small
(VPLC1 = 0.8 µM/s and VPLC2 = 1 µM/s) the critical IP3 permeability is
always lower than the critical Ca2+ permeability. This relation inverses when
the difference between cells is larger (VPLC1 = 0.8 µM/s and VPLC2 = 1.5
µM/s). This may be due to the fact that for the second case cells oscillate
faster so that the amplitude in IP3 oscillations is reduced, making it more
difficult for the first cell coupled via IP3 diffusion to sense the oscillation fre-
quency in the second cell. Despite this variation in sensitivity toward Ca2+

or IP3 coupling one should keep in mind that Ca2+ is strongly buffered so
that its effective permeability is about 10 to 20 times lower. Therefore, for
low gap-junctional coupling the synchronisation of Ca2+ oscillations is more
likely to be carried by IP3 diffusion than by Ca2+ diffusion.
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Fig. 4. Two identical cells are coupled via intercellular diffusion of IP3 only
(γp = 0.2/s, γc = 0). (A) Maxima of the [Ca2+]c oscillations as function of the
stimulus. One can distinguish between three types of coupled oscilatory behaviors:
Regular synchronous oscillations (diamond, see B), regular asynchronous oscilla-
tions (triangle, see C), two branches of irregular asynchronous oscillations (circles
and square, see D and E respectively). Regular (a)synchronous have stable and
unstable branches (filled and opaque symbols, respectively), irregular asynchronous
oscillations have only unstable branches (opaque symbol). (B) Regular synchronous:
no phase difference and equal amplitude. (C) Regular asynchronous: π/2 phase dif-
ference and equal amplitude. (D) and (E) Irregular asynchronous: phase difference
> π/2, different amplitudes. In B–E VPLC = 1.55 µM/s. Parameter as given in
Table 3 except Vpm = 0.18 µM/s, φ = 0.084, v0 = 0.0072 µM/s, τr = 12.5 s,
k5P = 0.66/s.



Fig. 5. Two identical cells coupled via intercellular diffusion of IP3 and Ca2+. De-
pending on the strength of Ca2+ and IP3 coupling regular asynchronous oscillations
as shown in Fig. 4C can be found. In region a this oscillatory mode is stable for
certain values of VPLC (see Fig. 4A), in region b it is unstable for any values of
VPLC , and in region c this oscillatory mode is not present. Parameters as in Fig. 4.

5 Conclusions

We have shown, by combining theoretical and experimental analysis, how it
is possible to elucidate the feedback structure underlying hormone induced
Ca2+ oscillations. IP3 oscillations appear to play an important dynamic role
for the Ca2+ oscillations. This result is also supported by a recent work of
Sneyd et al. [?] where they perturb the system by releasing small amounts of
IP3. Here, we concentrated on a positive feedback system, Ca2+ activation of
IP3 production via PLC. The physiological relevance of this interaction may
lie in its ability to support efficient frequency encoding of the stimulus and
in improving the coordination of cells coupled by intercellular diffusion.

Two other feedbacks of Ca2+ on IP3 metabolism have been proposed,
both of which are negative. The already mentioned Ca2+ activation of IP3

degradation, via IP33K, and PKC induced inactivation of agonist receptors
[?,?]. Modelling of these two feedbacks show that both can improve frequency
encoding of the stimulus. However, one cannot identify them by perturbing
the IP3 turnover as we have done for the positive feedback of Ca2+ on IP3.
Thus to asses their role in Ca2+ oscillations it is necessary to develop new
theoretical and experimental approaches.



Fig. 6. Two cells which differ in their PLC activity are coupled. Uncoupled the
cells oscillate with their own period (27, 18.8 and 11.6 sec for VPLC = 0.8, 1 and
1.5 µM/s respectively). The region of synchornous, 1:1 phase-locked oscillations de-
pends on the intercellular permeabilities for Ca2+ and IP3 (γc and γp respectively).
Parameters as in Fig. 4.
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Abstract. We review stabilization of deterministic chaotic as well as noise-induced
spatio-temporal patterns in spatially extended nonlinear systems by time-delayed
feedback control. Different control schemes, e.g., a diagonal control matrix, or global
control, or combinations of both, are compared. Specifically, we use two models of
nonlinear charge transport in semiconductor nanostructures which are of particular
current interest: (i) superlattice, (ii) double-barrier resonant-tunneling diode.

1 Introduction

Over the past decade control of unstable states has evolved into a central
issue in applied nonlinear science. This field has various aspects comprising
stabilization of unstable periodic orbits embedded in a deterministic chaotic
attractor, which is generally referred to as chaos control [1], stabilization of
unstable fixed points, or control of the coherence and timescales of stochastic
motion. Various methods of control, going well beyond the classical control
theory [2, 3], have been developed since the ground-breaking work of Ott,
Grebogi and Yorke [4]. One scheme where the control force is constructed
from time-delayed signals [5] has turned out to be very robust and universal
to apply. It has been used in a large variety of systems in physics, chemistry,
biology, and medicine [6], in purely temporal dynamics as well as in spatially
extended systems. Moreover, it has recently been shown to be applicable
also to noise-induced oscillations and patterns [7–9]. This is an interesting
observation in the context of ongoing research on the constructive influence
of noise in nonlinear systems [10–12].

In this review we focus on modern semiconductor structures whose struc-
tural and electronic properties vary on a nanometer scale. They provide an
abundance of examples for nonlinear dynamics and self-organized pattern
formation [13–15]. In these nanostructures nonlinear charge transport mech-
anisms are given, for instance, by quantum mechanical tunnelling through
potential barriers, or by thermionic emission of hot electrons which have
enough kinetic energy to overcome the barrier. A further important feature
connected with potential barriers and quantum wells in such semiconduc-
tor structures is the ubiquitous presence of space charges. This, according to



Poisson’s equation, induces a further feedback between the charge carrier dis-
tribution and the electric potential distribution governing the transport. This
mutual nonlinear interdependence is particularly pronounced in the cases of
semiconductor heterostructures (consisting of layers of different materials)
and low-dimensional nanostructures where abrupt junctions between differ-
ent materials on an atomic length scale cause conduction band discontinu-
ities resulting in potential barriers and wells. The local charge accumulation
in these potential wells, together with nonlinear transport processes across
the barriers have been found to provide a number of nonlinearities in the
current-voltage characteristics.
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Fig. 1. A semiconductor element operated in a circuit with load resistor R and
capacitor C, and applied bias voltage U0.

In the case of negative differential conductance, the current I decreases
with increasing voltage U , and vice versa, which normally corresponds to an
unstable situation. The actual electric response depends upon the attached
circuit which in general contains - even in the absence of external load resis-
tors - unavoidable resistive and reactive components like lead resistances, lead
inductances, package inductances, and package capacitances. These reactive
components give rise to additional degrees of freedom which are described
by Kirchhoff’s equations of the circuit. If, for instance, a circuit is considered
which contains a capacitance C parallel to the semiconductor device, and a
load resistance RL and a bias voltage U0 in series with the device (Fig. 1),
then Kirchhoff’s laws lead to

U0 = RLI0(t) + U(t) (1)

I0(t) = I(t) + C
dU

dt
. (2)

Hence the temporal behavior of the voltage is determined by the circuit
equation

dU(t)

dt
=

1

C

(
U0 − U

RL
− I

)
. (3)

If a semiconductor element with negative differential conductance is operated
in a reactive circuit, oscillatory instabilities may be induced by these reactive



components, even if the relaxation time of the semiconductor is much smaller
than that of the external circuit so that the semiconductor can be described
by its stationary I(U) characteristic and simply acts as a nonlinear resis-
tor. Self-sustained semiconductor oscillations, where the semiconductor itself
introduces an internal unstable temporal degree of freedom, must be distin-
guished from those circuit-induced oscillations. The self-sustained oscillations
under time-independent external bias will be discussed in the following. Ex-
amples for internal degrees of freedom are the charge carrier density, or the
electron temperature, or a junction capacitance within the device. Eq.(3) is
then supplemented by a dynamic equation for this internal variable. It should
be noted that the same class of models is also applicable to describe neural
dynamics in the framework of the Hodgkin-Huxley equations [16].

Two important cases of negative differential conductivity (NDC) are de-
scribed by an N-shaped or an S-shaped j(F ) characteristic, and denoted by
NNDC and SNDC, respectively. However, more complicated forms like Z-
shaped, loop-shaped, or disconnected characteristics are also possible [15].
NNDC and SNDC are associated with voltage- or current-controlled insta-
bilities, respectively. In the NNDC case the current density is a single-valued
function of the field, but the field is multivalued: the F (j) relation has three
branches in a certain range of j. The SNDC case is complementary in the
sense that F and j are interchanged. In case of NNDC, the NDC branch is of-
ten but not always - depending upon external circuit and boundary conditions
- unstable against the formation of nonuniform field profiles along the charge
transport direction (electric field domains), while in the SNDC case current
filamentation generally occurs, i.e., the current density becomes nonuniform
over the cross-section of the current flow and forms a conducting channel. The
elementary structures which make up these self-organized patterns are sta-
tionary or moving fronts representing the boundaries of the high-field domain
or high-current filament. These primary self-organized spatial patterns may
themselves become unstable in secondary bifurcation leading to periodically
or chaotically breathing, rocking, moving, or spiking filaments or domains,
or even solid-state turbulence and spatio-temporal chaos.

Chaotic oscillations should be avoided for a reliable operation of semicon-
ductor devices. Therefore there is need for control of those. The important
aspect of chaos control [1] is the emphasis of noninvasive control methods
together with the observation that chaos supplies a huge number of unstable
states that can be stabilized with tiny control power [4]. A particularly simple
and efficient scheme uses time–delayed signals to generate control forces for
stabilizing time periodic states [5] (time–delay autosynchronization, TDAS,
or Pyragas method). Within this approach, an intrinsically unstable periodic
orbit is stabilized using a feedback loop which couples back the difference
of an output variable at the actual time t and the same variable at a de-
layed time t− τ . This scheme is simple to implement, quite robust, and has
been applied successfully in real experiments, e.g., [17]- [27]. An extension



to multiple time-delays (extended time–delay autosynchronization, ETDAS)
has been proposed by Socolar et al [28], and analytical insight into those
schemes has been gained by several theoretical studies [29]- [36] as well as
by numerical bifurcation analysis [37]. Such self–stabilizing feedback control
schemes (time–delay autosynchronization) with different couplings of the con-
trol force have also been applied to spatio-temporal patterns resulting from
various models of semiconductor oscillators [38]- [46]. They should be easy
to implement in practical semiconductor devices.

Time-delayed feedback control has also been applied to purely noise-
induced oscillations in a regime where the deterministic system rests in a
steady state. It has been shown that in this way both the coherence and
the mean frequency of the oscillations can be controlled in simple mod-
els [7–9,47, 48] as well as in spatially extended systems [49–51].

Fig. 2. a) Superlattice exhibiting domain formation. The associated current density
(j) versus field (F ) characteristic shows negative differential conductivity (NDC).
The low-field domain corresponds to sequential tunnelling between equivalent levels
of adjacent quantum wells (low-field peak of the j(F ) characteristic), while the high-
field domain corresponds to resonant tunnelling between different levels of adjacent
wells (high-field peak). b) Schematic potential profile of the double barrier resonant
tunneling structure (DBRT). EF and Ew denote the Fermi level in the emitter, and
the energy level in the quantum well, respectively. U is the voltage applied across
the structure.

In the following, we use two paradigmatic models of semiconductor nanos-
tructures which are of great current interest [15], see Fig. 14:

(i) Electron transport in semiconductor superlattices shows strongly non-
linear spatio-temporal dynamics. Complex scenarios including chaotic mo-
tion of multiple fronts have been found under time-independent bias condi-
tions [52], showing signs of universal front dynamics [53,54]. Unstable periodic
orbits corresponding to travelling field domain modes can be stabilized by
time delayed feedback control. A novel control scheme using low-pass filtering



and allowing for control loop latency has been developed [46]. Noise-induced
front patterns have also been found [55].

(ii) Charge accumulation in the quantum-well of a double-barrier resonant-
tunneling diode (DBRT) may result in lateral spatio-temporal patterns of the
current density and chaos [56]. We demonstrate that unstable current den-
sity patterns, e.g., periodic breathing or spiking modes, can be stabilized
in a wide parameter range by a delayed feedback loop. We will compare
the control domains of different control schemes, relating them to their Flo-
quet spectrum [45]. Delayed feedback control of noise-induced patterns is also
demonstrated [50, 57].

2 Chaos control of domains and fronts in superlattices

Semiconductor superlattices [58] have been demonstrated to give rise to self-
sustained current oscillations ranging from several hundred MHz [59, 60] to
150 GHz at room temperature [61]. In any case, a superlattice constitutes a
highly nonlinear system [15, 62–64], and instabilities are likely to occur. In-
deed, chaotic scenarios have been found experimentally [65–67] and described
theoretically in periodically driven [68] as well as in undriven systems [52].
For a reliable operation of a superlattice as an ultra-high frequency oscillator
such unpredictable and irregular conditions should be avoided, which might
not be easy in practice.

Here we focus on simulations of dynamic scenarios for superlattices under
fixed time-independent external voltage in the regime where self-sustained
dipole waves are spontaneously generated at the emitter. The dipole waves are
associated with travelling field domains, and consist of electron accumulation
and depletion fronts which in general travel at different velocities and may
merge and annihilate. Depending on the applied voltage and the contact
conductivity, this gives rise to various oscillation modes as well as different
routes to chaotic behavior [52, 54].

We use a model of a superlattice based on sequential tunneling of elec-
trons. In the framework of this model electrons are assumed to be localized
at one particular well and only weakly coupled to the neighboring wells. The
tunneling rate to the next well is lower than the typical relaxation rate be-
tween the different energy levels within one well. The electrons within one
well are then in quasi–equilibrium and transport through the barrier is inco-
herent. The resulting tunneling current density Jm→m+1(Fm, nm, nm+1) from
well m to well m+1 depends only on the electric field Fm between both wells
and the electron densities nm and nm+1 in the wells (in units of cm−2). A
detailed microscopic derivation of the model has been given elsewhere [62]. A
typical result for the current density vs electric field characteristic is depicted
in Fig. 14 in the spatially homogeneous case, i.e. nm = nm+1 = ND, with
donor density ND.



In the following we will adopt the total number of electrons in each well as
the dynamic variables of the system. The dynamic equations are then given
by the continuity equation

e
dnm

dt
= Jm−1→m − Jm→m+1 for m = 1, . . . N (4)

where N is the number of wells in the superlattice, and e < 0 is the electron
charge.

The electron densities and the electric fields are coupled by the following
discrete version of Gauss’s law

ǫrǫ0(Fm − Fm−1) = e(nm −ND) for m = 1, . . .N, (5)

where ǫr and ǫ0 are the relative and absolute permittivities, and F0 and FN

are the fields at the emitter and collector barrier, respectively.
The applied voltage between emitter and collector gives rise to a global

constraint

U = −
N∑

m=0

Fmd, (6)

where d is the superlattice period.
The current densities at the contacts are chosen such that dipole waves

are generated at the emitter. For this purpose it is sufficient to choose Ohmic
boundary conditions:

J0→1 = σF0 (7)

JN→N+1 = σFN
nN

ND
(8)

where σ is the Ohmic contact conductivity, and the factor nN/ND is in-
troduced in order to avoid negative electron densities at the collector. Here
we make the physical assumption that the current from the last well to the
collector is proportional to the electron density in the last well. It is in prin-
ciple possible to use a more realistic exponential emitter characteristic [69]
or calculate the boundary conditions using microscopic considerations, but
the qualitative behavior is not changed.

In our computer simulations we use a superlattice with N = 100 periods,
Al0.3Ga0.7As barriers of width b = 5nm and GaAs quantum wells of width
w = 8nm, doping densityND = 1.0×1011cm−2 and scattering induced broad-
ening Γ = 8meV at T = 20K. If the contact conductivity σ is chosen such
that the intersection point with the homogeneous N–shaped current density
vs. field characteristic is at a sufficiently low current value, accumulation and
depletion fronts are generated at the emitter. Those fronts form a travelling
high-field domain, with leading electron depletion front and trailing accumu-
lation front. For fixed voltage U eq. (6) imposes constraints on the lengths of
the high-field domains and thus on the front velocities. If Na accumulations



Fig. 3. (a) Positions where accumulation and depletion fronts annihilate vs. voltage
at σ = 0.5 Ω−1m−1. The greyscale indicates high (black) and low (white) numbers
of annihilations at a given well. (b) Time differences between consecutive maxima
of the electron density in well no. 20 vs. voltage. Time series of length 600 ns have
been used for each value of the voltage.

fronts and Nd depletion fronts are present, the respective front velocites va

and vd must obey vd/va = Na/Nd. Since the front velocities are monotonic
functions of the current density [70], this also fixes the current. If the accumu-
lation and depletion fronts have different velocities, they may collide in pairs
and annihilate. With decreasing contact conductivity, or increasing voltage,
chaotic scenarios arise, where the annihilation of fronts of opposite polarity
occurs at irregular positions within the superlattice [52], leading to complex
bifurcation diagrams.

In Fig. 3(a) a density plot of the positions (well numbers) at which two
fronts annihilate is shown as a function of the voltage. We see that for low
voltage the annihilation takes place at a definite position in the superlattice



with a variation of only a few wells. This distribution broadens for increasing
voltage in characteristic bifurcation scenarios reminiscent of period doubling,
leading to chaotic regimes. We note that in the chaotic regime periodic win-
dows exist. A one-parameter bifurcation diagram is given in Fig. 3(b), ob-
tained by plotting the time difference ∆t between two consecutive maxima of
the electron density in a specific well. Chaotic bands and periodic windows
can be clearly seen.

Fig. 4. Control of chaotic front dynamics by extended time-delay autosynchroniza-
tion. a) Space-time plot of the uncontrolled charge density, and current density J
vs. time. b) Same with global voltage control with exponentially weighted current
density (denoted by the black curve). Parameters as in Fig. 1, U = 1.15 V, τ = 2.29
ns, K = 3 × 10−6Vmm2/A, R = 0.2, α = 109s−1.

The transition from periodic to chaotic oscillations is enlightened by
considering the space-time plot for the evolution of the electron densities
(Fig. 16(a)). At U = 1.15V chaotic front patterns with irregular sequences of
annihilation of front pairs occur.

We shall now introduce a time-delayed feedback loop to control the chaotic
front motion and stabilize a periodic oscillation mode which is inherent in
the chaotic attractor [46, 71]. As a global output signal which is coupled



back in the feedback loop, it is natural to use the total current density
J = 1

N+1

∑N
m=0 Jm→m+1. For the uncontrolled chaotic oscillations, J ver-

sus time (grey trace in Fig. 16(a)) shows irregular spikes at those times when
two fronts annihilate. Note that the grey current time trace is modulated
by fast small-amplitude oscillations (due to well-to-well hopping of depletion
and accumulation fronts in our discrete model) which are not resolved tem-
porally in the plot. They can be averaged out by considering an exponentially
weighted current density (black curve in Fig. 16(b)), which corresponds to a
low–pass filter:

J(t) = α

∫ t

0

J(t′)e−α(t−t′)dt′, (9)

with a cut-off frequency α.
The information contained in the low-frequency part of the current (Fig. 16(a),

black curve) is then used as input in the extended multiple-time autosyn-
chronization scheme. The voltage U across the superlattice is modulated by
multiple differences of the filtered signal at time t and at delayed times t− τ

U(t) = U0 + Uc(t) (10)

Uc(t) = −K
[
J(t) − J(t− τ)

]
+RUc(t− τ) (11)

= −K
∞∑

ν=0

Rν
[
J(t− ντ) − J(t− (ν + 1)τ)

]

= −K
[
J(t) − (1 −R)

∞∑

k=1

Rk−1J(t− kτ)

]

where U0 is a time–independent external bias, and Uc is the control volt-
age. K is the amplitude of the control force, τ is the delay time, and R is
a memory parameter. A sketch of the whole control circuit is displayed in
Fig. 5a. Such a global control scheme is easy to implement experimentally. It
is non-invasive in the sense that the control force vanishes when the target
state of period τ has been reached. This target state is an unstable periodic
orbit of the uncontrolled system. The period τ can be determined a priori
by observing the resonance-like behavior of the mean control force versus τ .
The result of the control is shown in Fig. 16(b). The front dynamics exhibits
annihilation of front pairs at fixed positions in the superlattice, and stable
periodic oscillations of the current are obtained.

In Fig. 5(b) the control domain is depicted in the parameter plane of R
and K. A typical horn–like control domain similar to the ones known from
other coupling schemes [42] is found. Control is achieved in a range of values
of the control amplitude K, which is widened and shifted to larger K with
increasing memory parameter R. Typically, the left–hand control boundary
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Fig. 5. a) Control circuit including the low-pass filter with cut-off frequency α and
the time-delayed feedback loop (K) and its extension to multiple time delays (R).
b) Control domain for global voltage control. Full circles denote successful control,
small dots denote no control. Parameters as in Fig. 16.

corresponds to a period–doubling bifurcation leading to chaos for smaller
K, while the right–hand boundary is associated with a Hopf bifurcation.
The shape of our control domain and its size resemble the results obtained
analytically for diagonal control schemes where observables are measured
and controlled locally. In particular we do not observe the influence of other
branches of the Floquet eigenvalue problem, which might reduce the size of
the control domain severely [72]. Thus our control scheme is of similar control
performance as local control.

In order to investigate the effect of the low-pass filtering on the frequency
spectrum of the system, it is helpful to consider the transfer function formal-
ism in the frequency domain for the ETDAS control scheme both with and
without an additional low-pass filter.

In the frequency domain Eq. (11) reads

Uc(ω) = −KT (ω)J(ω), (12)

where T (ω) denotes the transfer function which can be calculated as

T (ω) = TETDAS(ω)Tlow−pass(ω). (13)

TETDAS(ω) is the transfer function of the ETDAS control scheme [20] given
by

TETDAS(ω) =
1 − e−iωτ

1 −Re−iωτ
(14)



and Tlow−pass(ω) is the transfer function of the low-pass filter:

Tlow−pass(ω) =
1

1 + iω
α

. (15)

The shape of |TETDAS(ω)| is displayed in Fig. 6(a) for different values
of R. As discussed by Sukow et al [20], the transfer function drops to zero
at multiples of the frequency of the unstable periodic orbit (UPO), i.e., τ−1.
The notches at these frequencies become narrower for larger R. Due to the
notches, the frequency of the UPO does not contribute to the control signal,
so that the control force vanishes if stabilization is successful. The steeper
notches for larger R indicate that the ETDAS feedback is more sensitive to
frequencies different from the one to be controlled, so that more feedback is
produced for these unwanted frequencies, which makes the control scheme
more efficient.

The maximum value of |TETDAS(ω)| approaches unity for R close to 1 and
the plateaus become flatter. Therefore, intermediate frequencies generate a
smaller response for larger R and thus are less likely to destabilize the system.

The combined transfer function |T (ω)| for ETDAS and low-pass filtering
is displayed in Fig. 6(b). As in Fig. 6(a), there are notches at multiples of
the frequency of the UPO, which become narrower for increasing R. The am-
plitudes of frequencies larger than the cut-off frequency α are reduced and
thus are only minor contributions to the feedback response. This is impor-
tant to notice in order to understand how the low-pass filter improves the
controllability of the system.

Consider a control signal that inhibits frequency components above the
frequency of the unstable periodic orbit, ω0 = 2π/τ . As discussed above,
the ETDAS transfer function becomes zero at multiples of ω0 so that these
frequencies are stabilized since no feedback is generated. The harmonics of a
small deviation from ω0 are given by m(ω0 + ǫ) = mω0 +mǫ with an integer
number m. It is likely that special harmonics of the deviation coincide with
one of the notches. In this case, ETDAS would generate a control force that
stabilizes ω0 + ǫ and not only the desired frequency of the UPO ω0. Inserting
a low-pass filter overcomes this effect because higher frequency components
are suppressed in the control signal.

Another way to understand the influence of the low-pass filter is to take
a look at frequencies which should be destabilized, i.e., suppressed by the
control scheme. For this discussion see Fig. 7, which depicts the transfer
function of the ETDAS method for R = 0.2 with and without a low-pass
filter (ατ = 1) as the dashed and solid line, respectively. The circles and
dots indicate an unwanted frequency ω1 and its first three harmonics. Let us
discuss first the case without a low-pass filter (solid line and black dots). Here
we find that the third harmonic (4ω1) is almost located in the middle of a
notch of the transfer function. Thus it will enter the generation of the control
force with a high spectral weight so that the control scheme accidentally
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Fig. 6. (a) Absolute value of the ETDAS transfer function for different values of
R =0 (TDAS), 0.2, 0.4 0.6, 0.8. (b) absolute value of the ETDAS transfer function
including a low-pass filter with fixed ατ = 1 for the same values of R as in (a).

stabilizes its fundamental frequency ω1. This effect can be overcome by an
additional low-pass filter as shown by the dashed curve and the circles. Again
the third harmonic is located near a minimum of the transfer function, but
since the notch is not so steep due to the low-pass filter, the spectral weight
of the harmonic is smaller. Therefore the component of the control force that
supports the fundamental frequency ω1 is reduced.

For a better understanding of the influence of the low-pass filter on the
semiconductor superlattice, let us consider the Fourier power spectra of the
global current density in the case with and without low-pass filter. Panels (a)
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and (b) of Fig. 8 depict the Fourier power spectra of the global current density
J in the absence of a control scheme, i.e., K = 0, for both the unfiltered and
filtered version of J where the red curve corresponds to J and the blue curve
corresponds to its filtered counterpart. The parameters of the superlattice
are as in Fig. 16 and the cut-off frequency of the filter is set to α = 1GHz.
Panel (b) is an enlargement of panel (a) to give details of the spectra in the
range of 0 to 2GHz.

The spectra in panel (a) do not show sharp peaks, but a large band of
frequencies indicating that the stabilization is not successful. In the spectra,
there are some local maxima visible. Next to a maximum at about 0.5GHz
[see panel (b)], there are additional local maxima at 10GHz and 20GHz,
which can be identified with the high frequency of the well-to-well-hopping
of the charge fronts and its first harmonic. As expected, the two spectra are
similar in the range of low frequencies [see panel (b)], but the amplitudes of
high frequency components are reduced in the filtered version of J . From this
it can be predicted that an additional control voltage according to Eq. (11)
will control the low frequency dynamics, which is subject of stabilization, and
will not be sensitive to the disturbing high frequency parts.

In fact, panels (c) and (d) of Fig. 8 show exactly this result in the presence
of ETDAS control with a low-pass filter (α = 1GHz). The red and blue curves
in the diagram refer again to the original unfiltered current density and its
filtered counterpart, respectively. Panel (d) shows again an enlargement of
panel (c) in the range of 0 to 2GHz.

Distinct peaks are visible in each spectrum. Panel (d) shows that these
peaks belong to the fundamental frequency f0 = τ−1 = 0.437GHz and its
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Fig. 8. Fourier power spectra of the global current density J : The red and the blue
curve correspond to the system with and without low-pass filter (cutoff frequency
α = 1GHz), respectively. (a) and (b) display the case of the absence of a control
scheme, i.e., K = 0. (c) and (d) show the case of ETDAS control via the applied
voltage for K = 3 × 10−6Vmm2/A, R = 0.2, and τ = 2.29ns. (b) and (d) are
enlargements of (a) and (c) in the range of 0 to 2GHz, respectively.

harmonics. Thus, the control is successful. It can be seen from the spectrum
of the unfiltered J in panel (c) that high frequencies are still present in the
system as frequency components in the range of 10GHz, which corresponds
to the well-to-well-hopping process of the fronts in the device (see also grey
curve in the J vs. t plot of Fig. 16), but the oscillations are successfully
stabilized because the control scheme is not sensitive to the disturbing high
frequencies. This can be seen in the spectrum of the filtered current den-
sity. The frequencies of the well-to-well-hopping process of the electrons are
strongly reduced. Since the control force is generated from the filtered J ,



there are no high frequency contributions in Uc which might destabilize the
system.

In conclusion, time-delay autosynchronization represents a convenient and
simple scheme for the self-stabilization of high-frequency current oscillations
due to moving domains in superlattices under dc bias. This approach lacks
the drawback of synchronization by an external ultrahigh-frequency forcing,
since it requires nothing but delaying of the global electrical system output
by the specified time lag.

3 Control of noise-induced oscillations in superlattices

Noise is an inevitable feature of physical models. Theoretical and experimen-
tal research has recently shown that noise can have surprisingly constructive
effects in many nonlinear systems. In particular, an optimal noise level may
give rise to ordered behavior and even produce new dynamical states [11].
Well-known examples are provided by stochastic resonance [73,74] in period-
ically driven systems, and by coherence resonance [10, 75, 76] in autonomous
systems. In spite of considerable progress on a fundamental level, useful ap-
plications of noise-induced phenomena in technologically relevant devices are
still scarce. Here we will demonstrate that noise can give rise to oscillating
current and charge density patterns in semiconductor nanostructures even if
the deterministic system exhibits only a steady state, and that these space-
time patterns can be controlled by the time-delayed feedback scheme applied
to purely deterministic chaotic front patterns in a superlattice in the previous
section.

We develop a stochastic model for the superlattice approximating the
random fluctuations of the current densities by additive Gaussian white noise
ξm(t) with

〈ξm(t)〉 = 0, 〈ξm(t)ξm′(t′)〉 = δ(t− t′)δmm′ , (16)

in the continuity equation (4):

e
dnm

dt
= Jm−1→m +Dξm(t) − Jm→m+1 −Dξm+1(t), (17)

where D is the noise intensity. Since the inter-well coupling in our super-
lattice model is very weak and the tunneling times are much smaller than
the characteristic time scale of the global current, these noise sources can
be treated as uncorrelated both in time and space. Charge conservation is
automatically guaranteed by adding a noise term ξm to each current den-
sity Jm−1→m. The physical origin of the noise may be, e.g., thermal noise,
1/f noise, or shot noise due to the randomly fluctuating tunneling times of
discrete charges across the barriers. The latter is Poissonian and can be ap-
proximated by D = (eJm−1→m/A)1/2 [64,77] which increases with decreasing
current cross section A; thus this type of noise dominates for small devices. In



the following we summarize the global effect of noise by a constant D. Note
that the results coincide very well with those obtained for current-dependent
shot noise.
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Fig. 9. Bifurcation diagram in the (σ, U) plane. Thick and hatched lines mark the
transition from stationary to moving fronts via a Hopf or a saddle-node bifurcation
on a limit cycle, respectively. The inset shows a blow-up of a small part of the
hatched line revealing its saw-tooth-like structure. Dark and white correspond to
stationary and moving fronts, respectively, where the numbers denote the positions
of the stationary accumulation front in the superlattice. Upper inset shows the
frequency f of the limit cycle which is born above the critical point (marked by a
cross in the lower inset) as function of U .

We choose the control parameters U and σ such that the deterministic
system exhibits no oscillations but is very close to a bifurcation thus yielding
it very sensitive to noise. The transition from stationarity to oscillations in
the system may occur either via a Hopf or via a saddle-node bifurcation on
a limit cycle as depicted in the bifurcation diagram of Fig. 9. The different
nature of these two bifurcations is reflected in the effect noise has in each case.
The local character of the Hopf bifurcation is responsible for noise-induced
high frequency oscillations of strongly varying amplitude around the stable
fixed point. We try to characterize basic features of these oscillations such as
coherence and time scales. The need to be able to adjust these features as
one wishes will lead to the application of the time-delayed feedback scheme



as introduced for the deterministic system in Sect. 2. But first we will be
looking at the other dynamical regime [55], slightly below the global saddle-
node bifurcation on a limit cycle (cross in the lower inset of Fig. 9).

There the scenario is quite different. As seen in Fig. 9, keeping σ fixed and
increasing the voltage U , a limit cycle of approximately constant amplitude
and increasing frequency is born. This happens through the collision of a
stable fixed point and a saddle-point. Plotting the frequency of these oscilla-
tions vs the bifurcation parameter U , we obtain the characteristic square-root
scaling law (upper inset of Fig. 9) that governs a saddle-node bifurcation on
a limit cycle. At the critical point Ucrit the frequency of the oscillations
tends to zero. This corresponds to an infinite period oscillation and therefore
this bifurcation is also known as saddle-node infinite period bifurcation or
SNIPER [78,79]. We now prepare the system at the stable fixed point, which
corresponds to a stationary accumulation front (Fig. 10(a)), and introduce
noise. As the noise intensity is increased, the behavior of the system changes
dramatically (Fig. 10(b)): the accumulation front remains stationary only for
a while, until a pair of a depletion and another accumulation front (i.e., a
charge dipole with a high-field domain in between) is generated at the emit-
ter. As is known from the deterministic system, this dipole injection depends
critically upon the emitter current [54]. Here it is triggered by noise at the
emitter (we have in fact verified that the same scenarios occur if noise is ap-
plied locally only to the wells near the emitter). Because of the global voltage
constraint, Eq. (6), the growing dipole field domain between the injected de-
pletion and accumulation fronts requires the high field domain between the
stationary accumulation front and the collector to shrink, and hence that ac-
cumulation front starts moving towards the collector. For a short time there
are two accumulation fronts and one depletion front in the sample, thereby
forming a tripole [80], until the first accumulation front reaches the collector
and disappears. When the depletion front reaches the collector, the remaining
accumulation front must stop moving because of the global constraint, and
this happens at the position where the first accumulation front was initially
localized. After some time noise generates another dipole at the emitter and
the same scenario is repeated.

There are two distinct time scales in the system. One is related to the
time the depletion front takes to travel through the superlattice. The other
timescale is associated with the time needed for a new depletion front to be
generated at the emitter. These two time scales are also visible in the noise-
induced current oscillations, see Fig. 11(a). The time series of the current
density are in the form of a pulse train with two characteristic times: the
activation time, which is the time needed to excite the system from this
stable fixed point (time needed for a new depletion front to be generated
at the emitter) and the excursion time which is the time needed to return
from the excited state to the fixed point (time the depletion front needs
to travel through the device). Low noise is associated with large activation



0 100t [ns]

0

0

100

100

W
el

l #
W

el
l #

W
el

l #

100
0

(a)

(b)

(c)

Fig. 10. Noise-induced front motion: Space-time plots of the electron density for
(a) D=0 (no noise), (b) D = 0.5As1/2/m2, (c) D = 2.0As1/2/m2. Light and dark
shading corresponds to electron accumulation and depletion fronts, respectively.
The emitter is at the bottom. Parameters: U = 2.99V , σ = 2.0821012488Ω−1m−1,
other parameters as in Sect. 2.

times and small, almost constant, excursion times, while as the noise level
increases activation times become smaller and at sufficiently large D vanish.
At low D the spike train looks irregular, and the interval between excitations
(mean interspike-interval 〈T 〉) is relatively large and random in time. At
moderate noise, the spiking is rather regular therefore suggesting that the
mean interspike-interval does not vary substantially. Further increase of noise
results in a highly irregular spike train with very frequent spikes.

To get deeper insight into the effect noise has on the time scales and
coherence of the system we determine the interval between two consecutive
excitations and calculate the mean interspike-interval 〈T 〉. In Fig. 11(b) (top)
the decrease of 〈T 〉 as a function of D is shown thus demonstrating that the
mean interspike-interval is strongly controlled by the noise intensity especially
at lower values of the latter. This is very important in terms of experiments,
where noise can induce oscillations by forcing stationary fronts to move. The
corresponding spectral peak frequency f shows a linear scaling for small
D. As a measure for coherence we use the normalized fluctuations of pulse
duration [10]

RT =
(〈T 2〉 − 〈T 〉2)1/2

〈T 〉 (18)

This quantity, as seen in Fig. 11(b) (bottom), is a non-monotonic function
of D, exhibiting a minimum at moderate noise intensity. This is the well
phenomenon of coherence resonance and is strongly connected to excitability.

Next we prepare the system in the vicinity of the lower bifurcation line
in Fig. 9, slightly below a Hopf bifurcation marked by the small rectangle in
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Fig. 11. (a) Three noise realizations of the current density J(t). From top to bot-
tom, D = 0.8, D = 2.0 and D = 5.0As1/2/m2. (b) Mean interspike-interval (top)
and its normalized fluctuations RT (bottom) vs noise intensity. The inset shows the
peak frequency vs. D.

Fig.9 [49]. In the absence of noise the only stationary solution is a stable fixed
point which now corresponds to a stationary depletion front near the emitter,
associated with a stationary current density flowing throughout the device
(Fig. 12(a), top). In the phase space it corresponds to a stochastic oscillation
around the stable fixed point. With increase of the noise intensity (D > 0),
the current density starts oscillating in a rather regular way around the steady
state (Fig. 12(a), middle). At larger noise intensities, the dynamics changes
significantly (Fig. 12(a), bottom). Current oscillations become sharply peaked
and spiky, and the average current is shifted towards larger values. In the
spatiotemporal picture (omitted here), no significant front motion is observed.
At low noise intensities the depletion front as a whole starts to ”wiggle”
around its deterministically fixed position. At higher noise intensities the
depletion front exhibits a slightly more asymmetric motion and occasionally
the onset of a tripole oscillation may be observed without, however, further
development.

Although noise in this case fails to induce significant front motion, the
associated current oscillations exhibit interesting features in dependence upon
the noise intensity. To quantify the regularity of these oscillations a suitable
and widely used measure is the correlation time tcor given by the formula [81]:

tcor =
1

ψ(0)

∫ ∞

0

|ψ(s)|ds, (19)
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Fig. 12. (a) Current density times series. From top to bottom: D = 0, D = 0.1 and
D = 0.5As1/2/m2. (b) Correlation time vs D (upper plot). Lower plot: main and
secondary spectral peak of the power spectral density S(2πf) vs frequency f for in-
creasing noise (from top to bottom: D = 0.3, D = 0.5 and D = 1.0As1/2/m2). Inset
shows basic period T0 vs noise intensity D. Parameters: U = 1V , σ = 0.266Ω−1m−1.

where ψ(s) is the autocorrelation function of the current density signal J(t),

ψ(s) = 〈(J(t) − 〈J〉)(J(t − s) − 〈J〉)〉, (20)

and ψ(0) is its variance. Additionally we may consider the Fourier power
spectral densities (shortly referred to as spectra) for different values of noise
intensities D. They provide qualitative understanding of how the noise level
affects basic characteristics of noise-induced oscillations (Fig. 12(b), lower
panel). We see that an increase of the noise level broadens the spectral peak
and suppresses secondary ones. At the same time the position of the main
spectral peak, corresponding to the basic frequency of the oscillations, is
almost unchanged. This is confirmed by the inset of the same figure, where the
dependence of the basic period T0 (the inverse of the frequency at which the
spectral peak is centered) of the noisy oscillations versus the noise intensity
is presented. This basic period is close to the period of self-oscillations above
the Hopf bifurcation.

Next we are interested in the effect of time-delayed feedback on the co-
herence and time scales of the noise-induced oscillations. We will apply the
scheme proposed by Eq. (10) but with R = 0 and cut-off frequency α = 1
GHz. A natural choice for τ is the basic period of the Hopf oscillation (or
integer multiples of it). As seen in Fig. 13(b) the application of control in-
deed improves the coherence of the current signal, since the main peak in the
power spectrum becomes narrower. This improvement may also be expressed
through the correlation time (Fig. 13a), where in the controlled system it



acquires larger values especially at higher noise intensities. In order to study
the influence of control on the time scales of the system, the parameter to be
varied will be the time delay τ . Calculating spectra for increasing τ it was
found that additional peaks appear, while the main (most pronounced) peak
moves towards lower frequencies. Plotting the period of the resulting main
peak as a function of τ , we see that T0(τ) has an almost piecewise linear,
oscillatory character (Fig 13c) in agreement with [7, 8]. Therefore, while the
position of the main peak of the spectrum does not depend on the noise level
in the case without control, it is indeed possible to shift its position by the
proposed time-delayed feedback scheme.
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Fig. 13. (a) Correlation time of controlled system with K = 3 × 10−6V mm2/A,
α = 109s−1, and τ = 2.5ns (broken line) and (solid line) for uncontrolled system
(K = 0). (b) Spectra with (black) and without control (gray) for D = 0.5As1/2/m2.
(c) Basic frequency T0 vs time delay τ .

To conclude, noise-induced front motion and oscillations have been ob-
served in a spatially extended system. The former are induced in the vicinity
of a global saddle-node bifurcation on a limit cycle where noise uncovers a
mechanism of excitability responsible also for coherence resonance. In another
dynamical regime, namely below a Hopf bifurcation, noise induces oscillations
of decreasing regularity but with almost constant basic time scales. Applying
time-delayed feedback enhances the regularity of those oscillations and allows
to manipulate the time scales of the system by varying the time delay τ .



4 Chaos control of spatio-temporal oscillations in
resonant tunneling diodes

Next we consider a double–barrier resonant tunneling diode (DBRT), which
exhibits a Z-shaped (bistable) current–voltage characteristic [15]. We include
the lateral re–distribution of electrons in the quantum well plane (x coor-
dinate) giving rise to filamentary current flow [82, 83]. Complex chaotic sce-
narios including spatio-temporal breathing and spiking oscillations have been
found in a simple deterministic reaction–diffusion model [56]. We extend this
model to include control terms, and obtain the following equations [45] where
we use dimensionless variables throughout:

∂a

∂t
= f(a, u) +

∂

∂x

(
D(a)

∂a

∂x

)
−KFa(x, t) (21)

du

dt
=

1

ε
(U0 − u− rJ) −KFu(t) (22)

Here u(t) is the inhibitor and a(x, t) is the activator variable. In the semi-
conductor context u(t) denotes the voltage drop across the device and a(x, t)
is the electron density in the quantum well. The nonlinear, nonmonotonic
function f(a, u) describes the balance of the incoming and outgoing current
densities of the quantum well, andD(a) is an effective, electron density depen-
dent transverse diffusion coefficient. The local current density in the device is

j(a, u) = 1
2 (f(a, u)+2a), and J = 1

L

∫ L

0 jdx is associated with the global cur-
rent. Eq. (22) represents Kirchhoff’s law of the circuit (3) in which the device
is operated. The external bias voltage U0, the dimensionless load resistance
r ∼ RL, and the time-scale ratio ε = RLC/τa (where C is the capacitance
of the circuit and τa is the tunneling time) act as control parameters. The
one–dimensional spatial coordinate x corresponds to the direction transverse
to the current flow. We consider a system of width L = 30 with Neumann
boundary conditions ∂xa = 0 at x = 0, L corresponding to no charge transfer
through the lateral boundaries.

Eqs. (21),(22) contain control forces Fa and Fu for stabilizing time peri-
odic patterns. The strength of the control terms is proportional to the control
amplitude K, which gives one important parameter of each control scheme.
In the semiconductor context these forces can be implemented by appropriate
electronic feedback circuits [41].

The dynamics of the free system, i.e. K = 0, develops temporally chaotic
and spatially nonuniform states (spatio–temporal breathing or spiking) in ap-
propriate parameter regimes [56], see Fig. 14. For any value of L the system,
due to the global coupling, allows only single spikes at the boundary of the
spatial domain [84]. In the semiconductor context the time and length scales
of our dimensionless variables are typically given by 3.3 picoseconds (tunnel-
ing time) and 100 nanometers (diffusion length), respectively. Typical units
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Fig. 14. Spatio-temporal breathing patterns of the DBRT: electron density evo-
lution, phase portrait, and voltage evolution for (a) ε = 7.0: periodic breathing,
(b) ε = 9.1: chaotic breathing (r = −35, U0 = −84.2895, K = 0). Time t and
space x are measured in units of the tunneling time τa and the diffusion length la,
respectively. Typical values at 4K are τa = 3.3 ps and la = 100 nm [45].

of the electron density, the current density, and the voltage are 1010cm−2,
500 A/cm2, and 0.35 mV, respectively. A characteristic bifurcation diagram
exhibiting a period-doubling route to chaos is shown in Fig. 15.

We are concerned with controlling unstable time periodic patterns up(t) =
up(t+ τ), ap(x, t) = ap(x, t + τ) which are embedded in a chaotic attractor.
For that purpose we apply control forces Fa and Fu which are derived from
time–delayed differences of the voltage and the charge density. For example
we may choose Fu = Fvf with the voltage feedback force

Fvf(t) = u(t) − u(t− τ) +RFvf(t− τ) (23)
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Fig. 15. Chaotic bifurcation diagram of the resonant tunneling diode. The maxima
and minima of the voltage oscillations are plotted versus the time-scale parameter
ε.

(extended time–delay autosynchronization).
Here we concentrate on the question how the coupling of the control forces

to the internal degrees of freedom influences the performance of the control.
For our model we consider two different choices for the control force Fa.
On the one hand we use a force which is based on the local charge density
according to

Floc(x, t) = a(x, t) − a(x, t− τ) +RFloc(x, t− τ) . (24)

whereas on the other hand we propose a construction which is only based on
its spatial average

Fglo(t) =
1

L

∫ L

0

[a(x, t) − a(x, t− τ)] dx+RFglo(t− τ) . (25)

We call the choice Fa = Floc a local control scheme in contrast to the global
control scheme Fa = Fglo which requires only the global average and does
not depend explicitly on the spatial variable. The second option has con-
siderable experimental advantages since the spatial average is related to the
total charge in the quantum well and does not require a spatially resolved
measurement.

In general the analysis of the control performance of time–delayed feed-
back methods results in differential–difference equations which are hard to
tackle. Stability of the orbit is governed by eigenmodes and the corresponding
complex valued growth rates (Floquet exponents). There exists a simple case
(which we call diagonal control) where analytical results are available [30,85],
namely for Fa = Floc and Fu = Fvf. It is a straightforward extension to a



spatially extended system of an identity matrix for the control of discrete
systems of ordinary differential equations (cf. [29]). Fig. 16 shows successful
control of a chaotic breathing oscillation after the control force is switched
on.

In Figure 17 the regime of successful control in the (K,R) parameter plane
and the real part of the Floquet spectrum Λ(K) for R = 0 is depicted. The
control domain has its typical triangular shape bounded by a flip instability
(Λ = 0, Imaginary part Ω = π/τ) to its left and by a Hopf (Neimark-Sacker)
bifurcation to its right. Inclusion of the memory parameter R increases the
range of K over which control is achieved. We observe that the numerical
result fits very well with the analytical prediction.

To confirm the bifurcations at the boundaries we consider the real part of
the Floquet spectrum of the orbit subjected to control. Complex conjugate
Floquet exponents show up as doubly degenerate pairs. The largest nontrivial
exponent decreases with increasing K and collides at negative values with
a branch coming from negative infinity. As a result a complex conjugate
pair develops and real parts increase again. The real part of the exponent
finally crosses the zero axis giving rise to a Hopf bifurcation. Our numerical
simulations are in agreement with the analytical result.

Let us now replace the local control force Fa = Floc by the global con-
trol Fa = Fglo. Fig. 18 shows the corresponding control regime and Floquet
spectrum. The control domain looks similar in shape as for diagonal control,
although the domain for the global scheme is drastically reduced. The shift in
the control boundaries is due to different branches of the Floquet spectrum
crossing the (Λ = 0)-axis.

Finally, we note that the period-one orbit can be stabilized by our control
scheme throughout the whole bifurcation diagram including chaotic bands
and windows of higher periodicity, as marked by two solid lines in Fig. 15
for diagonal control. Thus our method represents a way of obtaining stable
self-sustained voltage oscillations in a whole range of operating conditions,
independently of parameter fluctuations.

5 Noise-induced spatio-temporal patterns in the DBRT

In the previous section we discussed the possibilities to control deterministic
chaotic oscillations in the double barrier resonant tunneling diode (DBRT).
Now we will study the effects of noise in this system and investigate whether
we can control noise-induced spatio-temporal oscillations by the same method
of time-delayed feedback [50, 57].
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We use the same model equations (21) and (22). First we will consider
the system without control (K = 0), but with two additional noise sources:

∂a(x, t)

∂t
= f(a, u) +

∂

∂x

(
D(a)

∂a

∂x

)
+Daξ(x, t)

du(t)

dt
=

1

ε
(U0 − u− rJ) +Duη(t)

(26)
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where ξ(x, t) and η(t) represent uncorrelated Gaussian white noise sources
with noise intensities Da and Du, respectively:

〈ξ(x, t)〉 = 〈η(t)〉 = 0 (x ∈ [0, L]),

〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′),

〈η(t)η(t′)〉 = δ(t− t′).

(27)

Here we concentrate on the effects of external noise modeled by the additional
noise voltage Duη(t) in the current equation. This term is easily accessible in
a real circuit and the noise intensity Du can be adjusted in a large parameter
range using a noise generator in parallel with the supply bias, as realized
experimentally, e. g., in [86]. In typical dimensional units of εkBT/e [56]Du =
1 corresponds to a parallel noise voltage of 2 mV at temperature T = 4 K.
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Internal fluctu ations of the local current density on the other hand, e.g., shot
noise [77], can not be tuned from the outside. Therefore in the following we
keep this value fixed at a small noise amplitude of Da = 10−4, corresponding
to a noise current density of the order of 50mA/cm2, which is within the
range of Poissonian shot noise currents.

In the noise-free case, Du=Da = 0, one can calculate the null isoclines of
the system. These are plotted in Fig. 19 using the current–voltage projection
of the originally infinite-dimensional phase space. There are three curves, the
null isocline u̇ = 0 (i. e., the load line) and two null isoclines ȧ = 0, one
for a reduced system, including only spatially homogeneous states, and one
for the full system. We call the system spatially homogeneous if the space
dependent variable a(x, t) is uniformly distributed over the whole width of
the device, i. e. a(x, t) = a(t) for all x ∈ [0, L], otherwise it is called spatially
inhomogeneous.

In Fig. 19 one can see the Z-shaped current-voltage characteristic of the
DBRT (solid curve), and the inset represents our special regime of interest
for the following investigations. We fix ε = 6.2 slightly below the Hopf bifur-
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cation, which occurs at εHopf ≈ 6.469 (cf. Fig. 15). In this regime we have
a stable, spatially inhomogeneous fixed point marked ’I’ in Fig. 19, which
is determined by the intersection of the load line with the nullcline ȧ = 0
for inhomogeneous a(x, t). The neighboring intersection of the load line with
the homogeneous nullcline (marked ’H’) defines another, spatially homoge-
neous fixed point which is a saddle-point. It is stable with respect to com-
pletely homogeneous perturbations but generally unstable against spatially
inhomogenous fluctuations.

Finally, the system (26) has a stable homogeneous fixed point which is
characterized by negative voltage u and almost zero current density J . This
point corresponds to the non-conducting regime of the DBRT, which is be-
yond the scope of the present study.

In Fig. 20 one can see the rather rapid transition of the deterministic
system from the slightly perturbed homogeneous fixed point (H) to the inho-
mogeneous filamentary one (I). This illustrates that for the given parameters
the only stable solution, apart from a trivial, non-conducting fixed point, is
an inhomogeneous steady state.

To quantify the degree of (in)homogeneity we use the measure of the
absolute spatial variation v(t) of a(x, t) defined by

v(t) ≡
∫ L

0

∣∣∣∣
∂a(x, t)

∂x

∣∣∣∣ dx. (28)

For completely homogeneous states a(x, t) = a(t) the absolute spatial vari-
ation equals zero and the larger v(t) grows, the more inhomogeneous the
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spatial charge carrier density distribution a(x, t) appears. In Fig. 20(b) the
spatial variation of v(t) tends towards a fixed value of approximately 2.6,
indicating the inhomogeneity of the corresponding fixed point.

In the following we will investigate the behavior of the system under vari-
ation of the noise intensity Du. Note that this noise term does not have any
space dependent influence upon a. Now we initialize the system at the inho-
mogeneous fixed point and simulate it with different noise intensities Du. The
results can be seen in Fig. 21. While for small noise the system exhibits rather
small oscillations around the inhomogeneous fixed point (topmost panel),
with increasing noise intensity a transition to completely homogeneous os-
cillations occurs (bottom panel). For intermediate values of Du one can see
the competition between the inhomogeneous and the spatially homogeneous
modes (middle panel).

Let us now quantify the spatial and the temporal ordering of the system.
We call the system spatially coherent if the space dependent variable a(x, t) is
uniformly distributed over the whole length of the device. To reveal whether
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a particular state of the system is spatially homogeneous or not we use the
simple measure of the absolute spatial variation defined in eq. (28) above.

The temporal ordering of the system, on the other hand, can be measured
by the correlation time [81],

tcor ≡
1

σ2

∫ ∞

0

|Ψ(s)| ds, (29)

where Ψ(s) ≡
〈
(u(t) − 〈u〉) (u(t− s) − 〈u〉)

〉
t

is the autocorrelation function

of the variable u(t) and σ2 = Ψ(0) is its variance.
By calculating the temporal mean values of v(t) for different Du we can

characterize the shape of the dynamics in dependence on the noise intensity.
In Fig. 22(a) these values are plotted versus the noise intensity and one can
see that the mean value of v monotonically tends towards zero with increas-
ing noise, indicating an increase in spatial coherence. The error bars in this
plot show the standard deviation. In fact they reflect an essential feature
of this transition, namely the competition between spatially inhomogeneous
and homogeneous modes for intermediate values of Du. The larger the stan-
dard deviation of v is, the more “mixed” the dynamics appears. Fig. 22(b)
offers the same information showing the variance of v versus Du. For noise
close to zero only slight oscillations around the inhomogeneous fixed point
with almost fixed spatial profile of a(x, t) lead to a vanishingly small variance
of v. With increasing noise more and more frequently the system tends to
a homogeneous state. The variance exhibits a maximum around Du = 1.3,
indicating maximum fluctuations of the system between homogeneous and
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inhomogeneous modes. Thus, this value could be treated as a boundary be-
tween predominantly filamentary and predominantly homogeneous behavior.
For even larger noise intensity the homogeneous mode is getting more and
more dominant and therefore the variance of v again falls off towards zero.

On the other hand, the correlation time versus noise intensity in Fig. 22(c)
shows that the temporal coherence of the system in contrast to the spatial
ordering decreases rapidly with increasing noise.

In summary, noise induces oscillations in the system, which would other-
wise rest in its inhomogeneous fixed point. With growing noise intensity the
dynamics changes from small inhomogeneous oscillations which are quite co-
herent in time to spatially homogenous oscillations which on the other hand
appear very irregular in time.

In order to control the noised-induced patterns, we will now use the
method of time-delayed feedback which was previously applied successfully in
deterministic chaos control of this particular system [45] as well as for control
of noise-induced oscillations in simple models [7–9] without spatial degrees
of freedom.



The voltage u is easily accessible in a real experiment. Therefore, as a
simple and adaptive method of control we add the time-delayed feedback
only to the voltage variable u in eq. (26):

∂a(x, t)

∂t
= f(a, u) +

∂

∂x

(
D(a)

∂a

∂x

)
+Daξ(x, t)

du(t)

dt
=

1

ε
(U0 − u− rJ) +Duη(t)

−K [u(t) − u(t− τ)]

(30)

By varying the control amplitude K we can adjust the strength of the control
force; τ is the time delay of the feedback loop.
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Fig. 23. Correlation time vs. feedback strength K for τ = 5 and τ = 7. Du = 0.1,
Da = 10−4. Averages from 100 time series of length T = 10000, parameters as in
Fig. 21.

To get a first impression whether or not this control force is able to change
the temporal regularity of the noise-induced oscillations we fix Du = 0.1,
Da = 10−4, as in the upper panel of Fig. 21, and calculate the correlation
time in dependence of the feedback strengthK for two different delay times τ .
From Fig. 23 one can see that the qualitative result depends strongly upon the
choice of the delay time. While for τ = 7 the control loop strongly increases
the correlation time with increasingK, it is on the other hand able to decrease
it significantly for τ = 5. The difference in regularity for different values of
τ and K also shows up in the corresponding spatio-temporal patterns and
voltage time series (Fig. 24), where (b) is clearly more regular than (a).

The role of the appropriate choice of the control delay τ becomes even
clearer if we keep K fixed and calculate the correlation time in dependence of
τ . The result is plotted in Fig. 25(a) where one can clearly see the oscillatory
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values of the control strength K and delay time τ : (a) τ = 4.0, K = 0.4, (b) τ = 13.4,
K = 0.1. Du = 0.1, Da = 10−4 and other parameters as in Fig. 21.

character of the correlation time under variation of τ , which is characterized
by the presence of “optimal” values of τ , corresponding to maximum regu-
larity, and “worst” values of τ which are related to minimum regularity of
the noise-induced dynamics. At the same time it is shown that the control
with K = 0.1 produces no effect at all upon the correlation time if the noise
is too large (lower curve for Du = 1.0).

The fact that noise-induced oscillations take place in the vicinity of the
spatially inhomogeneous fixed point gives us a hint that some properties of
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power spectral density of the noisy system with Du = 0.1, K = 0.1.



these oscillations could relate to the stability of the above mentioned fixed
point. To gain some insight into how the control actually affects the systems
dynamics around the spatially inhomogeneous fixed point we linearize the
system equations (30) forDu = Da = 0 and calculate the complex eigenvalues
Λi at the fixed point. First of all we calculate these eigenvalues from the
spatially discretized system which we use for the numerical simulation. This
discretized version is just a set of ordinary differential equations (ODEs) and
the linearization and the eigenvalues can be computed easily.

In Fig. 25(b) one can see that the control with K = 0.1 does not change
the stability of the inhomogenous fixed point since the real parts of all eigen-
values do not become positive within the given range of τ . Nevertheless with
increasing τ the real parts of the eigenvalues intersect at particular values of
τ (vertical dotted lines) and therefore the leading eigenvalue, i. e. the least
stable one, or the one with the largest real part, changes at these values of
τ . As one can see, these crossover points correspond to the minima of the
correlation time in Fig. 25(a) whereas the local maxima of the real parts
correspond to the maxima of the correlation time. This gives rise to a rather
intuitive explanation for the behavior of the correlation time: The closer to
zero the real part of an eigenvalue is, the weaker is the attracting stability of
the fixed point and the easier it is for the noise to excite exactly the oscillat-
ing mode corresponding to this particular eigenvalue. On the other hand, at
the intersection points of the real parts of the leading eigenvalue these values
have the largest distance from zero, meaning that the attracting stability of
the fixed point is stronger and in addition there are two different correspond-
ing oscillating modes which are excited by the noise. Thus the control cannot
reach its optimal effect.

As a direct consequence, the main frequency which is activated by the
noise switches exactly at these values of τ to the eigenfrequency of the cor-
responding leading eigenvalue. In Fig. 25(c) the eigenperiods are plotted as
black dots in dependence of τ . The circles mark the positions of the high-
est peak in the Fourier power spectrum for the corresponding noisy system
with Du = 0.1. One can see clearly that these main periods switch from
one branch to another exactly at the positions where the real parts of two
different eigenvalues cross over.

As we have already noted, the eigenvalues for the linearized deterministic
system at the inhomogeneous fixed point, plotted as black dots in Figs. 25b,c
are computed numerically for the system (30) in the deterministic case by
using the spatially discretized set of ordinary differential equations.

To achieve a deeper understanding of the stability properties of the inho-
mogeneous fixed point under the influence of the control force and to obtain
the general form of the characteristic equation which determines the eigen-
values of this linearized system, we perform the linearization of the original
continuous system (30) at the spatially inhomogeneous fixed point (a0(x), u0).



Introducing

ax ≡ ∂a

∂x
, axx ≡ ∂2a

∂x2
, b (a, ax, axx) ≡ ∂

∂x
(D(a)ax) , (31)

and a linear operator

L ≡ ∂f

∂a

∣∣∣∣
a0,u0

+
∂b

∂a

∣∣∣∣
a0

+
∂b

∂ax

∣∣∣∣
a0

∂

∂x
+

∂b

∂axx

∣∣∣∣
a0

∂2

∂x2
, (32)

and using the ansatz δa(x, t) = eΛt ã(x), δu(t) = eΛt ũ for the deviations from
the fixed point we can write down the coupled eigenvalue problem:

Λã(x) = Lã(x) + fu(x)ũ, (33)

Λũ = − r

εL

∫ L

0

ja(x)ã(x)dx +

[
−1 + rJu

ε
+K

(
e−Λτ −1

)]
ũ, (34)

with fu ≡ ∂f

∂u

∣∣∣∣
a0,u0

, ja ≡ ∂j

∂a

∣∣∣∣
a0,u0

, Ju =
1

L

∫ L

0

∂j

∂u

∣∣∣∣
a0,u0

dx.

For the case K = 0 this eigenvalue problem of the inhomogeneous fila-
mentary fixed point has been analyzed generally [84]. In the voltage-clamped
case (δu = 0), the Sturmian eigenvalue equation λã = Lã with Neumann
boundary conditions (which can be shown to be self-adjoint) has solutions
λ0 > λ1 > λ2 > . . . where the corresponding eigenmode ψn(x) has n nodes,
and λ0 > 0, while all other eigenvalues λn < 0 for n ≥ 1 are stable. The
eigenmodes of the full eqs. (33), (34) can be expanded in terms of the voltage-
clamped eigenmodes,

ã(x) =
∑

n

(ã, ψn)ψn(x), (35)

where (ã, ψn) ≡ 1
L

∫ L

0
ã(x)ψn(x)dx denotes the usual scalar product in Hilbert

space. Inserting this into eq. (33) yields

Λ
∑

n

(ã, ψn)ψn(x) =
∑

n

λn(ã, ψn)ψn(x) + fu(x)ũ. (36)

Forming the scalar product with ψm and using orthonormality gives the ex-
pansion coefficients

(ã, ψm) =
(fu, ψm)

Λ− λm
ũ. (37)

The expansion (35) can be inserted into eq. (34):

Λũ =

[
−r
ε

∑

n

(fu, ψn)(ja, ψn)

Λ − λm
− 1 + rJu

ε
+K

(
e−Λτ −1

)
]
ũ. (38)



We will now neglect the higher modes ψn because they oscillate fast whereas
a0(x) varies slowly in space, and approximate the sum in eq. (35) by the
dominant first term ψ0 with λ0 > 0. We obtain the characteristic equation
for the eigenvalue Λ:

Λ2 +

(
1 + rJu

ε
− λ0

)
Λ+ (λ0 − Λ)K

(
e−Λτ −1

)
− λ0

ε
(1 + rσd) = 0, (39)

where the static differential conductance at the inhomogeneous fixed point

σd ≡ dJ

du

∣∣∣∣
a0,u0

= Ju +

(
ja,

da

du

)
= Ju − (ja, ψ0)

(fu, ψ0)

λ0
(40)

has been introduced using eqs. (35), (37) in the static case Λ = 0 [15]. Without
control, K = 0, eq. (39) reduces to a characteristic polynomial of second
order, which gives the well-known conditions for stability of a filament [84]:

A ≡ 1 + rJu

ε
− λ0 > 0,

C ≡ −λ0

ε
(1 + rσd) > 0.

(41)

Without control a Hopf bifurcation on the two-dimensional center manifold
occurs if A = 0. With control, eq. (39) can be expressed as

Λ2 +AΛ+ (B − Λ)K
(
e−Λτ −1

)
+ C = 0 (42)

with B ≡ λ0 > 0. The parameters A, B, C can be calculated directly from
(41). For the inhomogeneous fixed point, λ0 = 1.0281 has been calculated
in [87]; Ju = −0.1615 can be obtained by using the condition for a Hopf
bifurcation (A = 0) in eq. (41); σd = 0.226 can be estimated from the current-
voltage characteristic shown in Fig. 19.

This yields A = 0.0447, B = 1.0281 and C = 1.1458. Note that in dimen-
sional units the unstable eigenvalue of the voltage-clamped system λ0 = B is
approximately equal to the inverse tunneling time 1/τa. With these values we
can solve eq. (42). For K = 0.1 the real parts of this solution in dependence
of τ are also shown in Fig. 25(b) as squares. They coincide with very good
accuracy.

6 Conclusions

We have investigated the complex spatio-temporal behavior of two semicon-
ductor nanostructures, viz. the superlattice and the double barrier resonant
tunneling diode (DBRT). The first exhibits nonlinear dynamics of interacting
fronts, while the second demonstrates breathing and spiking of filamentary
current density patterns characteristic of globally coupled reaction–diffusion



systems. Applying time-delayed feedback control of Pyragas type to both
deterministic and stochastic oscillations, we have been able to suppress de-
terministic chaos and control the regularity and the mean period of noise-
induced dynamics.

As an example for the constructive influence of noise in nonlinear systems,
we have shown that random fluctuations are able to induce quite coherent
oscillations of the current density in a regime where the deterministic sys-
tem exhibits a stable fixed point, thereby demonstrating the phenomenon
of coherence resonance for systems close to, but below, a Hopf bifurcation
(superlattice and DBRT) as well as close to, but below, a global saddle-
node bifurcation on a limit cycle (superlattice). This extends the phenom-
ena of noise-induced oscillations from purely time-dependent generic models,
e. g. [7], to space-time patterns. Moreover, we have shown for the DBRT that
the noise which is applied globally to a space-independent variable deter-
mines the type of the spatio-temporal pattern of these oscillations. While for
small noise intensity the system demonstrates oscillations which are quite
correlated in time, but spatially inhomogeneous, with increasing noise in-
tensity the shape of the spatiotemporal pattern changes qualitatively until
the system reaches a highly homogeneous state. Thus the increase of spa-
tial coherence is accompanied by the decrease of temporal correlation of the
observed oscillations. In between these two situations for intermediate noise
strength one can observe complex spatio-temporal behavior resulting from
the competition between homogeneous and inhomogeneous oscillations.

We have seen that delayed feedback can be an efficient method for manip-
ulation of essential characteristics of chaotic or noise-induced spatiotemporal
dynamics in a spatially discrete front system and in a continuous reaction-
diffusion system. By variation of the time delay one can stabilize particular
unstable periodic orbits associated with space-time patterns, or deliberately
change the timescale of oscillatory patterns, and thus adjust and stabilize the
frequency of the electronic device. Moreover, with a proper choice of feedback
parameters one can also effectively control the coherence of spatio-temporal
dynamics, e. g. enhance or destroy it. Increase of coherence is possible up to
a reasonably large intensity of noise. However, as the level of noise grows, the
efficiency of the control upon the temporal coherence decreases.

The effects of the delayed feedback can be explained in terms of a Floquet
mode analysis of the periodic orbits, or a linear stability analysis of the fixed
point. For a better understanding of noise-induced patterns in the DBRT, we
have derived the general form of the characteristic equation for the determin-
istic system (30) close to, but below, a Hopf bifurcation. Both dependences,
coherence and timescale vs. τ , demonstrate an oscillatory character, which
can be explained by oscillations of the real and imaginary parts of the eigen-
values of the linearized system at the fixed point, in the vicinity of which the
noise-induced oscillations occur. The most coherent timescale corresponds to
values of τ , for which the real parts of the eigenvalues attain a maximum. In



some sense, the noise excites the least stable eigenmode: the less stable an
eigenmode is, the greater is the coherence of the corresponding oscillations.

While these investigations have enlightened our basic understanding of
nonlinear, spatially extended systems under the influence of time-delayed
feedback and noise, they may also open up relevant applications as nanoelec-
tronic devices like oscillators and sensors.
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tions and their control in semiconductor superlattices, Int. J. Bifur. Chaos 16
(2006), in print.

50. G. Stegemann, A. G. Balanov, and E. Schöll: Delayed feedback control of
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1 Periodically forced oscillatory media

The control of pattern formation is an important problem in engineering
of spatially extended self-organized systems. A wide class of systems show-
ing spontaneously formed waves and patterns can be summarized under the
generic term “oscillatory media”. They may be considered as a composition
of a large number of coupled subsystems. The dynamics of each subsystem
is oscillatory. Complex phenomena like the formation of patterns and waves
or spatio-temporal chaos comes through the interaction between the subsys-
tems. Despite such complex collective behavior the dynamics is very sensitive
to feedback or to periodic forcing with frequencies close to an integer ratio
of the oscillation frequency of the subsystems.

A well-known example is the Belouzov-Zhabotinsky-Reaction. involving
the the oxidation of an organic compound by bromate in acidic solution. It is
a robust oscillatory reaction with striking color changes. Spatiotemporal wave
behavior is exhibited in unstirred reaction mixtures. [1, 2]. For this reaction,
application of global periodic forcing was shown to produce various cluster
patterns [3–5] and induce turbulent regimes [6].

Another example which has been extensively studied is the catalytic CO
oxidation on Pt(110). The interplay between desorption and surface diffusion
of CO, reaction between the two adsorbed species, and an adsobate-driven
structural change of the platinum surface can lead to oscillations of the CO
and oxygen coverage [7]. In experiments where bulk oscillations were unsta-
ble and spatiotemporal chaos spontaneously developed, application of peri-
odic forcing allowed to suppress chemical turbulence, produce intermittent
regimes with cascades of amplitude defects, and generate oscillating cellular
and labyrinthine patterns [8,9]. Recently, front explosions have been predicted
under periodic forcing [10].

2 The forced complex Ginzburg-Landau equation

The universal description of reaction-diffusion systems near a supercritical
Hopf bifurcation is provided by the complex Ginzburg-Landau equation [11].
Action of global periodic forcing on the systems described by this equation



Fig. 1. Left: Effect of 2:1 resonant periodic forcing on the photosensitive BZ-
reaction. A spiral wave is formed without forcing (upper part). Under the influence
of illumination with light pulsed at twice the natural frequency of the reaction a
labyrithine pattern appear. [3]. Right: Suppression of chemical turbulence in the
catalytic CO oxidation on Pt(110) under global feedback. Upper row: subsequent
PEEM images of the Pt surface illustrating the transition from spiral wave turbu-
lence to homogeneous oscillations. Bright regions are mainly CO-covered. Middle
row: Space-time diagram showing the evolution along the line AB. Bottom: Time
series of the CO partial pressure [8].

has been first considered by Coullet and Emilsson [12,13]. Under sufficiently
strong resonant n:1 forcing, oscillations are entrained and stationary or trav-
eling 2π/n-fronts become possible. The 2π phase fronts for the 1:1 forcing
are known as kinks (or phase slips). They represent traveling localized struc-
tures, because the states differing by the phase of 2π are physically identical.
Therefore, as noticed in Ref. [13], they bear similarity with pulses in excitable
media. Traveling π-fronts under 2:1 forcing represent nonequilibrium Bloch
walls [14]. Kinks and traveling Bloch walls are elementary wave patterns un-
der forcing conditions. Instabilities of kinks lead to backfiring and develop-
ment of intermittent regimes with reproduction of amplitude defects [15–17].
Transverse instabilities of nonequilibrium planar Bloch walls give origin to
the Bloch turbulence [6]. In heterogeneous media near a Bloch-Ising transi-
tion, complex behavior due to reflections of Bloch waves on Ising domains
has been found [18].

Under global resonant n:1 forcing, the complex Ginzburg-Landau equation
(CGLE) for the slow complex oscillation amplitude η is [12]

.
η = (1 + iν)η − (1 + iα)|η|2η + (1 + iβ)∇2η +B (η∗)n−1 , (1)

where detuning ν = ω0 −ωe/n is determined by the natural (ω0) and forcing
(ωe) frequencies and B is the forcing amplitude. Oscillations are entrained
by forcing in the parameter region known as the Arnold tongue (Fig. 2 (a)).



Inside this region, kinks (n = 1) and Bloch walls (n = 2) traveling at a
constant velocity are possible (see [12,15,16]). Moreover, wave trains formed
by periodic sequences of such phase fronts can also be observed there.

3 Phase front propagation reversal

Our attention is focused on the properties of periodic trains formed by kinks
or traveling Bloch walls. Our analysis reveals that, depending on the parame-
ters of the oscillatory medium and the spatial period of a train, it can undergo
a reversal of its propagation direction [19]. We show how this phenomenon
can be used to design traps for traveling kinks and Bloch walls. Furthermore,
we find that a new kind of patterns - twisted rotated spiral waves - exist in
oscillatory media under the conditions of front propagation reversal.

Any traveling phase front is characterized by its chirality: ”right” if the
phase increases after front propagation and ”left” if it decreases after that. A
similar definition can be accepted for traveling wave trains. It is convenient
furthermore to define the front velocity V in such a way that it is always
positive (V > 0) if a front propagates to increase the oscillation phase and
negative (V < 0) otherwise. With this convention, all ”right” fronts move at
a positive velocity, while the velocity of any ”left” phase front is negative.

The velocity of an individual phase front is uniquely determined by the
properties of the medium and the forcing parameters. For wave trains, it
additionally depends on the spatial period λ of a train. Figure 2b shows
dependences V (λ) for two different values of the coefficient β, obtained by
numerical continuation of wave train solutions of equation (1) with n = 1.
When β = 5.0, velocity V remains positive for all spatial periods. This means
that both a solitary kink and any kink train in such a medium possess the
”right” chirality. In contrast to this, kinks move at a positive velocity (and
have the ”right” chirality) only for sufficiently short spatial periods at β =
1.8. At a critical spatial period λc, the propagation velocity of the train
vanishes and V (λ) < 0 when λ > λc. Thus, solitary kinks and kink trains
with large periods have the opposite ”left” chirality in the latter case.

To illustrate the difference in the properties of wave patterns in such two
media, we consider the following example. Suppose that the local oscillation
frequency is increased in the center of a one-dimensional medium. If periodic
1:1 forcing is applied, the local frequency increase can still be so large that
oscillators in the central region are not entrained and perform autonomous
oscillations. This region acts then as a pacemaker which periodically gener-
ates phase slips propagating away as a kink train with the ”right” chirality .
Suppose now that this heterogeneity is removed and the activity of the pace-
maker is terminated. When β = 5.0, generated kinks continue to move away
from the center (Fig. 2c). The situation is however different, if β = 1.8 (see
Fig. 2d). As spatial intervals between the kinks get larger, they subsequently
reverse their propagation direction and move into the central region where
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Fig. 2. Front propagation reversal (n = 1, α = 0.5). (a) Standing kinks are found
along the dashed line (β = 1.8) in the Arnold tongue. (b) Dependences of velocity V
on spatial train period λ for β = 1.8 (solid line) and β = 5.0 (dashed line); here
ν = 0.5525, B = 0.053. Space-time diagrams showing behavior of wave patterns
after termination of a pacemaker in media with (c) β = 5.0 and (d) β = 1.8 ; the
same other parameters as in part b, local values of Reη(x, t) are shown in gray
scale.

repeated annihilations take place. This is because single kinks and the kink
trains with sufficiently large periods are characterized by the ”left” chiral-
ity in this medium and propagate in such a way that the oscillation phase
becomes decreased.

4 Phase approximation

For sufficiently small forcing amplitudes B, the train velocity V (λ) can be
analytically estimated. In this parameter region, the dynamics is approxi-
mately described [12] by the reduced equation for the local oscillation phase
ϕ,

.
ϕ = ν − α−B

√
1 + α2 sinnϕ+ a (∇ϕ)

2
+ b∇2ϕ, (2)

where ϕ = φ + arctanα and η = ρ exp (iφ). For brevity, we have intro-
duced here notations b = 1 + αβ and a = α − β. Note that such reduced



phase description is justified, when b > 0 so that uniform oscillations are
modulationally (Benjamin-Feir) stable. The kinks exist for B > BA, where
BA(ν) = |ν − α|/

√
1 + α2.

Applying the Cole-Hopf transformation ϕ = (b/a) lnu, this phase dynam-
ics equation is transformed to a simple form analogous to the equation for
front propagation in one-component bistable media [20],

∂tu = Q(u) + b∂xxu (3)

with the nonlinear functionQ(u) = (a/b)u
[
ν − α−B

√
1 + α2 sin (n (b/a) lnu)

]
.

The roots uj of equation Q(u) = 0 under the conditionQ′(uj) < 0 correspond
to stable uniform locked states of the system. Explicitely, we have

uj = exp

{
a

nb

[
2πj + arcsin

(
α− ν

B
√

1 + α2

)]}
. (4)

Although the system has an infinite sequence j = 1, 2, 3, ... of such roots, only
n of them represent physically different phase-locked states.

A front train with spatial period λ is a solution of equation (3) satisfying
periodicity conditions ϕ(x+λ/n) = ϕ(x)+2π/n (for n > 1 one spatial period
of the pattern consists of n subsequent 2π/n-fronts). In terms of the variable
u, these conditions take the form

u(x+ λ/n) = exp (2πa/nb)u(x). (5)

Thus, the train solutions for u are not periodic, but grow exponentially with
x.

When propagation reversal occurs, a stationary train is possible. In the
stationary case, equation (3) has the first integral (1/2)b(∂xu)

2 +W (u) = E.
Using the periodicity condition (5) and the propertyW (uj+1) = exp (4πa/nb)W (uj),
we find that E = 0 for any stationary train. Thus, the wavelength λst of the
stationary train is given by

λst =

∫ uj+1

uj

√
−bn2

2W (u)
du. (6)

This result does not depend on the choice of the root j.
Solitary 2π/n phase fronts are front solutions of equation (3), such that

u(x, t) → uj for x → −∞ and u(x, t) → uj±1 for x → ∞. They can be also
viewed as a limit of a periodic train with λ → ∞. According to equation
(6), the wavelength of a stationary train diverges, if W (uj) = 0. Solving this
equation, we find that stationary solitary 2π/n fronts exist along the line
B = Bst(ν) given by

Bst =
1

2a
(α− ν)

√
a2 + n2b2

1 + α2
. (7)
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Fig. 3. Trapping of kinks and Bloch fronts in the 1-d medium. The coefficient β
is set to β = 5 and decreased to β = 1.8 inside the central region of width 300.
Left: Kink trap under the 1:1 resonance, the same parameters as in Fig. 1b. Right:
Bloch front trap under the 2:1 resonance (B = 0.061, the same other parameters
as in Fig. 1b).

Note that, in the phase approximation, the boundaries of the Arnold tongue
are B = BA(ν). The line B = Bst(ν) is shown as the dashed line in Fig. 2a.
Along this line, the reversal of the propagation direction of solitary phase
fronts occurs. Phase fronts with the ”right” chirality (V > 0) are found on
the left side of this line, if β > α.

As follows from (6), the condition for existence of stationary periodic
trains is W (uj) < 0. This means that they are found inside the region of
the Arnold tongue, lying between the line B = Bst(ν) and the (nearest)
boundary of the tongue (see Fig. 1a). Such a region always exists if b > 0.
For any given set of parameters, the wavelength of the stationary train can
be computed by numerical evaluation of the integral in equation (6).

The above analysis shows that front propagation reversal occurs near
any n:1 resonance. For n = 1, stationary kinks (i.e., 2π-fronts) and periodic
sequences of standing kinks are possible (the existence of stationary solitary
kinks under global feedback conditions has previously been shown [15]). For
n = 1, stationary π-fronts represent standing Bloch walls or their periodic
sequences. Such standing structures are different from Ising walls, because
the oscillation amplitude does not vanish here.

5 Trapping of phase fronts

The wave propagation reversal can be induced by varying parameters of the
medium. Most conveniently, this can be done by changing the coefficient β
in the CGLE, since this coefficient does not affect uniform oscillations and is
only important for propagating waves.

The dependence of the wave propagation direction on the coefficient β
can be used to trap kinks and Bloch fronts. Such traps can be designed by
creating spatial regions, where the coefficient β is locally changed to reverse



Fig. 4. Trapping of kinks and Bloch fronts in the two-dimensional medium. The
coefficient β is set to β = 5 and decreased to β = 1.8 in the rectangular central
region. The medium parameters are the same as in Fig. 2. The system size is
1000× 1000. Upper panel: Kink trap in 1:1 resonance. The snapshots of the spatial
distribution of Reη are taken at t = 6000, t = 19000 and t = 32000. Lower panel:
Bloch wave trap in 2:1 resonance. Snapshots the spatial distribution of Reη at
t = 2000, t = 16000 and t = 46800. (B = 0.061)

the propagation velocity. The left panel in Fig. 3 shows an example of a kink
trap in the one-dimensional medium at the 1:1 resonance. The value of β is
decreased in the central region. No-flux boundary conditions are used in all
our simulations. Initially, a rapid pacemaker operates at the left end of the
medium. This pacemaker produces a kink train with a short spatial period.
The train enters the modified central region and passes it with some decel-
eration. When the pacemaker is terminated, further kinks are not produced.
However, the kinks inside the central modified region become trapped inside
it and form a stationary pattern with a period corresponding to the veloc-
ity reversal. If the central heterogeneity is removed, the stored pulses would
propagate out of it. The right panel in Fig. 3 demonstrates the trapping
of Bloch fronts at the 2:1 resonance. The pacemaker at the left end of the
medium produces a train of Bloch fronts.

Similar traps for kinks and Bloch fronts can also be constructed in two-
dimensional media. The upper panel of Fig. 4 (see also video 1 [21]) shows
a series of snapshots where trapping of kinks by a central modified region is
seen. A pacemaker in the lower left corner emits a kink train with a short spa-
tial period. The first snapshot shows the kink train passing the rectangular-
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Fig. 5. Rotation of a twisted spiral. Left: Spatial distribution of Reη. Right: Position
of the spiral at times t = 0 (solid), t = 340 (dashed), t = 680 (dotted). Parameters
are α = 4.19, β = 0.992, ν = 3.9895, B = 0.0455, the system size is 500 × 500.
Numerical integration using the explicit Euler scheme with ∆x = 0.2 and ∆t =
0.0025.

shaped inhomogeneity. Inside the inhomogeneity, the velocity of the kinks
is decreased, resulting in a delay of the kinks at the upper right corner of
the rectangle. In the second snapshot, the rear end of the kink train has
reached the lower left boundary of the inhomogeneity. The kinks inside the
inhomogeneity close to this boundary can no longer propagate and the kinks
outside propagate around the central region. This leads to the formation of
ring-shaped kinks in the upper right part of the inhomogeneity. As long as
new kinks arrive, these rings collapse. When the kink train has passed the in-
homogeneity, the stored kinks form stationary ring-shaped structures. In the
lower panel of Fig. 4 (see also video 2 [21]), trapping of traveling Bloch fronts
at the 2:1 resonance is demonstrated. It proceeds similar to the respective
process for the kinks near the 1:1 resonance. In our simulations, wave traps
with various sizes and with complicated geometries could be created.

In the above discussion, we assumed that the condition β > α was sat-
isfied. If the opposite condition β < α holds, waves in the unforced CGLE
have negative dispersion (see, e.g., [22]). In this case, inwardly rotating spirals
(”antispirals”) and inwardly propagating target patterns are possible. In such
media, reversal of front propagation also takes place and the wavelength of a
stationary train is again given by equation (6). However, the line B = Bst(ν)
lies now on the left side of the Arnold tongue and stationary front trains are
found in the region between this line and the left tongue boundary.



6 Twisted spirals

A special effect, related to kink propagation reversal, is the formation of
twisted spirals near the 1:1 resonance in two-dimensional media (Fig. 5a).
The central and outer parts in such a spiral are wound in opposite directions.
These structures are stable, they are observed in numerical simulations start-
ing with various initial conditions. A twisted spiral rigidly rotates as a whole,
retaining its shape. In Fig. 5b, three subsequent snapshots of the spiral, sep-
arated by a third of the rotation period each, are superimposed (see also
video 3 [21]). We see that the instantaneous rotation center does not coincide
with the location of the spiral tip. Instead, the oppositely wound central part
of the spiral is steadily rotating. Thus, this regime can also be characterized
as a kind of meandering. Qualitatively, the development of twisted spirals can
be understood by noticing that the waves are tightly wound near the center
and, therefore, their propagation direction should be reversed there. In the
displayed simulation, the medium was characterized by negative dispersion
(β < α). Similar behavior has, however, been found by us in the simulations
for the media with positive wave dispersion (β > α) [19]. By changing the
forcing intensity and frequency, winding and unwinding of the central part
of the spiral can be controlled.

Our theoretical study has shown that, applying periodic forcing, one can
induce propagation reversal of kinks, Bloch walls and 2π/n phase fronts
for higher resonances with n > 2. Using this effect, traps for propagating
kinks and other phase fronts can be designed by creating appropriate het-
erogeneities in the medium. In our simulations, such heterogeneities were
introduced by spatial variation of the coefficient β in the CGLE, but similar
effects can be achieved by varying other parameters of the medium or by
applying inhomogeneous forcing. We have also shown that, in uniform media
with 1:1 forcing, steadily rotating twisted spirals can develop. Though our
results have been obtained only for the CGLE, we expect that they should
be characterictic for a class of media where oscillations are not strongly re-
laxational. Our simulations using a realistic model of the catalytic surface
reaction of CO oxidation on platinum have shown that the wave propagation
reversal under periodic forcing takes place near a supercritical Hopf bifurca-
tion in this reaction and that the wave traps can be constructed there [19].
Another experimental system where the predictions of our theory can be
tested is the oscillatory photosensitive Belousov-Zhabotinsky reaction.
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16. H. Chaté, A. Pikovsky, and O. Rudzick. Forcing oscillatory media: Phase kinks
vs. synchronization. Physica D, 131(1-4):17–30, 1999.

17. M. Argentina, O. Rudzick, and M. G. Velarde. On the Back-firing instability.
Chaos, 14(3):777 – 783, 2004.

18. C. Hemming and R. Kapral. Phase front dynamics in inhomogeneously forced
oscillatory systems. Physica D, 306:199–210, 2002.

19. O. Rudzick and A. S. Mikhailov. unpublished.
20. A. S. Mikhailov. Foundations of Synergetics I. Distributed Active Systems.

Springer, Berlin, 2nd ed., 1994.
21. Supporting online material can be found at

http://www.fhi-berlin.mpg.de/complsys/cs_videos/twisted_spirals/.
22. M. Stich and A. S. Mikhailov. Complex pacemakers and wave sinks in hetero-

geneous oscillatory chemical systems. Z. Phys. Chem., 216:521–533, 2002.



Visualizing pitting corrosion on stainless steel
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1 Introduction

Corrosion is a phenomenon affecting all of us in everyday life; just imagine
rusting cars or water pipes. In order to develop a finer grasp for the processes
leading to the corrosive destruction of materials, a great effort is usually made
to study the chemistry of corrosion in detail. However, in our group we follow
a different approach: The transition from negligibly small and localized dam-
age to a highly affected corroding surface is described using the conceptual
framework of nonlinear dynamics and pattern formation. In order to moti-
vate this approach, first the necessary background is provided (Chapter 2).
On this basis a stochastic reaction-diffusion model is introduced (Chapter 3).
To gain corresponding experimental support for this model, the methods de-
scribed in Chapter 4 can be utilized. Finally, the results of our experimental
investigations are described and discussed in Chapter 5.

2 Background

Stainless steel is corrosion resistant because a protective oxide layer natu-
rally forms on top of the surface in the presence of oxygen and humidity.
This protective oxide layer typically has a thickness in the order of nanome-
ters, depending on the present environmental conditions. XPS studies of oxide
films formed in air on AISI 316 revealed that not only oxidation of the ma-
terial takes place, but also chromium and metallic nickel accumulate at the
interface between oxide layer and bulk material [?]. The protective film is,
of course, not perfect but contains defects like inclusions and grain bound-
aries. At these defects the film may locally break down and dissolution of the
bulk material may start [?]. This kind of corrosion is called pitting corrosion
and is estimated to cause a third of all chemical plant failures in the United
States [?].

The onset of pitting corrosion occurs suddenly: If one performs electro-
chemical experiments with stainless steel, e. g. by applying a constant elec-
trical potential to a sample immersed in dilute NaCl solution, the electrical
current – which is an indicator for chemical activity (corrosion) on the metal
surface – is low over a wide parameter range. But if critical parameters like
temperature, potential, or electrolyte concentration exceed a certain critical



value, the current rises abruptly and the metal surface is severely affected by
pitting corrosion. The transition to high corrosion rates is preceded by the
appearance of metastable corrosion pits.

A detailed mechanism for the formation of metastable pits was proposed
by Pistorius and Burstein [?]: Electrochemically active inclusions are spread
over the surface of stainless steel. These sites can be sulfide inclusions [?,
?], but also other kinds of electrochemically active defects associated with
metal dissolution may be responsible for pit nucleation. They are attacked
by the electrolyte (e.g. NaCl) while the protective oxide film remains stable.
In other words, a surface defect may act as a local anode. This means that an
electrochemical reaction is initiated and the bulk metal beneath the surface
defect starts to be eroded. Chloride ions are attracted to maintain charge
neutrality, and dissolution of sulphide inclusions may lead to the formation
of thiosulphate ions. These ions, together with protons which are formed
during hydrolysis of the metal, accelerate further dissolution of the metal
beneath the protective oxide layer, which itself is hardly affected. A small
pit forms beneath the oxide layer, filled with an aggressive solution of low
pH-value (see Fig. 1A and B).
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Fe                        Fe +2e
2+ -

Fe² + 2Cl FeCl
+ -

2

example: MnS-inclusion

2MnS+3H O          2Mn +S O +6H +8e

(electrochemical dissolution)

MnS+H Mn +HS
(chemical dissolution)

iron dissolution:

2 2 3

2+ 2- + -

+ 2+ -

neutral

electrolyte

inclusion

oxide layer

stainless steel

Cl -

pH < 3

Cl -

pH < 3

neutral re
a

c
ti
o

n
ra

te

time

C

A

D

E

B

A
B

C

D

Fig. 1. Illustration of activation and repassivation of a pitting site, a detailed ex-
planation is given in the text.

Since the dissolution process is diffusion controlled and the pit cover is
the major diffusion barrier, ruptures and additional holes in the cover are
assumed to occur through mechanical stress caused by osmotic pressure due



to the concentration gradient between the electrolyte within the pit and the
bulk electrolyte [?] (see Fig. 1C). Each rupture is associated with a stepwise
increase in the reaction rate, hence, with a stepwise increase of the electrical
current flowing through the surface. But the breakdown of the protective
oxide layer also leads to a dilution of the aggressive electrolyte inside the
pit and the pH-value increases. The dilution can reach such an extend, that
active dissolution of the metal bulk is no longer sustained, the protective
oxide layer rebuilds inside the pit (self healing), and the pit passivates (see
Fig. 1D). This is accompanied by a final sharp spike of the electrical current
(cf. Fig. 1E).

Typically, the lifetime of metastable pits is in the order of a few seconds.
Pits which exhibit electrochemical metal dissolution are called active. The
remaining small holes in the metal surface after passivation of a pit are called
inactive pits. Pits can also undergo reactivation.

The appearance of corrosion pits has up to now been described by stochas-
tic processes, and the transition to higher corrosion rates was explained by
the nucleation and stabilization of only a few corrosion pits with high activ-
ity [?, ?]. In our investigations we take a closer look at the transition from
low to high corrosion rates. We analyze the spatiotemporal dynamics of this
process both in numerical simulations and in the experiment and demon-
strate that the onset of pitting corrosion is a cooperative critical process that
precedes like a chain reaction.

3 Mathematical Model

Recently, there has been growing evidence that metastable pits have effects
both in time [?,?] and space [?] on each other. As indicated in Fig. 1C and D, it
is believed that active pits release aggressive ions which weaken the protective
oxide layer. Thus, the nucleation rate of new metastable pits is enhanced in
the vicinity of active pits. Based on these assumptions, a two-dimensional
stochastic reaction diffusion model was developed by A. Mikhailov, J. Hudson
and coworkers [?]. Four variables play an important role in this model:

1. s(x, y, t) denotes the oxide film damage (the intact oxide layer corre-
sponds to s = 0).

2. c(x, y, t) is the accumulated concentration of aggressive species.
3. Ik(t) describes the total current flowing through the k-th pit.
4. Φ(x, y, t) is the potential drop due to the current associated with active

pits.

The nucleation rate of new pits increases with the oxide film damage s
and the concentration of aggressive species c. In contrast to that, the ohmic
potential drop Φ in the vicinity of an active pit inhibits pit nucleation. The
influence of these three variables is combined in an auxiliary variable M :

M = αs · s+ αc · c− αΦ · Φ , (1)



from which the local pit generation rate w is calculated as follows:

w(M) =
w0

1 + exp ((M0 −M)/H)
. (2)

The influence of varying temperature or electrolyte concentration can be
simulated by tuning w0 which is the maximum pit generation rate. The graph
of eq. 2 is displayed in Fig. 2. Below M0 = 50 the rate is small, increases then
rapidly and finally saturates. The width of the transition regime is specified
by the parameter H .

M(s, c, Φ)

w(M)
Fig. 2. Local generation rate as a
function of M . M0 = 50, w0 = 5000,
H = 10. Reproduced from [?].

Numerical simulations are performed on a quadratical grid with discrete
time steps, thus the nucleation probability at a given point is calculated by
multiplying the local value of w with the time step and the area associated
with every point of the grid. A pit is initiated if a random number, which is
calculated for every grid point and time step, is less than the local nucleation
probability.

Once a pit is initiated, locally a current is flowing. Numerical simulations
have shown, that the exact shape of the current spike produced by an active
metastable pit does not qualitatively change the results. Here, a sharp rise
followed by an exponential decay is used for each pit:

Ik =





0 t < tk

I0 exp

[
− t− tk

τ

]
t ≥ tk,

. (3)

with

I0 : peak current,
τ : time constant for current decay,
tk : time of initiation of a pit.

Aggressive ions are released by active pits proportional to the current.
These ions can diffuse laterally within the thin diffusion boundary layer on
top of the metal surface and into the bulk electrolyte. Two coupled partial



differential equations describe the spatiotemporal evolution of s and c:

∂ts = µ · c − ν · s , (4)

∂tc = − γ · c + D · ∇2c + β ·
∑

k

jk (5)

with

γ =
2D

d2
, β =

2

dnF
and jk =

Ik
πa2

.

The first term of eq. 4 describes the increase of oxide film damage in the
presence of aggressive species, whereas the second term corresponds to the
self-healing of the oxide film. The diffusion of aggressive species out of the
boundary layer into the electrolyte is considered in the first term of eq. 5. The
second term describes lateral diffusion of aggressive species (diffusion constant
D). The concentration of aggressive ions which is released by active pits is
taken into account in the third term and is calculated from the thickness of
the boundary layer d, the oxidation state n of the released metal cations, the
Faraday constant F , the pit radius a, and the local current contributions Ik
of all active pits. In the model the release of aggressive species corresponds
to the amount of released metal cations.

Local mean field approximation: By temporal and spatial averaging of the
equations a local mean-field approximation was derived, from which qualita-
tive aspects of the model can be gathered [?]. The expression ”local” means,
that averaging takes place not over the whole surface, but only over a small
area. However, the area should be big enough to allow for a reasonable defini-
tion of pit density. Since the influence of the ohmic potential drop has only a
small range it is neglected in the following. First, an equation for the current
density i is derived from eq. 3 by summing up the current of all active pits k
with nucleation times tk and locations rk:

∂ti = − i

τ
+ I0

∑

k

δ(r − rk) · δ(t− tk) . (6)

Temporal averaging of the two Dirac-functions δ yields the nucleation rate 〈w〉.
Thus, using temporally and spatially averaged local variables the model equa-
tions can be written as follows:

∂t〈i〉 = −〈i〉
τ

+ I0〈w〉 , (7)

∂t〈s〉 = µ · 〈c〉 − ν · 〈s〉 , (8)

∂t〈c〉 = − γ · 〈c〉 + D · ∇2〈c〉 + β · 〈i〉 , (9)

〈M〉 = αs · 〈s〉 + αc · 〈c〉 , (10)

〈w〉 =
w0

1 + exp ((M0 − 〈M〉)/H)
. (11)



Adiabatic elimination of eq. 7 is possible, since the timescale of the damage
of the oxide layer is much slower than the timescale of the electric current
density:

〈i〉 ≈ I0τ〈w〉 . (12)

Hence, the local mean-field approximation can be summarized in the following
two equations:

∂t〈s〉 = µ · 〈c〉 − ν · 〈s〉 , (13)

∂t〈c〉 =
βI0τw0

1 + exp

(
M0 − αs · 〈s〉 − αc · 〈c〉

H

) − γ · 〈c〉 + D · ∇2〈c〉 . (14)

Equations 13 and 14 reveal the autocatalytic nature of the model, which
was before hidden in the stochastic part of the full model (eq. 1 and 2):
Aggressive ions and a high oxide film damage have an activating effect on
the pit nucleation rate. In particular, the presence of active pits increases the
nucleation rate in a diffusion-limited area around the active site. Thus, the
model contains an autocatalytic component. Further details about the model
can be found in [?].
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Fig. 3. Nullclines of eqs. 13 and
14. Reproduced from [?].

Choosing suitable parameters (corresponding to the ones used in [?], Text
S1), the nullclines of these equations, i.e. ∂t〈s〉 = 0 and ∂t〈c〉 = 0, show three
intersection points (cf. Fig. 6). There are two stable fixed points, indicating
a bistable system, one corresponding to an intact oxide layer with low con-
centration of aggressive species (c1), the other one corresponding to a dam-
aged oxide layer with high concentration of aggressive species (c3). A third,
unstable fixed point is found at intermediate values (c2). Further analysis
of the local mean-field approximation reveals the existence of propagating
fronts between the two stable states. These results are confirmed by numeri-
cal simulations using the full model. Choosing the same parameters as for the



nullclines, an autocatalytic reproduction of pitting sites is found. As shown in
Fig. 4, the local film damage expands front-like. This process is accompanied
by an exponential growth of the accumulated number of pits and the current.

Fig. 4. Simulation of corro-
sion onset with periodic bound-
ary conditions. (Top) Snapshots
showing the local film damage
at the indicated time moments.
Blue corresponds to low, or-
ange to high film damage. (Mid-
dle) Space/time diagram along
the line marked with ab. (Bot-
tom) Red line: Accumulated to-
tal number of pitting sites. Blue
line: Total current.
Reproduced from [?]

4 Experimental Methods

The observation of propagating fronts in numerical simulations were the start-
ing point of our experimental studies. Of course, microscopic investigations of
corrosion at surfaces have been conducted, largely however after the termina-
tion of the corrosion experiment [?,?]. Optical microscopy has been applied
in situ to observe relatively large, stable pits [?]. Individual metastable pits
have been visualized using pH sensitive agar gels [?,?]. By applying scanning
methods changes in the thickness of the oxide layer in the vicinity of an active
pit and the topography of surfaces before and after pitting events were ana-
lyzed [?,?]. All these methods suffer from low temporal or spatial resolution,
so that it was impossible to examine the interdependency between oxide layer
weakening and occurrence of pits described above. In our group we gather
information about the corrosion process by employing two different com-
plementary microscopic techniques: Ellipso-Microscopy for Surface Imaging
(EMSI) [?, ?] and specially adapted contrast-enhanced optical microscopy.
Both techniques are accompanied by parallel monitoring of the current. Us-
ing contrast-enhanced microscopy the temporal and spatial development of
metastable pits is followed during the onset of pitting corrosion and active
and inactive pits are differentiated. EMSI yields complementary information
about changes of the protective oxide layer [?].

Our experimental studies were conducted using an 8 mm diameter AISI
316 stainless steel disk electrode. The nominal composition was 0.13% C,
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0.31% Co, 18.18% Cr, 0.38% Cu, 1.75% Mn, 2.40% Mo, 12.25% Ni, 0.016% S,
0.35% Si, with the balance Fe. The sample was polished up to 600 grit pol-
ishing paper followed by a 1µm diamond paste polish. The surface was then
cleaned with ethanol in an ultrasonic bath and mounted with silver lacquer
onto a holder. The sample was placed vertically in a cuvette to serve as the
working electrode of a three electrode configuration. In front of the sample a
platinum wire was employed as a counter electrode, and a silver/silver chlo-
ride electrode acted as the reference electrode and was placed between the
sample and the platinum wire. A potentiostat controlled the potential and
also recorded the current flowing through the counter electrode.

The cell is a cuvette with specially arranged windows, which allow the
light of a HeNe-Laser (20mW) to pass perpendicularly through the glass.
Light propagates through the electrolyte, is reflected at about 70◦ off the
sample, and exits the system perpendicularly through the opposite window,
as indicated in Fig. 5. The laser beam is elliptically polarized by combin-
ing a Glan-Thompson prism and a quarter wave plate in such a way that
after reflection from the sample only linearly polarized light is leaving the
cuvette. A second Glan-Thompson prism is oriented such that nearly all in-
tensity is removed from the imaging path. The sample is magnified by a lens
onto a CCD chip. The CCD chip is tilted about 75◦ away from the optical
axis, thereby compensating for most of the distortion. A plane homogeneous
sample will display a uniform blank image, the ”null” image. However, local
changes on the surface, e.g. areas with a different oxide layer thickness, are
detected as bright spots by the CCD camera. In order to improve quality and
contrast of the images we employ an Argus 20 image processing unit from
Hamamatsu. It is capable of real time background subtraction, so that most
of the inhomogeneities of the surface and interference patterns originating
from the laser light are not visible.

The spatial resolution of EMSI is limited by geometrical restrictions to
about 12µm, and it cannot resolve individual pits. Therefore, we developed
a contrast-enhanced optical microscope that images the sample with 8-times



magnification onto a CCD chip. By using a Schwarzschild objective we were
able to provide both the necessary large working distance (≈ 20mm) and a
diffraction limited spatial resolution of 2µm at a field of view of app. 200µm.
In order to improve the contrast we again used a downstream Argus 20 image
processing unit.

The subtracted and enhanced ellipsomicroscopic and microscopic images
were stored on a DVD-recorder. Great care was taken to synchronize the video
and the current measurements. For this purpose a flashlight was activated
which could be easily identified on the videos. Simultaneously, a signal was
send to the computer storing the temporal evolution of the current.

To ensure that current peaks can be associated with events detectable by
EMSI and microscopy, the entire sample was coated – excluding the imaged
area varying between 1 and 0.13µm diameter – with insulating lacquer and
Apiezon wax.

5 Experimental Results and Discussion

Fig. 6A displays four snapshots from an EMSI video sequence recorded at
low pitting activity. They show bright areas with diameters up to 100µm,
with the brightness gradually fading towards the periphery. The space-time
diagram in the middle panel displays the evolution along the line ab in the first
snapshot. The bottom diagram displays the parallel recording of the current.
All observed bright areas are unambiguously associated with current spikes.
The lifetimes of the bright areas are 10 –15 s, while the spikes in the current
have a shorter duration of 4 –10 s. EMSI is capable of directly imaging the
damage of the oxide layer. In earlier scanning ellipsometric observations of
localized corrosion, a decrease of a few angstrom in the oxide layer thickness
was reported [?]. Hence, we believe that the observed bright areas reveal the
local damage of the protecting oxide film around an active pit. However,
individual pits are not visible in the EMSI images.

Fig. 6B shows a small metastable pit observed with the optical microscope.
The formation of the pit is accompanied by a spike in the current (with an
amplitude of only 80 nA), indicating an electrochemical reaction. About three
seconds later, the pit abruptly passivates and the electrical current drops to
its noise level. The pit remains seen as a dark spot.

The activity of metastable pits with a higher current can be identified with
optical microscopy. In Fig. 6C, two pits become active at t = 4.5 s and t = 12 s
showing peak currents of 0.6µA and 2µA, respectively. During their active
states, each of the pits is surrounded by a bright ”halo” in the image. This
may be caused by a hemispherical concentration gradient of ions surrounding
the active site, which form an effective micro lens illuminating the surface and
lead to the observed bright halo. After the current has dropped to its noise
level, the halo remains for ≈ 0.6 s, which is about the time needed for diffusion
of the ions away from the pit.



Fig. 6. Microscopic observations of individual pitting events. (A) EMSI visualizing
oxide film damage. (B) Nucleation of a single pit seen by contrast-enhanced opti-
cal microscopy. (C) reactivation of a single pit seen by contrast enhanced optical
microscopy. Below the snapshots in each part, space-time diagrams showing evolu-
tion along the lines marked ab or cd in the respective images and parallel current
recordings are displayed (dashed lines indicate snapshot moments). The reaction
occurred in 0.05 M NaCl at 22�. The potential was scanned from 771 mV versus
normal hydrogen electrode (mVNHE) at 1mV/s (A), from 542 mVNHE (B) and held
at 607 mVNHE (C). Reproduced from [?].
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Fig. 7. Onset of pitting
corrosion observed with op-
tical microscopy. (A) Snap-
shots of a computer pro-
cessed video sequence ob-
tained with optical mi-
croscopy; green stars mark
the nucleation of new pits.
(B) Space-time plot along
the line ab in A. (C) To-
tal number of pits on a
logarithmic scale. (D) To-
tal current as a function
of time. The reaction con-
ditions were T = 20.3�
with the potential held at
615 mVNHE.

To summarize, using EMSI and contrast enhanced microscopy we suc-
ceeded to visualize both the oxide film damage and the nucleation and ac-
tivity of individual microscopic corrosion pits. The results described so far
were obtained after scanning the potential from -93mVNHE with a velocity of
1mV/s in the positive direction immediately after immersing the sample into
the electrolyte. Using this procedure, we reproduced the exponential increase
of the number of pitting sites, as had been found in the simulations, but no
fronts were observed [?].

Obviously, the oxide layer thickness should be of great importance for the
possibility to observe any fronts experimentally. It is known from XPS studies
of stainless steel that the properties of the protective oxide layer change with
time while being immersed in an electrolyte [?]. In the following we kept the
sample for 90min at open circuit potential after it was immersed. Then the
potential was rapidly scanned to a pre-defined value at which the experiment
should been conducted and held constant.

Results of one of our measurements using this method are displayed in
Fig. 7. The first panel of Fig. 7A displays a snapshot of the electrode surface
at t = 86 s. A few black spots have already appeared, each of them corre-
sponding to the nucleation of a corrosion pit. Around the pits labeled 1–3,
dark clouds have developed, which first appeared at around t = 76 s. The
clouds reach an extent of almost 200µm and evolve presumably due to the
release of aggressive ions from the active pits. This process is only visible due
to strong contrast enhancement. In the second panel of Fig. 7A, more pits
are present on the surface. New pits have nucleated mainly in the vicinity
of those pits with clouds. These pits obviously have changed their respective
surroundings, such that nucleation of new pits is enhanced. This eventually



leads to a spreading of the nucleation zones (see Fig. 7A, second and third
panel and Fig. 7B) until the whole surface becomes covered with pits. Inspec-
tion of the microscopic images in Fig. 7 reveals, that not all initial pits on the
surface initiated a pit nucleation zone. For example, around Pit 4 no dark
cloud developed and no further pits appeared, even though it is much bigger
than Pits 1, 2, and 3. This might indicate that not only the size, but also
the chemistry of the dissolution site determines, whether the change in the
environment is strong enough that pits nucleate preferentially in its vicinity.
This, of course, has to be studied in future work.

The finding of a spreading nucleation zone encouraged us to use EMSI and
optical microscopy simultaneously. In Fig. 8 one result of these measurements
is displayed. Two bright regions are visible in the EMSI image at t = 90 s
(first panel of Fig. 8A), one at the bottom (marked with letter a) and one at
the top right corner of the image (marked with letter b). The bright region
around b originates from the location of a pit that has nucleated at t = 2 s. It
grows for approximately 15 s and reaches an extend of ≈ 200µm diameter as
can be estimated from the space time plot of Fig. 8C. New pits nucleate in
the vicinity of the first pit, all of them in an area corresponding to the bright
region observable with EMSI. The bright region around a originates from an
additional nucleating pit at t = 75 s at a different location near the lower rim.
Here, a front-like spreading of the pit nucleation zone starts, clearly preceded
by the propagation of a second bright region in the EMSI video sequence (see
Fig. 8A-D).

A third pit nucleation zone forms at t = 117 s at the top of the unsealed
area and is visible in the second panel of Fig. 8A. Again it is accompanied
by a bright region observed with EMSI. Eventually all three bright regions
expand until the whole surface appears bright (as seen in the third panel of
Fig. 8A). In the end the surface is covered with more than 1000 randomly
distributed pits, as can be determined by the microscopic picture (see Fig. 9,
where a microscopic image of the surface after termination of the experiment
is shown).

An analysis of the growing bright region at the bottom of the EMSI image
in Fig. 8 reveals that the initial propagation velocity is independent of the
direction during the first 20 s and has a value of about 15µm/s. This value is
of the same order of magnitude as that obtained with the stochastic reaction
diffusion model mentioned above [?]. In a later stage of the experiment an
elliptical shape of the bright region occurred.

Convection cannot be fully suppressed in our experiment. In the direction
of convection the diffusive transport of ions is sustained by a flow of the elec-
trolyte and the front propagates continuously. Perpendicular to this direction
(indicated by the red line in Fig. 8A, second panel) the ions are spread only
by diffusion. Thus after initial homogeneous front spreading, an asymmetry
in growth occurs.
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Fig. 8. Onset of pitting corrosion observed with EMSI and optical microscopy si-
multaneously. Reproduced from [?]. (A) Snapshots of a computer processed video
sequence obtained with EMSI. (B) Snapshots of a computer processed video se-
quence obtained with optical microscopy corresponding to the snapshots in (A),
green stars mark the nucleation of new pits whereas red stars mark highly active
pits which develop a halo. (C) Space time diagram calculated along the line ab in
(A). (D) Space time diagram along the line ab in (B). (E) Number of pits on a
logarithmic scale. Solid black line: total number of pitting sites; chain dotted green
line: number of pitting sites which occur in an area comparable to the bright region
at the top-right of the middle panel in (a); dotted blue line: number of pitting sites
which occur in an area comparable to the bright region at the bottom middle of
the middle panel in (a); dashed magenta line: number of pitting sites which occur
in an area comparable to the bright region of the top middle of the middle panel
in (a); solid red line: number of the highly active pits with halo. (F) Total current
as a function of time. The reaction conditions were T = 21.9� with the potential
held at 637 mVNHE.



The measurements displayed in Fig. 7 and Fig. 8 exhibit both an expo-
nential increase in the total number of pitting sites followed by saturation,
consistent with numerical simulations and former experimental results [?, ?].
This was also found for each of the three growing bright regions individu-
ally (see Fig. 8E).

The gain in pit number was accompanied by a growth of the total cur-
rent. Via an exponential increase a transition from sporadic individual pitting
events, i.e., small spikes in the current, to a high permanent current of about
20 –30µA took place (see Fig. 7D and Fig. 8F). Initially only newly nucle-
ated pits contribute to the current. They generally passivate after a short
time (approximately 2 s) and each makes only a small contribution to the
overall current [?]. With time an increasing number of pits develops a bright
halo, indicating higher activity (Fig. 8E). Typically, these pits are found to
be sites which reactivate after they have been passivated.

By detecting the halo around highly active pits their lifetime can be de-
termined. Most pits have a lifetime of less than 20 s, only a few of them show
a lifetime up to 55 s. In our experiments we observed no stable pits, although
we cannot rule out their formation at a later stage of the experiment. After
approximately 250 s the number of highly active pits exceeds the number of
newly nucleating pits. At that time the overall current is mainly due to the
highly active pits. Although only metastable pits were observed, the overall
current had reached an almost constant high value. Hence, the strong increase
of the current results only from the rapid increase in the number of active
pitting sites. This observation is contrary to the results reported by many
other authors, who attributed the strong increase of current to the formation
of stable pits [?, ?].

2

13

Fig. 9. Microscopic image of
the sample in Fig. 8 after ter-
mination of the experiment and
after removal of the lacquer. Re-
produced from [?].

In the experiment shown in Fig. 8 the propagating fronts all have their
origin at the rim of the unsealed surface. Thus, also crevice corrosion beneath
the insulating lacquer and the associated acidification of the chemical envi-
ronment could have affected our results [?]. To exclude this possibility the



stainless steel sample was taken out of the electrolyte and imaged ex situ after
termination of the experiment and careful removal of the insulating lacquer
(see Fig. 9). The pits identified by arrows and numbers 1, 2, and 3 are the
initial pits which released enough aggressive ions to weaken the oxide layer.
It is possible that the first pits nucleated near the rim of the unsealed area
because there the lacquer partly shielded potential pitting sites and diffusion
takes place only in one direction, thus the probability for pitting corrosion is
enhanced [?]. Clearly no sign of crevice corrosion is visible at these sites and
can therefore be ruled out as source for the observed spreading of the pits. An
example of crevice corrosion, which developed at a later stage of the experi-
ment, is visible at the left side of Fig. 9. As evident from the original video,
it started at t = 348 s and grew for the remaining 140 s until the potential
was set back to −93mV.

6 Conclusion

Our findings can be interpreted as follows: Due to the release of aggressive
species by metastable pits the oxide layer in their vicinity is weakened. Here,
the probability for nucleation of pits is dramatically enhanced. Each new
pit releases additional aggressive ions, leading to further weakening of the
oxide layer and hence an expansion of the weakened area. This causes chain-
reaction-like development of pits and a spreading of the active surface area.

Our results and their good agreement with the theoretical model strongly
corroborate our believe that oxide layer weakening and nucleation rate of
pits depend on each other and that the onset of pitting corrosion in our
experiments can be regarded as an autocatalytic process. We hope that our
approach gives new impulses for preventing corrosion damage.

In general, the experimental methods described here are applicable for
the investigations of many materials protected by thin films.
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1 Introduction

Rotating spiral waves represent very typical example of self-organized spatio-
temporal patterns in quite different reaction-diffusion systems. They have
been observed in the social amoeba colonies [1], the chemical Belousov-
Zhabotinsky (BZ) reaction [2, 3], in heart muscle [4, 5], in the retina of the
eye [6], in the oxidation of CO to CO2 on platinum single crystal surfaces [7],
in the calcium waves of frog eggs [8], in yeast extracts during glycolysis [9]
and so on. From a theoretical point of view all these experimentally available
systems belong to a single broad class known as excitable media [10–12,46].

Excitable media are essentially nonlinear dissipative dynamical systems
with energy sources distributed in space. Wave processes in active media
differ very strongly from that in optics or acoustics. Due to a balance between
energy influx and dissipation the propagation of a solitary wave is possible.
Such a wave includes the transition from a stable resting state of a medium to
an excited one which is metastable and is followed by a recovery transition to
the resting state. Due to a finite duration of a recovery transition, there is a
minimal period of a wave train. Moreover, two propagating waves annihilate
after a collision in contrast to an interference of waves in linear systems.

A spiral wave is created if some special initial conditions are used or
if a single propagating wave is broken down. Although a nonuniformity of
an active medium can simplify the emergence of spiral waves, they exist
as well in completely homogeneous and uniform media. The influence of the
boundary conditions decreases very fast with the distance from the boundary
and practically vanishes if this distance exceeds the spiral wavelength. Thus,
once created spiral waves represent very robust sources of a wave activity and
oscillations in an active medium.

In many cases such self-sustained activity destroys normal functions of
biological media and is undesirable. For instance, the self-sustained activity of
heart muscle results in cardiac arrhythmias. This is one of the most important
motivation to study spiral wave dynamics and to elaborate efficient control
methods.

One obvious way to suppress a spiral wave is to apply a huge exciting
perturbation to the whole system (defibrillation shock) after that the medium
will be recovered to the resting state. Obviously, such a huge perturbation is



rather dangerous for the biological object since it can damage other important
living functions. The main goal of our study is to propose basic ideas for
control methods applying relatively weak perturbations.

A key role for such a control of spiral waves plays the phenomenon of res-
onant drift of spiral waves which appears in response to a periodic change in
the excitability of the whole medium exactly at the spiral rotation period [14].
Theoretical [14–17] and experimental [18,19] studies show that such paramet-
ric modulation induces a resonant drift along a straight line. Thus, the spiral
wave can be shifted to the boundary of the medium, where it hopefully should
disappear. However, a more detailed analysis [20] demonstrates a repulsion of
resonantly drifting spiral waves from no-flux boundaries of the medium. The
boundary influence changes the rotation period of the spiral that results in a
reflection of the drift direction. In addition to this reflection, any variations
of the rotation period in course of time or due to spatial nonhomogeneity
restrict the applicability of the resonant drift with a priori given frequency
as a control tool to suppress undesirable self-sustained oscillations associated
with the rotating spiral wave.

In this connection a feedback-mediated parametric modulation seems to
be a more perspective control strategy, since in this case the modulation
period always coincides exactly with the actual rotation period of the spi-
ral wave [20, 21]. Another important motivation to study feedback-mediated
dynamics of spiral waves is related to the fact that a feedback is naturally
present in many excitable media [22–25]. In addition, recent experimental in-
vestigations performed with the BZ medium [26,27] and during the catalytic
CO oxidation on platinum single crystal surfaces [28] reveal that global feed-
back can provide an efficient tool for the control of pattern formation.

In this paper we demonstrate that all known feedback control methods
based on the phenomenon of the resonant drift can be considered in the
frameworks of a unified theoretical approach. This approach allows to ana-
lyze existing methods of discrete and continuous control and helps to elab-
orate novel control algorithms. The theoretical predictions are confirmed by
numerical computations and experimental studies.

2 Spiral waves under periodic parameter modulation

2.1 Experimental system and underlying mathematical model

The light-sensitive BZ reaction demonstrates all basic features of excitable
media of quite different nature and represents a very suitable experimental
object to study controlled motion of spiral waves. In the experiments reported
below an open gel reactor is used [29–31]. The catalyst is immobilized in a
silicahydrogel layer of 0.5 mm thickness prepared on a plate of depolished
glass (diameter 63 mm). The active layer is in diffusive contact with a feeding
solution prepared from stock solutions containing [NaBrO3]0=2.06×10−1 M
(Aldrich, 99 %), [H2SO4]0 = 3.1 ×10−1 M (Aldrich, 95-98%), malonic acid



[CH2(COOH)2]0 = 1.86 ×10−1 M (Aldrich, 99%), and [NaBr]0 = 4.12×10−2

M (Fluka, 99%). This solution is pumped continuously through the reactor
at a rate of 120 ml/h. To protect the active layer from stirring effects, it
is covered by an inactive gel layer of 0.5 mm thickness not loaded with the
catalyst.

The active layer is illuminated by a video projector (Panasonic PT-L555E)
with intensity controlled by a computer via a frame grabber (Data Transla-
tion, DT 2851). The light is filtered with a bandpass filter (BG6, 310-530 nm).
Every one second the pictures of the oxidation waves appearing in the gel
layer are detected in transmitted light by a CCD camera (Sony AVC D7CE)
and digitized with a frame grabber (Data Translation, DT 3155) for imme-
diate processing by the computer. During the same time step the signal I(t)
controlling the light intensity generated by the projector can be changed in
accordance with the feedback scheme under consideration.

A single spiral wave, which constitutes the initial condition for all the
experiments, is created in the center of the gel disk by breaking a wave front
with an intense light spot. The location of the spiral wave tip is defined online
as the intersection point of contour lines (0.6 × amplitude) extracted from
two digitized images taken with time interval 2.0 s. The tip trajectory, the
control signal and the wave activity at an arbitrary detection point can be
visualized online by the computer.

An unperturbed spiral has the wavelength λ ≈ 2.0 mm. Its tip describes
a meandering trajectory containing about four lobes. The rotation period
measured far away from the symmetry center was T∞ ≈ 40 s.

The basic features of this experimental system are reproduced by the
Oregonator model for the light-sensitive BZ reaction in the form of a system
of two reaction-diffusion equations:

∂u

∂t
= ∇2u+

1

ǫ

[
u− u2 − (fv + I)

u− q

u+ q

]
, (1)

∂v

∂t
= u− v.

Here the variables u and v correspond to the concentrations of the autocat-
alytic species HBrO2 and the oxidized form of the catalyst, respectively. In
the following we keep the parameters ǫ = 0.05, q = 0.002, and f = 2.0 fixed.
The term I = I(t) describes the additional bromide production that is in-
duced by external illumination [32]. All computations are performed by the
explicit Euler method on a 380 × 380 array with a grid spacing ∆x = 0.14
and time steps ∆t = 0.002.

The autonomous system with I(t) = 0 has a steady state which is stable
with respect to a small perturbation. However, a supra-threshold perturba-
tion, once locally applied, gives rise to a concentric wave propagating through
the medium. A spiral rotating counterclockwise near the center of the simu-
lated domain was created by a special choice of initial conditions. The spiral



tip performed a compound rotation (meandering motion) including at least
two different frequencies. The oscillation period measured far enough from
the symmetry center of unperturbed trajectory was T∞ = 3.6.

2.2 Archimedean spiral approximation

Up to now there is no general theory which allows to predict the parameters
and the shape of a rotating spiral in the two-dimensional medium specified by
a reaction-diffusion system like (1), though this problem has been the subject
of numerous studies [14–16,33].

The very first attempt to construct a simplified kinematical description of
a rotating spiral wave has been done in the classical paper of N. Wiener and
A. Rosenblueth [33]. This description is based on the assumption that wave
fronts in a homogeneous, isotropic, two-dimensional media propagate from
any stimulated points with equal velocities into a region in the resting state.
Due to the Huygens’ principle the successive wave fronts are perpendicular
to a system of rays which represent the position which may be assumed by
stretched cords starting from the stimulated point. The back of the wave
is another curve of the same form, which follows the wave front at a fixed
distance λe measured along these rays.

Under these assumptions one can imagine a spiral waves rotating around
a circular-shaped hole with no-flux boundary, as shown in Fig. 1(a). The
perimeter λ of this hole should be, of course, large than the distance λe. The
shape of the wave front in this case coincides with an involute of the hole,
that is for any points B of the front the segment AB of a tangent to the hole
has the same length as the arc length AC. The wavelength of the rotating
spiral is equal to the hole perimeter λ and the rotation period T is determined
as T = λ/c0, where c0 is the front velocity. The shape of the involute in a
parametric form reads as

x(θ) = Rh cos(θ + θ0) +Rhθ sin(θ + θ0),

y(θ) = Rh sin(θ + θ0) −Rhθ cos(θ + θ0),

where Rh = λ/(2π) is the hole radius, and θ0 specifies the orientation of the
wave front.

The main disadvantage of this kinematical construction is that the spi-
ral rotation is allowed only in a nonhomogeneous medium with a hole in
contradiction to experimental observation and numerical data.

A more elaborated kinematical description of a freely rotating spiral in a
homogeneous medium is based on the assumption that the normal velocity
c of a curved front is not a constant, but depends on its curvature [34]. The
simplest approximation of this relationship is a linear dependence

c(K) = c0 −DK, (2)
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Fig. 1. Different representations of a rigidly rotating spiral wave. (a) involute of
a hole, (b) solution of the kinematical equation with a linear velocity-curvature
relationship, (c) Archimedean spiral, (d) overlapping of all three fronts far away
from the rotation center. The fronts shown in panels (a), (b) and (c) are depicted
by thick dotted, dashed and solid lines, respectively.

where the curvature K is considered positive for a convex wave front. This
relationship can be derived directly from the reaction-diffusion system (1)
with ǫ≪ 1 [35, 36]. To this aim the isoconcentration lines u(x, y, t) = ue are
considered as a boundary of an excited region.

For a freely rotating spiral the wave front and the wave back should
coincide at one site, called phase change point [38], see point q in Fig. 1(b).
Normal velocity of the wave front vanishes here. This point lies at the shortest
distance to the rotation center O. At another interesting point, point Q, the
radial direction is tangent to the isoconcentration line.

To determine the shape of a rigidly rotating spiral wave it is convenient
to specify the curvature K as a function of the arc length s: K = K(s) (the
natural equation of a curve). Pure geometrical consideration shows that this
function satisfies the following integrodifferential equation [39]:

K

s∫

0

Kc(K)ds′ −D
dK

ds
= ω. (3)

Here the arc length s is measured from the point Q and ω = 2π/T is the
rotation frequency of the spiral. It was shown that two boundary conditions



K(0) = KQ and K(∞) = 0 can be simultaneously fulfilled under an unique
value of the rotation frequency ω, which can be expressed as

ω = c0KQΩ(η), (4)

where 0 ≤ η ≤ 1 is a dimensionless parameter η = DKQ/c0 and the function
Ω(η) can be well approximated as

Ω(η) = 0.685η1/2 − 0.06η − 0.293η2.

The wave front computed form Eq. (3) with c0 = 0.363, D = 1.0, and KQ =
0.2 is shown in Fig. 1(b). The rotation frequency of this spiral is ω = 0.028
and the wavelength λ = 81.7.

Since the front curvature goes to zero very quickly with the arc length,
it is not necessary to use this rather complicated approach to determine the
front shape far away from the rotation center. A. Winfree was the first who
suggested to approximate the spiral front by an Archimedean spiral [2]

Θ(r, t) = Θ0 −
2π

λ
r + ωt, (5)

where Θ and r are polar coordinates with origin at the rotation center. This
simple analytic form determines as well the asymptotic of spiral waves in the
complex Ginzburg-Landau equation [41,42]. The front shape in the Cartesian
coordinates with λ = 81.7 is shown in Fig. 1(c).

It is important to stress that all these three forms of spiral wave de-
scription practically coincide far away from the rotation center. Moreover,
the Archimedean spiral becomes very close to curvature affected spiral ob-
tained from Eq. (3) already at a relatively small distance rA from the ro-
tation center, as can bee seen in Fig. 1(d). In this example rA can be esti-
mated as rA ≈ 9.0 ≪ λ. Recent computations performed with the Oregonator
model [40] and experiments with the BZ reaction [43] also confirm that an
Archimedean spiral provides a suitable approximation of the wave front ex-
cept a relatively small region of radius rA ≪ λ near the rotation center.
Moreover, even the shape of a slightly meandering spiral waves exhibits only
small oscillations near an Archimedean shape and the amplitude of these os-
cillations vanishes very quickly with r [44]. Therefore the Archimedean spiral
approximation will be used below to specify the shape of a wave front.

2.3 Resonant drift of a spiral wave under periodic parameter

modulation

Resonant drift of a spiral wave is a displacement of the spiral wave center in-
duced by a periodic modulation of the medium excitability. This phenomenon
has been predicted for a kinematical model of weakly excitable media [14],
confirmed in numerous computations and experiments [16, 19, 20, 45], and
explained as a generic property of an excitable media [15, 17].



Let us assume that an unperturbed spiral wave is rotating rigidly at a
frequency ω0 around a center located at a site z0 = x0 + iy0. One has to
approximate the shape of this spiral by expression (5) to determine the spiral
phase Θ0. After a short perturbation, modeled as I(t) = AIδ(t) in Eq. (1),
the rotation center, generally speaking, is shifted to a new site

z1 = z0 + h exp(iΘ0 + iϕ), (6)

where h is the magnitude of this displacement. Its direction is determined
by the spiral phase Θ0 and a constant ϕ characterizing the medium. The
perturbation applied changes also the rotation phase of the spiral by δΘ. It is
assumed that the changes in the spiral wave form induced by the perturbation
relax on a time scale much smaller than the rotation period T0 = 2π/ω0.

A second perturbation applied after the time interval Tm should produce
a similar displacement. If a relaxation process is much shorter than Tm, the
location of the spiral center after the second perturbation can be written as

z2 = z1 + h exp(iΘ1 + iϕ), (7)

where

Θ1 = Θ0 + δΘ + ω0Tm. (8)

Since the displacement direction remains the same after substraction of 2π
from the right hand side of Eq. (8), this expression can be written as

Θ1 = Θ0 + (ω0 +
δΘ

Tm
− ωm)Tm. (9)

Generally speaking, the spiral displacement after k similar perturbations
modeled as I(t) = AI

∑k
l=0 δ(t− lTm) reads

zk = zk−1 + h exp(iΘk−1 + iϕ), (10)

Θk−1 = Θk−2 + (ω̄ − ωm)Tm, (11)

where

ω̄ = ω0 + δΘ/Tm (12)

is an averaged rotation frequency of the spiral wave perturbed by the applied
modulation.

The phenomenon of the resonant drift is induced by the modulation with
the frequency ωm = ω̄. In this case a simple equality Θk = Θk−1 = ... =
Θ0 follows from (11). Hence all particular displacements occur in the same
direction and the total shift of the spiral location after k perturbations is
given by a product

zk = z0 + kh exp(iΘ0 + iϕ). (13)



It is important to stress, that if ωm = nω̄, where n is an integer, n > 1,
the sum of n consequent displacements, i.e after one rotation period of the
spiral, is equal to zero, and zk+n = zk. A long term drift is absent in this
case.

Another interesting consequence from (10)-(12) can be obtained in the
case then ωm is close to ω̄: |ωm/ω̄ − 1| ≪ 1. Under assumption that the
displacement h is small, the discrete map (10),(11) can be transformed into
the ordinary differential equation for the spiral location z(t):

ż =
h

Tm
exp[i((ω̄ − ωm)t+Θ0 + ϕ)]. (14)

Thus, the velocity of the resonant drift induced by the periodic modulation
is determined by the ratio h/Tm. The direction of the straight-line drift cor-
responding to the resonance ωm = ω̄, depends on the initial orientation Θ0

of the spiral wave and on the constant ϕ. More generally, if the parameter
modulation is given by

I(t) = AI

k∑

l=0

δ(t− lTm − t0) (15)

with arbitrary t0 ≥ 0, the drift direction γ should depend as well on the
modulation phase φmod = ω̄t0 = ωmt0 that gives

γ = ϕ+Θ0 + φmod. (16)

Note that Eq. (14) obtained for the discrete modulation (15) practically
coincides with induced drift equations known for a continuous periodic mod-
ulation [14–16]. The only difference is that the constant ϕ in (14) specifies a
displacement direction induced by a sequence of δ-perturbations, but not by
a harmonic perturbation I(t) = A cos(ω̄t). In both cases this angle, which de-
termines the drift direction for Θ0 = φmod = 0 is a characteristic parameter
that depends on the properties of the excitable medium and on the applied
modulation method.

3 Discrete feedback control

3.1 Resonance attractor for spiral waves subjected to

one-channel feedback

One-channel feedback has been first applied to control meandering spiral
waves in experiments with the light-sensitive BZ medium [21]. Later a theory
of this control method has been elaborated for a rigidly rotating spiral [40,43]
and for a meandering one [30]. In accordance with this control algorithm, the
wave activity (e.g. the value of the variable v in Eq. (1)) is measured at a



particular detection point as a function of time. This value oscillates with time
and exceeds the value ve every time instants tk, when a wave front touches
the detector point. A short perturbation is applied to the system immediately
at tk or after a time delay τ . The sequence of the generated perturbations
with the frequency practically equal to the rotating spiral frequency induces
a spiral drift.

Let us assume that the drift is slow and determine its direction. Obviously,
the phase of the pulse sequence depends on the spiral location. Indeed, if the
spiral wave center is placed at the point z = x+ iy, the spiral front specified
by Eq. (5) crosses the detector point located at the origin of the coordinate
system each time tk satisfying the following equation:

ω̄tk +Θ0 −
2π

λ
|z| = π + arg(z) + 2πk + ω̄τ. (17)

Hence the stimulating sequence will be generated as

I(t) = AI

k∑

l=0

δ(t− lTm − φmod/ωm). (18)

This expression coincides with Eq. (15), where the phase shift φmod is deter-
mined as

φmod = π + arg(z) −Θ0 +
2π

λ
|z| + ω̄τ. (19)

To determine the direction of the drift induced by the one-channel feed-
back, the expression (19) should be substituted into Eq. (16), that yields

γ = ϕ+ π + arg(z) +
2π

λ
|z| + ω̄τ. (20)

It is important to stress, that under the described one-channel feedback the
drift direction does not depend on the initial orientation Θ0 of the spiral.
The location z of the spiral center and the time delay τ completely determine
the drift angle γ. Thus, the drift velocity field induced by the one-channel
feedback control follows from Eq. (14):

ż =
h

Tm
exp(iγ) (21)

with γ defined by Eq. (20).
This drift velocity field is shown in Fig. 2 corresponding to τ = 0. The

constant ϕ is taken as ϕ = −1.8 that corresponds to the Oregonator model
(1). The field has a rotational symmetry, but the drift angle γ monotonously
increases with the distance |z| from the detector point. Hence, there is a set
of sites along any radial directions, where the drift direction is orthogonal to
the radial one, i.e.

γ = arg(z) + π/2 + πn, (22)



Fig. 2. Drift velocity field for the one-channel feedback. Thick solid shows the
trajectory of the spiral center computed for the Oregonator model (1). τ = 0.

where n is an arbitrary integer. The sites corresponding to a fixed n form
a circular pathway around the detector. It follows from Eq. (20), that the
motion along this circular pathway will be stable only if n is an even number
n = 2m. Indeed, according to Eq. (20) γ increases with |z|. Therefore, small
deviations from the circular pathway are damped out (amplified) for n = 2m
(n = 2m + 1). The radius R of a stable circular orbit can be found as a
solution of Eqs. (20) and (22):

R/λ = m− 0.25 − ϕ

2π
− τω̄/(2π). (23)

These stable orbits are the attractors of a spiral wave under one-channel
feedback. The basins of attraction are bounded by unstable orbits, which
corresponds to n = 2m+ 1 and have radii

R/λ = m+ 0.25 − ϕ

2π
− τω̄/(2π). (24)

An example of the feedback-induced drift computed for the Oregonator model
(1) is shown by the solid line in Fig. 2. It can be seen that the drift field
determined by Eqs. (20),(21) describes not only the attractor location, but
the transient motion starting somewhere within the basin of attraction, too.

Application of one-channel feedback control to the BZ system also allows
to observe the discrete set of stable resonant attractors [21, 30, 43, 46]. Note,



Fig. 3. Radii of resonance attractors (diamonds) determined experimentally for
meandering spiral waves in the light-sensitive BZ medium vs the time delay in the
feedback loop. The dashed lines show the theoretical predictions for the radii of
the resonance attractor according to Eq. (23), the solid lines are the boundaries of
the basins of attraction according to Eq. (24). Radii of observed entrainment and
asynchronous attractors are shown by triangles and squares, correspondingly.

that Eq. (23) for the radius of the resonance attractor contains only one
medium depended parameter ϕ, which specifies the direction of the resonance
drift. In order to avoid a rather complicated experimental procedure to verify
this value, the obtained experimental data were fitted by linear dependences
(23) with ϕ = −0.31 as shown in Fig. 3 by dashed lines. Then, the boundaries
of the basin of attraction were specified in accordance with Eq. (24) (solid
lines in Fig. 3).

In the region of small radii, where R < rA ≈ 0.2λ, the dependence (23)
becomes violated. This is quite natural, since close to the rotation center
the spiral wave deviates considerably from the Archimedean shape, and Eqs.
(17)-(20) are not applicable. When the distance between the core center and
the measuring point is small the entrainment attractor or the asynchronous
attractor can be observed (for details see [30]). The radii of these attrac-
tors grow with the time delay until the basin of attraction of the resonance
attractor is reached. With further increase of the time delay the resonance
attractor is observed.



3.2 Spiral wave drift near a line detector

In accordance with another feedback algorithm short perturbations are gen-
erated each time when the rotating spiral wave front is tangent to a straight
line. Fig. 4(a) illustrates the location of the spiral wave observed during an
experiment with the light-sensitive BZ medium exactly at the instance when
it touches a line detector. Of course, the gray level corresponding to a chem-
ical concentration is monitoring only at a column of pixels of this digital
image, rather than along a continuous line. After a corresponding proceeding
of the monitoring data the instance of a touch is determined. Hence, one can
talk only about a virtual line detector.

Fig. 4(b) shows the spiral tip trajectory obtained experimentally under
this feedback control. After a short transience the spiral core center drifts in
parallel to the line detector. This asymptotic drift line reminds the resonance
attractor observed under one-channel control, because a small variation of
the initial location of the spiral wave does not change the final distance
between the detector and the drift line. To construct a drift velocity field

(a) (b)

Fig. 4. Spiral wave drift near a virtual line detector. (a) Snapshot of a spiral wave
in a thin layer of the light-sensitive BZ reaction. Overlaid dashed line represents
the detector. White curve shows the spiral tip trajectory without feedback. (b)
Trajectory of the spiral wave tip induced by the feedback.

corresponding to this control algorithm an Archimedean spiral approximation
is used again. Assume the detector line is given as x = 0 and an Archimedean
spiral describing by Eq. (5) is located at a site (x, y) with x > 0. A pure
geometrical consideration shows that the spiral front touches the detector
each time tk satisfying the following equation:

ω̄tk +Θ0 −
2π

λ
r = π − arctan(

h

x
) + 2πk, (25)



where

r(x) = x

√

0.5 +

√
0.25 + (

λ

2πx
)2, (26)

and

h =
√
r2 − x2 =

λx

2πr
. (27)

Eq. (25) determines a modulating sequence similar to Eq. (15) with the phase
shift

φmod = π −Θ0 +
2π

λ
r − arctan(

h

x
) + ω̄τ. (28)

Substituting Eq. (28) into Eq. (16) we obtain the direction γ of the induced
drift as a function of the coordinate x > 0:

γ(x) = ϕ+ π +
2π

λ
r(x) − arctan(

h

x
) + ω̄τ. (29)

On the left hand side from the detector line the drift direction is specified
by a similar expression, but an additional rotation by the angle π should be
included. That gives for x < 0

γ(x) = ϕ+
2π

λ
r(x) + arctan(

h

x
) + ω̄τ. (30)

Finally, the drift of the spiral center will be specified by Eq. (21) with γ
determined by Eqs. (29) and (30).

The obtained drift velocity field is shown in Fig. 5(a). In analogy to the
drift field corresponding to the one-channel feedback, there is a set of sta-
tionary trajectories. In this case they are given by the condition

γ(x) = π/2 + πn, (31)

where n is an arbitrary integer. A stable stationary trajectory corresponds to
an even number n = 2m, while an odd number n = 2m+ 1 characterizes an
unstable one. Solid lines in Fig. 5(a) show trajectories of spiral wave centers
placed initially at three different distances from the line detector. Asymp-
totically they are attracted by stable stationary trajectories with basins of
attraction separated by unstable stationary trajectories.

The similarity between this attractors structure and the one described
above for the one-channel detector becomes even more obvious, when a line
segment is used as a detector. Indeed, if short perturbations are generated
each time when the spiral wave front is tangent to a segment of a straight line
or touches its open end, then drift velocity field consists of three regions, as
shown in Fig. 5(b). In the central region the drift direction is determined by



Eqs. (29) and (30) as for a line detector. However, if the spiral center is located
in the upper or bottom region the front can never be tangent to the segment
and can only touch the nearest open end. Thus, in these regions the drift
direction is determined by Eq. (21) in accordance with the one-channel control
algorithm. These three regions are separated by two boundaries yb = yb(xb)
given in the case of a vertical line segment as

yb = ytip − λxb

2πr(xb)
, (32)

where ytip specifies y-coordinates of upper or lower open ends, and r(x) is
given by Eq. (26). The drift velocity field is smooth at these boundaries, and
the attractor structure existing in one region continuously transforms into
another one. Direct integrations of the Oregonator model (1) demonstrate a
continuous drift of a spiral center along a closed trajectory surrounding the
line segment.

(a) (b)

Fig. 5. Velocity field for spiral wave drift induced near a line detector (a) and line
segment (b). Solid lines show trajectories of the spiral center computed for the
Oregonator model (1). τ = 0.

3.3 Spiral wave drift near a curved one-dimensional detector

Drift induced near a line detector represents an efficient tool to move a spiral
wave along a straight line and, hence, to shift it from initial location A to a
desirable site B along the shortest pathway. However, during such a shift the
spiral wave can be anchored at some defect, as it is illustrated in Fig. 6(a).
Thus, in a presence of defects the shortest pathway is not always the optimal
one.



In this connection a possibility to shift the spiral wave along a curved
trajectory has been studied. Fig. 6(b) shows an example of a successful shift
of a spiral wave from point B to A avoiding an anchoring by the defect located
between these two points. This shift is induced by the feedback control using
a curved segment as a detector.

(b)(a)

B

D

A A

D

B

Fig. 6. Trajectories of a spiral wave tip observed in a thin layer of the BZ reaction.
(a) Anchoring of a spiral wave on a defect D. (b) Successful drift from B to A near
a curved detector. Overlaid dashed lines represent the detectors. Scale bar: 1 mm.

Further study of the spiral wave drift near a curved one-dimensional de-
tector demonstrates the possibility of a continuous drift of spiral waves near
a convex arc with arbitrary curvature, up to the limiting case of a point de-
tector. The drift near a concave arc is more complicated. Indeed, Fig 7(a)
illustrates a continuous drift around a curved cosine-shaped detector. Since
the deformation of this detector with respect to a line segment is relatively
small, the drift occurs near concave arcs as well as near convex ones. How-
ever, near a strongly curved concave arc the drift stops, and the spiral wave
becomes anchored at some site within a homogeneous medium without any
defects, as shown in Fig. 7(b).

To explain the observed anchoring, the drift velocity field induced by a
curved detector should be analyzed. To this aim we assume that the virtual
detector has a form of a circle of radius Ra. Assume this circle is centered at
the origin of a Cartesian coordinate system while the center of a spiral wave
approximated by an Archimedean spiral is located at the point z = x + iy.
Pure geometry shows that the spiral wave will touch the detector at instants
tk satisfying the following equation

ω̄tk +Θ0 −
2πr

λ
= π + arg(z) − arctan(

h

d
) + arctan(

h

Ra + d
) + 2πk, (33)



(a) (b)

Fig. 7. Trajectories of a spiral wave tip observed in a thin layer of the BZ reaction.
(a) Drift around a weakly curved one-dimensional detector. (b) Anchoring of a
spiral wave drift near strongly curved concave detector. Dashed lines represent the
detectors.

where

r(d) = d

√

0.5 +

√
0.25 + (

λ

2πd
)2, (34)

h(d) =
√
r2 − d2 =

λd

2πr(d)
, (35)

x2 + y2 = (d+Ra)2 + r(d)2 − d2. (36)

Here r is the distance between the spiral center and the point of touch, and
d is the distance from the spiral center to the tangent at the touch point.

As before, the stimulating sequence will be generated in a form similar to
Eq. (15) with the phase shift

φmod = π + arg(z) +
2πr

λ
−Θ0 + arctan(

h

Ra + d
) − arctan(

h

d
) + ω̄τ. (37)

This phase shift determines the drift direction in accordance with Eq. (16).
An arbitrary curved detector should be considered as a set of continuously

connected arcs of different curvature radii. Determination of the drift velocity
field in this case is illustrated by Fig. 8 for a detector consisting of three
circular arcs. Thin solid curves separate regions of influence of different arcs
and the both open ends of the detector. Similar to the case of a line segment
shown in Fig. 5(b), these curves obey Eq. (32) written in local coordinate
system with origin at the end points of the arcs. For instance, in the upper
middle region of the considered square-shaped medium the spiral wave can
only touch the upper open end and never can be tangent to the detector.
Within the upper right region the spiral wave can touch the upper open end
and can be tangent to the middle arc. This part and others parts with two



sources of influence are shaded in Fig. 8. Here the resulting drift velocity
vector is determined as the sum of two particular vectors related to two
sources of influence. Fig. 8 shows that the amplitude of the resulting drift
velocity vanishes at some sites in the shaded regions, where the particular
vectors have opposite directions. This is the reason for observed anchoring of
the spiral wave near concave arc shown in Fig. 7(b).

In order to confirm this conclusion we performed numerical simulations of
the feedback mediated drift with the Oregonator model (1). The obtained tra-
jectories of two spiral wave centers with different initial locations are shown
in Fig. 8 by thick solid lines. The spiral center moves in a very good agree-
ment with the computed drift velocity field and stops near the place where
the velocity field vanishes.

Fig. 8. Drift velocity field near a strongly curved detector (dashed line) and tra-
jectories of a spiral center computed for the Oregonator model (1). τ = 1.4.

4 Continuous feedback control

4.1 The superposition principle for feedback-induced drift

Usually, to realize a continuous feedback control of rotating excitation waves,
the parameter modulation I(t) is determined to be proportional to a sys-
tem variable averaged over a certain integration domain S. For instance, the



feedback signal I(t) is often computed as [47, 48, 50–52]:

I(t) = kfb[B(t− τ) −B0], (38)

where

B(t) =
1

s

∫

S

v(x′, y′, t)dx′dy′. (39)

Thus, the intensity of the feedback signal is proportional to the integral value
B of the variable v over the domain S of area s. Two important control
parameters in the feedback loop are the gain kfb and the time delay τ . If S
is a disk whose center coincides with the center of a rigidly rotating spiral
wave, then the integral B does not depend on time. This constant is denoted
as B0 in Eq. (38).

Let us assume, that the center of an unperturbed spiral wave is located at
site z = x+iy. Due to the rotation of the spiral wave, in general, the computed
integral B(t|z) and, hence, the modulation signal I(t|z) are periodic functions
of time with period T∞. Applying the computed signal I(t|z) to the medium,
the spiral wave is forced to drift in accordance with the general rule (14).
The direction of the drift and its velocity are determined by the first Fourier
component of the periodic modulation, which can be expressed as

I1(t|z) = kfbA(z) cos[ω̄t− ω̄τ − φ(z)], (40)

where the amplitude A(z) and the phase φ(z) are defined by the following
expression

A(z)eiφ(z) =
2

T∞

T∞∫

0

B(t|z) exp(iω̄t)dt. (41)

The higher Fourier components with frequencies nω̄, where n ≥ 2, do not
induced a long term drift as shown in Sec. 2.3.

If the induced drift is slow, then the actual location of the spiral center
z determines its velocity V (z) ∼ kfbA(z) and direction with respect to the
x-axis

γ(z) = ϕ+ ωτ + φ(z). (42)

The constant ϕ specifies the direction of the drift induced in the case τ = 0
and φ = 0. For the Oregonator model (1) with the parameters indicated
above ϕ = −0.5 [47]. Hence the drift velocity field can be written as:

ż = V (z) exp[iγ(z)] (43)

with γ defined by Eq. (42).



If the shape of a slightly meandering wave can be approximated by a
counterclockwise rotating Archimedean spiral, the first Fourier component of
v(z′, t|z) reads

v1(z
′, t|z) = vm cos[ωt− arg(z′ − z) − 2π|z′ − z|/λ], (44)

where vm is a constant. Substituting Eqs. (39) and (44) into Eq. (41), we get

A(z)eiφ(z) =
vm

s

∫

S

exp[iΦ(z′|z)]dx′dy′, (45)

where
Φ(z′|z) = arg(z′ − z) + 2π|z′ − z|/λ. (46)

It is important to stress, that if the size of the domain S is much smaller
than the spiral wavelength λ, we get the limiting case of one-point feedback
control [47] specified by Eqs. (42),(43),(45) with (x′, y′) = (0, 0). In this case
φ(z) = Φ(0|z) = π + arg(z) + 2π|z|/λ. Hence, the angle γ determining the
drift direction under continuous one-point control reads

γ(z) = ϕ+ π + arg(z) + 2π|z|/λ+ ω̄τ. (47)

Note, that the only difference between this expression and Eq. (20), which
corresponds to the one-channel discrete control, is the specific value of the
constant ϕ.

To determine the drift field for a domain of an arbitrary shape, it can
be divided into a set of small subdomains. Then each subdomain is treated
as a one-point detector generating a feedback signal with a phase shift de-
termined by Eq. (46). After this the resulting drift velocity field is derived
using Eqs. (45) and (42) as the sum of all drift vectors induced by single
subdomains. This superposition principle helps to unify and to simplify the
study of different algorithms for continuous feedback control.

4.2 Two-points feedback control

The simplest way to illustrate the importance and the efficiency of the super-
position principle is to consider the two-points feedback, where the feedback
signal is taken from two measuring points (z′+) = (0, a) and (z′−) = (0,−a).
Substituting these coordinates into Eq. (46), we get two functions Φ+(z) and
Φ−(z) describing the influence of the feedback taken from each point sepa-
rately

Φ±(z) = arg(z′± − z) +
2π

λ
|z′± − z|. (48)

The amplitude A(z) and the phase φ(z) of the drift velocity field induced by
the two points together are determined from Eq. (45) as

A(z)eiφ(z) = [exp(iΦ+) + exp(iΦ−)]vm/2, (49)



and then the drift angle γ(z) follows from Eq. (42).

It can be easily seen from Eq. (48) that the amplitude A(z) vanishes if

Φ+(z) − Φ−(z) = π(2m+ 1), (50)

where m is an integer. A solution of this equation specifies a smooth line or
a set of lines on the z plane.

(a) (b)

Fig. 9. Drift velocity field determined by Eqs.(43), (42), (48) for (a) dp/λ = 0.45,
(b) dp/λ = 1.0. The fixed line (thin solid) satisfies Eq. (49). The thick solid rep-
resents the trajectory of the spiral center computed for the Oregonator model (1)
with kfb = 0.02 and τ = 0.

To analyze the obtained drift velocity field it is suitable to choose the dis-
tance between two points dp = 2a as a control parameter [53]. If the distance
dp/λ≪ 1, the drift velocity field is very similar to that induced by one-point
feedback mentioned above and studied in [47]. It includes a set of circular-
shaped attracting manifolds called resonance attractors [21], as shown in
Fig. 2. This attractor structure still exists for any dp/λ < 0.5. For example,
the drift velocity field obtained for dp/λ = 0.45 is shown in Fig. 9(a). The
thick solid line represents the drift of a spiral center obtained numerically for
the Oregonator model (1) and illustrates the existence of a circular-shaped
resonance attractor in quantitative agreement with the drift velocity field
predicted analytically. However, in contrast to one-point feedback, the mag-
nitude of the drift vectors is not a constant, but becomes very slow in the
upper and lower parts of the attractors. Moreover, the drift velocity vanishes
at a smooth curve connecting the measuring points. It is natural to refer to
such unusual equilibrium manifold as fixed line, in analogy to well-studied
fixed points.



The drift velocity field changes dramatically for 0.5 ≤ dp/λ < 1.5. In this
case there are three equilibrium manifolds, which are unrestricted in space.
Thus, the circular-shaped attractors existing for dp/λ < 0.5 are destroyed as
shown in Fig. 9(b). In accordance with the predicted velocity field, the drift
of a spiral wave center, computed for the Oregonator model (1), first follows
an approximately circular trajectory and then stops somewhere inside the
medium, practically at the predicted lines.

Fig. 10. Trajectories of spiral wave tips observed in the experiments with the light-
sensitive BZ reaction. Two measuring points are shown by black dots. Dashed lines
depict fixed lines determined numerically from Eq.(49).

The results of six experiments with different initial locations of the spiral
center are shown in Fig. 10. In these experiments the feedback signal is deter-
mined as the sum of the intensities of the transmitted light measured at two
points located at the distance dp = λ. In full agreement with the predicted
drift velocity field shown in Fig. 9(b), the drift of spiral waves stops at the
fixed lines.

4.3 Global feedback in circular and elliptical domains

An increase of the radius Rd of the integration domain S from zero to the
radius of the gel layer describes the transition from one-point to global feed-
back control [48–50]. This control algorithm conserves the rotational sym-
metry existing for one-point control. Thus, one can expect that the drift



direction should be described by an expression similar to Eq. (47). Indeed,
it was shown [47, 50] that to specify the drift direction induced by global
feedback within a circular domain Eq.(47) has to be generalized and reads

γ(z) = ϕ+ arg(z) + φ(|z|, Rd) + ω̄τ. (51)

Here the phase φ(|z|, Rd) is a nonlinear function of |z|, in contrast to one-point
feedback. An example of this function determined numerically for Rd = 1.5λ
is shown in Fig. 11(a). Moreover, the amplitude of the first Fourier component
A(z) is a nonmonotonous function within the circular integration domain, as
shown in Fig. 11(a).

(b)

φ/
π

(a)

|z| /λ

A

Fig. 11. (a) The phase φ (solid line) and the amplitude A (dashed line) of the
feedback signal determined for global control in a circular-shaped domain of radius
Rd = 1.5λ. (b) Radius R of the resonance attractor in the domain versus time delay
τ in the feedback loop. Radii of observed entrainment and asynchronous attractors
are shown by triangles and squares, correspondingly.

Since the condition (22) is as well valid for a circular orbit in the drift field,
the radii of stable attracting trajectories and the basins of attraction can be
determined from Eqs. (51) and (22). As a result, the resonant attractor radius
becomes a nonlinear function of the time delay τ in the feedback loop, as
shown in Fig. 11(b). Similarly to the case of one-point feedback (see. Fig. 3),
the theoretical predictions are violated for small attractor radius R < rA ≈
0.2λ. The amplitude of the first Fourier component practically vanishes in this
case, and entrainment or asynchronous attractors are observed instead [47].

It is very important to stress that the shape of the integration domain
represents a very important control parameter, inducing bifurcations in the
drift velocity field [31, 47, 50, 52]. For example, the drift velocity field com-
puted for an elliptical domain with the major axis a = 3λ and the minor axis
b = a/1.1 is shown in Fig. 12(a). Although in a circular domain of radius



Rd = 1.5λ exist a stable limit cycle corresponding to the resonance attrac-
tor, the deviation from the circular shape strongly changes the drift velocity
field. Indeed, the resonance attractor is destroyed in the elliptical domain. Si-
multaneously, two new pairs of fixed points appear, where the drift velocity
vanishes. In each pair one fixed point is a saddle and the other one is a stable
node. Depending on the initial conditions, the spiral wave will approach one
of the two stable nodes. Trajectories of the spiral center obtained by numer-
ical integration of the Oregonator model (1) are shown by thick solid curves
in Fig. 12(a). These curves are in perfect agreement with the predicted drift
velocity field.

The results of this theoretical analysis are confirmed by experiments with
the light-sensitive BZ medium. A spiral wave was exposed to uniform illumi-
nation proportional to the integral gray level taken from an elliptical inte-
gration domain. Fig. 12(b) shows the resonant drift mediated during global
feedback control. The spiral wave drifts towards a stable node of the drift
velocity field. Close to this fixed point the drift velocity becomes very slow.
Thus, this experimentally observed anchoring of the spiral wave at certain po-
sitions in the uniform medium is explained in the framework of the developed
theory of feedback-mediated resonant drift.

(a) (b)

Fig. 12. (a) Drift velocity field induced by global feedback in an elliptical domain
(a/b = 1.1). (b) Resonant drift induced in experiments with the BZ reaction (a/b =
1.25). Open filled and semi-filled circles depict unstable nodes, stable nodes, and
saddle points, respectively. Scale bar: 1 mm.

5 Discussion

Our studies show that all existing methods of spiral wave control can be
considered in the framework of a unified theoretical approach. This approach



is based on the well established phenomenon of the resonant drift induced
by periodic parametric modulation at the rotational frequency of a spiral
wave [14–20]. The direction of this drift depends on the initial orientation
of the spiral and on the phase of the first Fourier component of the peri-
odic modulation. To specify the spiral orientation it is proposed to use an
Archimedean spiral approximation for a rigidly rotating and/or for slightly
meandering spiral wave [47, 50, 53].

It was extremely important to demonstrate that because the phase of the
feedback signal depends on the spiral orientation, the direction of feedback
induced drift is determined only by the spiral location and does not depend
on its initial orientation. Thus, the dynamics of spiral waves under feedback
control can be described by a drift velocity field [47, 53].

If a feedback force can be considered as a sum of signals taken from differ-
ent sources, the resulting drift direction is found to be the sum of particular
drift vectors induced by each separate source. This superposition principle
essentially simplifies the analysis of the drift velocity fields [47, 53].

It is found that the drift velocity fields represent a very interesting object
for theoretical investigation. Depending on the concrete feedback algorithm,
they can contain fixed points and limit cycles corresponding to the resonance
attractors. Our studies reveal the existence of unusual global bifurcations
leading to the appearance of unrestricted fixed lines with zero drift velocity
[53]. This motivates future study of the possible behavior of a second order
dynamical system near a fixed line, that is a challenge for dynamic system
theory [54]. It is also important to analyse another control algorithms in
which an appearance of such equilibrium manifolds is possible.

The deeper understanding of the dynamics of feedback induced drift al-
lowed us to propose robust an efficient methods to drive spiral center from
an initial location to another, desirable one, even in the presence of anchor-
ing defects. This is important for such possible application as low-voltage
defibrillation of cardiac tissue.

The anchoring of a spiral wave within a homogeneous medium is nowadays
a subject of very general mathematical theory [55]. In the considered case of
the feedback control the anchoring is observed in many different situations.
In all these cases it can be considered as a consequence of the superposi-
tion principle mentioned above, and there is a deep analogy between this
phenomenon and the destructive interference well-known in the theory of lin-
ear waves. To find out some ways to avoid this anchoring, for instance by
application of small stochastic fields, is a challenge for future work.

The single experimental tool employed in this work is the photo-sensitive
Belousov-Zhabotinsky reaction and only the Oregonator model was used for
numerical computations. Note, that the theoretical consideration is based on
a very general descriptions of an excitable medium and did not used specific
features of the experimental or model systems. The close agreement between
the theoretical predictions and the experimental and numerical data proofs



that the results obtained have a general character and can be applied to
dynamics of spiral waves in quite different excitable media.
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B - Condensed Matter 65, 515 (1987).
24. S.L. Lane and D. Luss, Phys. Rev. Lett. 70, 830 (1993).
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1 Introduction

Astrophysical media very often exhibit a remarkable degree of inhomogeneity.
An example are different types of dust forming objects like the envelopes
of old and developed stars or planetary nebulae. High angular resolution
observations of such objects reveal a large variety of different spatial-temporal
dust structures. In Figure 14a, a HST image of the Eskimo nebula, a so called
planetary nebula, is shown. The filaments visible here consist of material
ejected by the central star. Figure 14b shows a speckle interferometry image
of the carbon rich star IRC 10216 at 1.125 µm. The structure of the dust
shell can be clearly seen. Another example are star forming regions, where
the usually thin interstellar medium is highly compressed and exposed to
the intense FUV radiation of the newly born stars. Since the physical and
chemical state inside such a medium is dominated by photons, these regions
are also called photon dominated regions. In Figure 15, the famous and highly
structured Eagle Nebula, a stellar nursery at a distance of approximately 7000
light years, is shown.

For both types of astrophysical objects, the envelopes of evolved stars and
star forming regions, the radiation field plays a crucial role in the development
of the observed structure. For the formation of stars out of the on average
thin interstellar medium great compression of the material has to occur. An
important question is under which conditions structures formed in the inter-
stellar medium by for example turbulent compression or by the passage of
a shock wave can be become gravitationally and/or thermally unstable and
collapse. For star formation to take place, i.e. for large compression to occur,
the gas must cool down. This means, that the released compressional and
gravitational energy has to be removed from the system. The by far most
important cooling mechanism is the transport of energy by radiation. In the
case of stellar envelopes, not only the transport of energy by radiation is
important, but also the transport of momentum by the photons is crucial.
Since in the circumstellar envelopes of evolved stars (Red Giants) dust can
be effectively produced, the radiative force on dust grains plays a major role
in the structuration of these envelopes. In the following we want to exam-
ine two different types of instabilities which can trigger the formation of the
observed structures. At first, we study the conditions for the appearance of



Fig. 1. Left: Hubble Space Telecsope image of the Eskimo nebula. The filaments
visible above consist of material ejected by the central star (now a white dwarf)
during its AGB phase. Right: Speckle interferometry of the carbon star IRC 10216
(Weigelt et al. 2001) at 1.125 µm. The structure of the dust shell around the star
can be clearly seen.

combined thermal/gravitational instability in section2. Afterwards, we dis-
cuss the mechanisms which lead to a radiative instability in the dust forming
envelopes of AGB stars in section 4.

2 Gravitational/thermal instability

2.1 The Jeans instability

When a region of gas is compressed , the excess pressure tries to smooth
out the compression, which excites acoustic waves. In the compressed region,
however, gravitation is enhanced and therefore more gas is attracted by it.
The latter effect is negligible for typical sound waves in the earth’s atmo-
sphere. For perturbations of gaseous bodies of astronomical size, however,
the self-gravity is quite important and the enhanced gravitation in the com-
pressed region may overpower the expansive tendency of the excess pressure,
pulling more material there and triggering an instability.

Jeans, who at first demonstrated the nature of this so called Jeans in-
stability, considered perturbations in a uniform infinite gas. Considering the
continuity equation, the equation of motion and the Poisson equation:

∂ρ

∂t
+ ∇(ρv) = 0 (1)



Fig. 2. Hubble Space Telecsope image of the Eagle nebula.

ρ

(
∂v

∂t
+ (v∇)v

)
= −∇p− ρ∇Φ (2)

and

∆Φ = 4πGρ (3)

he obtained the following equation which characterizes the growth of the
density perturbation δρ owing to the self-gravity in a linear approximation

∂2δρ

∂t2
= c2s∆δρ+ 4πGρδρ . (4)

Here, G is the gravitational constant and cs is the isothermal sound speed.
From eq. (4) the following dispersion relation can be found

ω2 = c2sk
2 − 4πGρ . (5)

For k < kJ with

c2sk
2
J = 4πGρ , (6)

ω is imaginary, which means that perturbations would increase exponentially.
The system is unstable. In other words, if the size of the perturbations is
larger than some critical wavelength, the enhanced self-gravity can outweigh



the excess pressure so that the perturbations grow. The corresponding critical
mass

MJ =
4

3
πλ3

Jρ with λJ =
2π

kJ
(7)

is usually referred to as the Jeans mass.
Under average interstellar conditions, this means a particle density of

approximately 1 cm−3and a temperature of 100 K, only masses larger than
approximately 104 solar masses can become unstable according to eqs. (6) and
(7). As a consequence, stars form usually in clusters. The initial clouds breaks
finally up into tens, hundreds, or thousands of fragments. The fragments are
much denser (approximately 103−104cm−3). so that now masses in the range
of a few solar masses can become unstable.

2.2 Thermal instability

In deriving eq. (6), an isothermal gas and only thermal pressure were as-
sumed. This means that the local pressure and density are connected through

p = αρ . (8)

Magnetic or turbulent pressure were neglected. The situation becomes much
more complex if the transport of energy is included. Under interstellar con-
ditions, the thermal pressure is given by the ideal gas equation

p =
kB

µ
ρT . (9)

Here, µ is the mean molecular mass and kB is the Boltzmann constant. Eq.
(9) is a very good approximation, because even in the densest regions of the
interstellar medium the particle number density only reaches values as high
as 105cm−3. To obtain the local gas temperature T , the thermal balance
equation must be solved:

Γ (Jλ, ρ, T ) = Λ(Jλ, ρ, T ) , (10)

where Jλ is the angle averaged spectral intensity of the local radiation field, Γ
is the local heating and Λ is the local cooling rate. The by far most important
energy transport mechanism in interstellar molecular clouds is the transport
of energy by radiation. Hence, the cooling and the heating rate are both
sensitive functions of the intensity of the radiation field. The gas is mainly
heated by ionizing FUV photons and deeper in the cloud by Cosmic rays.
Cooling comes from low-density, sub-thermal collisions. For an optically thin
cloud1 of neutral hydrogen gas, the heating rate is proportional to the density
of the gas, whereas the cooling rate is roughly proportional to the square

1Every emitted photon can leave the cloud without being reabsorbed.



of the density. As a consequence, the cloud cannot only become thermally
unstable (the pressure drops with increasing density), but also interstellar
gas in thermal balance can coexist at the same pressure with two different
temperature/density combinations.

Under the assumption of an optically thin cloud (every emitted photon
can leave the cloud without being reabsorbed) a critical wave number similar
to eq. (6) can be obtained:

c2sk
2
c = 4πGρ/

[
1 +

d lnT

d lnρ
− d lnµ

d ln ρ

]
(11)

with T being the kinetic gas temperature and µ the mean molecular mass
of the gas. Again, only thermal pressure is accounted for. According to eq.
(11), the critical wavelength 2π/kc is always smaller than the classical Jeans
length λJ under interstellar conditions. If the term in brackets is negative,
all perturbations are instable. This means, that an interstellar cloud can
be destabilized by thermal effects as well as by the formation of molecules
(increasing µ). However, since most of the energy is transported in a few
molecular lines only, astrophysical clouds cannot be assumed to be optically
thin in general. Hence, a detailed study of the radiative transfer within the
cloud to determine the local heating and cooling rates of the gas is needed.
In the next section, we want to discuss some basic radiative transfer effects
on the thermal/gravitational stability of an interstellar molecular cloud.

2.3 Stochastic radiative transfer

Stochastic description of a turbulent velocity field There are two ba-
sic problems involved with the quantitative discussion of radiative transfer
effects in molecular clouds. One is that in general the molecular gas is not in
local thermal equilibrium (NLTE). This means that the molecular occupation
numbers are not given by a Boltzmann distribution. The other is that the
line broadening mechanism has to be known in detail. Due to the low density
in the interstellar medium, Doppler broadening is by far the most important
broadening mechanism. In most cases observed line widths are considerably
larger than the thermal width. This indicates that hydrodynamic motions are
present in the cloud. In principle, the basic magnetohydrodynamic equations
have to be solved self-consistently with the radiative transport equation and
the rate equation which determine the molecular occupation numbers. How-
ever, the numerical effort would be immense. Furthermore, the proper initial
conditions are not known. Motivated by this, we use an approach which de-
scribes distinct physical parameters of the cloud in a statistical sense only.
This approach has many applications. To this end, we focused our efforts
on the problem of radiative transfer in a medium with an inhomogeneous
stochastic density and velocity distribution (e.g. Hegmann & Kegel 2000,
Hegmann & Kegel 2003, Hegmann et al. 2005). In the following we assume a



turbulent velocity field which can be described in terms of its stochastic prop-
erties. This means that we must specify the functional form of the multipoint
probability distributions. Following Gail et al. (1974), we assume a Markovian
type structure for the velocity field along each line of sight. In this approxi-
mation only two-point correlations are taken into account, and the stochastic
velocity field is completely defined by specifying the one-point distribution of
the velocity and the corresponding two-point correlation function. We con-
sider the one-point distribution of v (the turbulent velocity component along
the line of sight) to be Gaussian

W (v) =
1√
2πσ

exp

(
− v2

2σ2

)
(12)

and the two-point correlation function to be exponential

f(∆s) =
〈v(s)v(s +∆s)〉

σ2
= exp

(
−|∆s|

ℓ

)
. (13)

Here, s is the spatial coordinate along the line of sight, and σ2 and ℓ are the
mean quadratic turbulent velocity and the correlation length of the velocity
field, respectively. The correlation length ℓ defines the length scale of the
stochastic velocity variation. Since the spatial power spectrum of the velocity
field is the Fourier transform of the correlation function, eq. (13) implies a
one-dimensional power spectrum

P (k) ∝ ℓ

1 + ℓ2k2
(14)

which is well approximated by a power law for ℓ2k2 ≫ 1.
This stochastic process can also be described by the following Langevin

equation:
dv

ds
= −v

ℓ
+

σ√
ℓ
Γ (s) , (15)

where Γ (s) is the random noise or Langevin force.

The generalized radiative transfer equation If the physical state of
the medium is known, the spectral intensity of the radiation field can be
determined by the ordinary radiative transfer equation:

dIν
ds

= −κνIν + εν = −κν (Iν − Sν) . (16)

Here, Iν is the specific intensity at frequency ν, κν the absorption coefficient,
εν the emissivity and Sν the source function. In the case of a local thermal
equilibrium Sν is given by the Planck function Bν . Both, the emission and the
absorption coefficient are a sensitive function of the density, the temperature,



the chemical abundances, the velocity and even of the angle averaged intensity
Jν . However, if we describe the velocity by a stochastic ansatz, eq. (16) has to
be replaced. Due to the stochastic nature of the underlying velocity field, the
intensity of the radiation field becomes a stochastic variable, too. It can be
shown that the Langevin equation (15) together with the ordinary radiative
transport equation (16) lead to a generalized radiative transfer equation of
Fokker-Planck type:

∂qν
∂s

=
1

ℓ

(
−v ∂qν

∂v
+ σ2 ∂

2qν
∂v2

)
− κν (qν − Sν) . (17)

Here, qν(v, s) is the conditional intensity, that is the expectation value of the
intensity for a given velocity v at point s. By multiplying qν with the one-
point probability distribution W and integration over all velocities an overall
expectation value for the intensity can be obtained:

〈Iν〉 =

∫ +∞

−∞

qν(v)W (v) dv . (18)

From eq. (17) it becomes clear that the relevant parameter for the radiative
transfer is not the correlation length itself but the ratio of correlation length
to the mean free path of the photons

τℓ =
ℓ

〈lmfp〉
= ℓ 〈κν〉 . (19)

For a small τℓ, the generalized radiative transfer equation is dominated by the
stochastic first term on the right hand side of eq. (17), whereas the radiative
transfer becomes deterministic for τℓ ≫ 1.

Non-LTE line formation The source function Sν(v, s) and the absorption
coefficient κν(v, s) are given in the usual way by the occupation numbers
ni and nj corresponding to the transition considered. Since LTE cannot be
assumed in general, the occupation numbers are not given by a Boltzmann
distribution. They have to be determined self-consistently with the line in-
tensities from the rate equations. These summarize all processes populating
or depopulating the different quantum states:

∑

j 6=i

(nj(v) (Aij + Cij) − ni(v) (Aji + Cji)) +

∑

j 6=i

(
4 π

c
〈ΦijJ(v)〉 (nj(v)Bij − ni(v)Bji)

)
= 0 . (20)

Here, 〈ΦijJ(v)〉 is the mean and angle averaged value of the local radiation
field, weighted with the profile function of the local absorption coefficient. The



Aij and Bij are the Einstein coefficients for spontaneous and induced transi-
tions, while Cij denotes the probability for a collisional transition from state
j → i. Accordingly, the first row in eq. (20) accounts for spontaneous emission
and collision of the molecule considered with H2, whereas in the second row
induced emission processes are described. This system of rate equations has
to be solved simultaneously with the generalized radiative transfer equation
for every point in physical and velocity space.

2.4 On the cooling by CO

In the cold and dense interstellar clouds, cooling is dominated by the ro-
tational transitions of the abundant CO molecule and its isotopomers. CO
possesses a spectrum of lines due to the rotation of the molecule. The permit-
ted energy levels are approximately those allowed by quantum mechanics for
a rigid rotator, i.e. a linear molecule that does not change shape as it rotates

E = BJ (J + 1) , J = 0, 1, 2, . . . (21)

with the selection rule
∆J = ±1 .

The constant B is given by

B =
~

2Θ
, (22)

where Θ is the moment of inertia of the molecule. Thus the massive molecules
with large moments of intertia have closely spaced energy levels. For CO, the
constant B has the value 3.83 × 10−16erg. Since this energy is equivalent to
a temperature of only 2.77 K, the low rotational transitions of CO are easily
excited even for very low gas temperatures.

Of course H2 is by far more abundant, but its rotational transitions cannot
be excited in the cold parts of the interstellar medium. For H2, electric dipole
transitions are forbidden, because no dipole moment exists in the molecule
in this state. Transitions occur via electric quadrupole interaction, and only
∆J = ±2 transitions occur. The least energetic transition in H2, the excita-
tion J = 0 → J = 1, occurs at an energy equivalent to 510 K. We want now
to study the influence of radiative transfer effects on the radiative cooling by
CO.

The model As underlying cloud model, we use the model of a hydrostatic
isothermal sphere which is stabilized against gravitational collapse by thermal
and turbulent pressure. Although the concept of turbulent pressure is widely
used, one should keep in mind that the assumption of a turbulent pressure
of the form σ2 = (dpturb/dρ) implicitly assumes a small-scale and isotropic
turbulence. The existence of large scale modes, on the other hand, would be
more akin to ram pressure (locally anisotropic, with a well-defined direction)



than to isotropic, thermodynamic pressure. Under the assumptions made, the
fundamental equations determining the cloud structure are the hydrostatic
equation, the Poisson-equation in its integral representation and an equation
of state:

∂p

∂r
= −GM(r) ρ(r)

r2
(23)

∂M(r)

∂r
= 4 π r2 ρ(r) , (24)

p(r) = (
k T

m
+ σ2) ρ(r) , (25)

using the following abbreviations:

r distance from the cloud center
M(r) mass internal to the radius r
ρ(r) local mass density
p(r) local gas pressure
T kinetic gas temperature
σ mean turbulent velocity
m mean molecular mass
G gravitational constant .

Since an isothermal cloud can only be stable at non-zero external pressure,
we define the cloud radius RH2

to be the radius for which the local cloud
pressure equals the pressure of the mean interstellar medium pISM.

Of course, the isothermal equation of state (25) is a simplification. In a
more realistic cloud model, the thermal pressure is given by the ideal gas
equation, where the temperature follows from a thermal balance equation
(10). First results for such an improved model are given later.

Results Figure 3 shows the calculated cooling rates (expectation value)
normalized to the hydrogen number density as a function of the distance from
the cloud center for two different correlation lengths of the turbulent velocity
field and for the different rotational transitions of CO. It can be clearly seen
that the cooling by the low rotational transitions J = 1 → 0 and J = 2 → 1
rises steeply towards the boundary of the cloud, whereas the cooling rate
of the J = 4 → 3 transition becomes smaller. This can be explained as
follows: The model of an isothermal sphere implies that the density of the
gas drops strongly with increasing distance from the cloud center. On the
one hand, this decrease of the density and the spherical geometry lead to
an increased escape probability for the photons at the edge of the cloud.
As a consequence, the cooling rate increases. On the other hand, the higher
rotational levels are less effectively populated by collisions of CO with H2 for
low densities. This leads to a decrease of the cooling rates which becomes
more pronounced for the high rotational levels. The effects of the correlation



Fig. 3. Expectation value of the cooling rate as function of the distance from the
cloud center: ncen = 104cm−3, T = 10 K, σ/vtherm = 5, ℓ = 1016cm (dashed line)
and ℓ = 1017cm (solid line).

length on the process of line formation and therefore on the cooling rates
can be best seen for the J = 1 → 0 and J = 2 → 1 transitions. It can be
shown (e.g. Albrecht & Kegel 1987) that an effective absorption coefficient of
the turbulent medium becomes maximal for ℓ → 0. Consequently, the outer
layers of the cloud become optically more opaque with decreasing correlation
length ℓ. This can be seen in Figure 3 where the cooling rates are larger
for the smaller correlation length at the cloud’s boundary. In contrast, the
cooling rates drop with decreasing correlation length near the cloud center.
Here, photons escape hardly from the cloud for small ℓ. Along every line
of sight there is almost certainly a turbulence element with the appropriate
radial velocity to reabsorb the emitted photon.

Figure 4 gives the total energy loss added over all lines normalized to the
total number density of hydrogen molecules in the cloud as a function of the
central density of the model cloud. Evidently, the cooling rates of the higher
rotational transitions become dominant with increasing density, whereas the
cooling rates of the = 1 → 0 and J = 2 → 1 transitions decrease.



Fig. 4. Total cooling rate for different isothermal clouds as function of the central
hydrogen density. The gas temperature, the mean quadratic turbulent velocity and
the correlation length were kept constant: T = 10 K, σ/vtherm = 10 and ℓ = 1017cm.
The cooling rates are normalized to the total number of hydrogen moleculs.

3 The structure of photon dominated regions

Up to now we have concentrated on the dense and cool inner regions of
molecular clouds which are shielded against the interstellar UV radiation by
surrounding gas and dust. On the surface of the interstellar clouds even the
most simple molecules like CO or H2 are not stable, because they are rapidly
dissociated by the FUV photons (6 eV < hν < 13.6 eV) of the interstellar
radiation field. Such a region, the physical and chemical structure of which
is dominated by the FUV radiation field is called photon dominated region
(PDR). In general, PDRs include all interstellar regions where the gas is pre-
dominantly neutral but where FUV photons play a significant role in the
chemistry and/or heating. Therefore, an important key in understanding the
structure and evolution of PDRs is in understanding the transport of radia-
tion inside the medium. It has to be noted, that the radiative transfer leads
to a non-local coupling of the physical states within the interstellar medium.
Observations of PDRs with a high angular and spectral resolution indicate a
highly inhomogeneous structure down to the smallest accessible scales. Such
inhomogeneities have a profound impact on the radiative transfer, and, as



a consequence, on the chemical abundances and the local heating and cool-
ing rates. However, a self-consistent description of a PDR, including all the
small scale hydrodynamics, chemistry, and radiative transfer is far beyond
reach of todays super computers. Therefore, the aim of our current research
project is to analyze the influence of stochastic fluctuations of the density
and/or the FUV radiation field on the physical and chemical processes inside
a PDR. This requires a detailed study of the complex, non-linear interac-
tion between the radiative transfer, the chemical abundances and the local
thermal balance.

3.1 Numerical model

A numerical model of a PDR has at least to combine radiative transfer,
chemical kinetics and thermal balance. This means that the generalized ra-
diative transfer equation (17) and the thermal balance equation (10) have
to be solved self-consistently with the rate equations describing the chemical
reactions. Due to the very low densities prevailing in the interstellar medium
only two-body interactions have to be accounted for. So the chemical rate
system can be described by the following set of equations:

dni

dt
=
∑

r

∑

s

krsnrns +
∑

t

ζitnt − ni

(
ζi +

∑

q

nqkqi

)
, (26a)

where

krs rate coefficient for the reaction R + S → I + . . .
kqi rate coefficient for the desctructive reaction I + Q → . . .
ζ photodissociation+photoionization rate
ni number density of species i.

Since three-body collisions are negligible under interstellar conditions the
formation of even the simple molecules like CO becomes very complex. A
direct formation via two-body collisions of two neutral atoms like C+O → CO
is very unlikely, because the excess energy cannot by simply removed by a
third part and the timescale for a radiative transition is too large. At best,
only one in 105 collisions of C and O produces the molecule CO. So, molecules
can be build best via ion-molecule and neutral exchange reactions like:

O+ + H2 → OH + H

CH + O → CO + H .

However, to allow for reaction chains of the above type which build up the
most common molecules in the end, one molecule already existing is needed.
This molecule is H2 which is not generated in the gas phase but on the surface
of dust particles.
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Fig. 5. Calculated structure of a PDR as a function of the penetration depth into
the cloud. The illuminating source, the mean interstellar radiation field, is to the
left. The abundances are given relative to the total hydrogen number density.

Figure 5 illustrates the chemical structure of a plane parallel PDR by
giving the relative abundances of C+, C and CO as a function of the pen-
etration depth into the model cloud (cf. Röllig et al. 2002). We assumed a
kinetic equilibrium2 and determined the relative abundances from a chem-
ical network consisting of 38 different species formed and destroyed in 434
reactions. The PDR is illuminated from the left by the mean interstellar ra-
diation field and extends from the predominantly atomic surface region to
the point where almost all carbon is bound into CO. One of the difficulties
in calculating the chemical and thermal structure of a PDR arises from the
effect of self-shielding. Molecules already formed absorb UV photons which
are able to dissociate the respective molecule. In other words: they cast a
”shadow” into the cloud which enhances the further formation of the respec-
tive molecule. This effects becomes especially important for the formation of
key molecules like O2, H2 and CO. Our current research addresses the ques-
tion under which physical conditions an instability due to shadowing effects
could occur. Another difficulty concerns the effects of small-scale fluctuations
of the UV radiation field on the chemical network. As mentioned above, ob-

2For a kinetice equilibrium, dni/dt = 0 is assumed.



servations of PDRs reveal inhomogeneities down to the smallest accessible
scales. For a fixed point in space, the observed spatial fluctuations lead due
to hydrodynamic motions to temporal fluctuations in the radiation field. If
the time scale for the variation of the radiation field becomes comparable or
even smaller than the timescale for the chemical reactions, the assumption of
a kinetic equilibrium does not hold. Currently, we perform time dependent
calculations for a chemical network consisting of 38 different species in order
to study the influence of small scale fluctuations in the UV radiation field.

4 Radiative instability of dust formation

4.1 The instability

Woitke and collaborators (Woitke et al. 2000) identified an instability which
leads to a self-organized formation of structure inside a dust forming medium.
This instability is based on the strong non-local feedback of newly formed
dust on the temperature of the medium due to radiative transfer effects.
This feedback is especially strong, because both, the formation and growth
of dust are a sensitive function of the temperature. The whole feedback loop is
sketched in Figure 6: Let us start with a given configuration of the radiation
field and with a given degree of condensation fcond, that is with a given
amount of gas condensed into dust. A decrease of the mean spectral intensity
Jλ of the radiation field is accompanied by a respective decrease of the gas
and dust temperature. As a result the formation of dust is favored and the
degree of condensation increases. A larger degree of condensation causes a
larger opacity, which influences again the radiation field. It is quit obvious
that such a local enhancement of the opacity lead to the formation of shadows.
Inside the shadows the mean intensity decreases. So the sign of the overall
feedback loop becomes finally positive.

4.2 The model

In order to simulate the radiative instability and to study the related structure
formation process around a carbon rich AGB star, an axisymmetric numeri-
cal model was developed (Woitke & Niccolini 2005). It combines equilibrium
chemistry and modified classical nucleation theory and time- dependent dust
growth (Gail et al. 1984, Gail & Sedlmayr 1988) with frequency-dependent
radiative transfer. The absorption and scattering coefficients of the forming
dust grains are calculated by applying Mie-theory to spherical solid particles
with the optical data of amorphous carbon according to the resultant dust
grain size distribution function. All three components which enter the sim-
ulation, the radiation field, the gas phase and the dust are coupled. Both,
the gas and the dust are assumed to be in radiative equilibrium, hence the
temperature of the dust and the temperature of the gas are a direct result



Fig. 6. Radiative instability of dust formation. Jλ=mean spectral intensity, Tg=gas
temperature, Td=dust temperature, fcond=degree of condensation, κλ=spectral ex-
tinction coefficient.

of the radiative transfer part (non-locally coupling). On the other hand, the
dust component influences by absorption and scattering the radiation field.
The density distribution of the gas is assumed to be constant in time (no
hydrodynamics) and exponentially decreasing in the radial direction

nH(r) ∝ exp

(
− r

Hρ
+ δ(r)

)
, (27)

where Hρ is the density scale height and δ(r) denotes a small spatial density
perturbation of the order of 1.3% and 4.3%, respectively.

4.3 Results

The development of the forming dust shell in a sample model is presented in
Figure 7, showing the degree of condensation fcond(r, t) and the dust tem-
perature T (r, t). The initial state of the circumstellar envelope at t = 0 was
chosen to be dust-free. The denser regions close to the star begin to condense
first, because of the strong density dependence of the process of dust forma-
tion. Consequently, the spatial dust distribution at first resembles the slightly
inhomogeneous gas distribution in the circumstellar shell with a cutoff at the
inner edge as a consequence of the temperatures being too high for nucleation.
According to the different choices of the density inhomogeneities above and



below mid-plan, the resulting spatial variations in the degree of condensation
are larger above than below the mid-plane at early phases of the model. The
process of dust formation continues for a while in this way, until the first
cells close to the star become optically thick. Each optically thick cell casts
a shadow into the circumstellar envelope in which the temperatures decrease
by several 100 K, which improves the conditions for subsequent dust forma-
tion in these shadows. At the same time, scattering and re-emission from the
cells that have already condensed intensifies the radiation field in between.
The stellar flux finally escapes preferentially through the segments which are
still optically thin, thereby heating them up and worsening the conditions for
further dust formation there. These two opposing effects amplify the initial
spatial contrast of the degree of condensation introduced by the assumed den-
sity inhomogeneities. In the end, radially aligned, cool, linear dust structures,
henceforth called dust fingers have developed, which point towards the star
and are surrounded by warmer, almost dust-free regions at the inner edge of
the forming dust shell.

Apart from the self-organization of the dust in the angular direction, the
model shows the formation and evolution of a radial dust shell. In Figure 8,
the temporal evolution of the angle-averaged temperature and the degree of
condensation are shown. The effective formation of dust generally requires a
suitable combination of gas density and temperature, called the dust forma-
tion window (Gail & Sedlmayr 1998). Initially, favorable temperature condi-
tions for efficient nucleation are only present in a restricted radial zone close
to the star. However, as time passes, the dust shell becomes optically thick
which dams the outflowing radiation and leads to an increase of the temper-
atures inside the shell (radiative backwarming). Consequently, the zone of
effective dust formation shifts outward with increasing time. Moreover, the
temperatures at the inner edge of the shell temporarily exceed the sublima-
tion temperature, and the dust shell begins to re-evaporate from the inside.
The upper plot of Figure 8 shows that the temperature temporarily exceeds
its equilibrium value which is reached at the later stages. These two effects
result in an apparent motion of the dust shell, driven by dust formation at the
outer edge and dust evaporation at the inner edge of the shell. This wave-like
propagation of the dust-formation front can be denoted as chemical wave,
because it is solely based on chemical and radiative processes without bulk
velocity fields. Chemical waves are a well-known phenomenon in the labora-
tory, for example in reaction-diffusion systems, where front-like solutions of
the chemical concentrations may exist, sometimes radiatively controlled (e.g.
Schebesch & Engel 1999).
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Fig. 8. The chemical wave: formation and propagation of a dust shell via dust
formation at the outer edge and dust evaporation at the inner edge. The figure
shows the time evolution of the angle-averaged dust temperature (upper plot) and
degree of condensation ( lower plot). The quantities are shown at seven time-steps.
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Abstract. We analyze the elemental time scale of intracellular calcium dynamics.
It is determined by the time course of Ca2+ puffs, which represent the fundamental
quantum of Ca2+ release from intracellular storage compartments. Since Ca2+ puffs
are truly random, we propose a novel master equation and corresponding Fokker-
Planck equations. Our results demonstrate that puff initiation can be mapped to
an escape process. The stochastic fraction of puff periods is identified with mean
first passage times. We find that the discrete character of release sites represents
a necessary condition for puff initiation. A continuous modeling of the number of
open channels does not allow Ca2+ puffs in the relevant part of the parameter space.

1 Introduction

The unraveling of molecular interactions has been providing intriguing in-
sights into cellular organization during the last decades. On the one hand,
qualitative results showed connections between formerly unassociated reac-
tions. For instance, one of the molecular mechanisms that underlies cancer
was identified to play a central role in Alzheimer’s disease [2, 22]. On the
other hand, the ongoing improvement in experimental techniques allowed
quantitative investigations. They revealed that cells use a plethora of dif-
ferent amounts of molecules for a variety of tasks. Some pathways involve
macroscopically large numbers of chemical agents, whereas others are con-
trolled by only some tens of molecules. This discrepancy in the number of
reactants attributes a twin role to fluctuations. They can be neglected in
the former reactions, but play a pivotal role in the latter. Experiments on
gene expression demonstrated that fluctuations can decide upon the pheno-
type leading to population heterogeneity [19, 23]. For a general review on
intracellular noise, see [26].

Modeling intracellular phenomena therefore demands an a priori choice of
methods. As long as fluctuations are negligible, deterministic equations cor-
rectly capture the dynamics [10, 17]. However, these approaches break down
in the presence of noise. Comparisons between stochastic models and their
deterministic counterparts have revealed that noise can induce a dynamical
behavior that is not present in the absence of fluctuations. For instance, the



MinCDE system only oscillates if the experimentally observed small number
of interacting molecules is respected [16]. The deterministic equations decay
to a fixed point.

The above examples all have in common that the total number of interact-
ing molecules in the entire cell is small. However, fluctuations can also arise
due to cellular heterogeneity. Steep concentration gradients may create very
heterogeneous conditions within a single cell such that the conditions for a re-
action to occur are given in a small part of the cell only. Since these gradients
are typically transient we call this phenomenon dynamic compartmentaliza-
tion. The number of interacting molecules in such a dynamic compartment
may only be a tiny fraction of the molecules present in the whole cell. Then,
fluctuations remain large and cannot be neglected, although the total number
of molecules in the whole cell would allow for mean field behavior. That is
the case with intracellular Ca2+ dynamics. The dynamic compartment is a
single Ca2+ releasing channel cluster as is explained below.

The dynamics of the Ca2+ concentration in the cytosol of a cell is deter-
mined to a large degree by release and uptake of Ca2+ by intracellular storage
compartments, in particular the endoplasmic reticulum (ER). Release is con-
trolled by inositol-1,4,5-trisphosphate (IP3) receptor channels (IP3R). They
are arranged in clusters with a diameter of less than 100nm that comprise be-
tween 1 and 40 channels and that are randomly distributed on the membrane
of the ER with distances between 1-7 µm [21,30]. IP3Rs have the important
property that their open probability depends on the Ca2+ concentration in
the cytosol. The details of this dependency will be discussed in section 2. A
moderate increase in the cytosolic concentration - i.e. on the outside of the
storage compartment - increases the opening probability.

The notion of an open probability goes along with the generally stochas-
tic character of ion channels, i.e. a single IP3R channel opens and closes
randomly [14, 35]. Since the number of Ca2+ release channels per cluster is
small, fluctuations still prevail in a cluster [7]. They lead to random release
events called Ca2+ puffs. A puff is the spontaneous opening of channels of a
single cluster and represents the elemental event of Ca2+ liberation. Puffs last
from a few tens of milliseconds to a few hundred milliseconds and they cause
a huge but strongly localized concentration rise. Many puffs can cooperate
to build global phenomena covering the whole cell like waves of release or os-
cillations [6,21], i.e. puffs constitute the fundamental building block of Ca2+

signals. We illustrate this concept with the initiation and the spreading of a
Ca2+ wave. Assume that all channels are closed and the cell is in its resting
state. Fluctuations due to the random association and dissociation of Ca2+

and IP3 to the IP3Rs eventually lead to a Ca2+ puff. Ca2+ is liberated from
the ER and diffuses to the surrounding clusters. There, it causes an increase
of the open probability and may therefore induce channels of these clusters
to open. That gives rise to another Ca2+ puff and release has propagated
by one cluster distance. In that way a Ca2+ wave travels through the cell.



However, there is no guarantee that IP3R channels at neighboring clusters
open, because channel opening is a truly random event.

Indeed, fluctuations turned out to be necessary to observe any temporal
or spatial structures in intracellular Ca2+ dynamics. That role of fluctua-
tions has been established by two complementary approaches. On the one
hand, oscillations that agree with experimental findings in stochastic simula-
tions disappear in the deterministic limit of the simulated system [6]. On the
other hand, a bifurcation analysis of a deterministic model for a single IP3R
cluster has proofed that the local dynamics is non-oscillatory when realistic
Ca2+ fluxes and gradients are incorporated [31–33]. The loss of oscillations
results from the high Ca2+ concentrations at an open cluster. They lead to
a saturation of all Ca2+ regulating processes and hence do not permit Ca2+

oscillations in deterministic models. Fluctuations drive the channel dynamics
out of the saturated state and eventually reinstall oscillations. The strong
localization of the Ca2+ liberation and the entailing large gradients around
an open cluster create the dynamic compartmentalization mentioned above.
Since the volume of the elevated Ca2+ concentration as well as the number
of IP3Rs that experience this highly increased Ca2+ concentration is small,
fluctuations remain important.

Given the vital part of Ca2+ puffs in intracellular Ca2+ dynamics and
the importance of fluctuations, a stochastic description of a single cluster is
the focus of the present report. We will apply it to the initiation of Ca2+

puffs, which represents the first step for any Ca2+ pattern. Our findings
suggest that puff initiation can be mapped to an escape process from the
resting state towards the first open channel. The mean first passage time
corresponds to the stochastic part of the puff frequency. The mathematical
description has to account for the integer number of open channels per cluster.
A continuous Ca2+ model (using non-integer fractions of open channels) that
incorporates realistic fluxes does not permit Ca2+ puffs for parameter values
that agree with experimental data. The mean first passage times can be
represented as an infinite series of exponentials. However, already the first
terms in the expansion yield excellent convergence. That hints at a Poissonian
character of puff initiation. Although noise is intrinsically multiplicative for
intracellular Ca2+ dynamics, we provide evidence that additive noise may
serve as a reasonable approximation.

We will introduce a Ca2+ model for an IP3 receptor channel cluster in
the next section. It serves as input for a master equation in section 3, from
which we will derive two Fokker-Planck equations in section 4. Finally, we
will employ these equations to characterize the initiation of Ca2+ puffs.

2 Ca2+ model

The IP3 receptor channel is a tetramer the subunits of which have binding
sites for Ca2+ and IP3 . We implement a model for a single subunit that is



based on ideas of De Young’s and Keizer’s [5]. They assume a subunit to
possess three binding sites: an activating Ca2+ binding site, an inhibiting
Ca2+ binding site and an activating IP3 binding site. The occupation of
the binding sites controls the state of the subunit. When IP3 and Ca2+ are
bound to their activating binding sites, a subunit is in the activated state.
As soon as Ca2+ binds to the inhibiting binding site, a subunit is inhibited,
independent of the state of the other binding sites. It can only be activated
again upon dissociation of Ca2+ from the inhibiting binding site. Experiments
have indicated that an IP3R channel is conducting when at least 3 subunits
are activated [4, 35]. Random binding and unbinding of Ca2+ and IP3 and
therefore random state changes of the receptor are the source of stochasticity
of intracellular Ca2+ dynamics.

The number of open IP3R channels determines the Ca2+ flux from the
ER to the cytosol. Since the release channels are tightly packed within a
cluster, a relation between the number of channels in the cluster and cluster
size exists. Consequently, we can map the number of open channels to the
size of a conducting area (or volume) equal to the area occupied by all open
channels. A change in the number of releasing IP3R channels corresponds to
a modulation of the conducting area of a cluster. This region is usually not
connected. However, Swillens et al. showed that the spatial arrangement of
IP3R channels does not influence the Ca2+ dynamics at an open cluster [30].
Therefore, we map the area of all conducting release channels to an area of
the same size concentric to the cluster area. Let a denote the radius of this
region, N the total number of channels per cluster and no the number of
open channels, then a = a0

3
√
no/N . That reflects the above notion that the

volume of the conducting sphere corresponds to the volume that is occupied
by the fraction no/N of open channels. If no = 0 then a = 0, and a takes the
maximal value a0 if all N channels are open.

The deterministic dynamics of this cluster model has been investigated
in [32,33]. In addition to IP3 mediated Ca2+ liberation, we considered sarco-
endoplasmic reticulum calcium ATPase (SERCA) pumps, which transport
Ca2+ from the cytosol to the ER, and a leak flux. The stationary Ca2+

concentration profile that results from these three fluxes is

c(r)=

[
A(a)

sinh( k1r)

r
+ e1

]
Θ(a−r)+

[
B(a)

exp(−k2r)

r
+ e2

]
Θ(r−a) , (1)

where
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, (2a)
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, (2b)
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and e1 := (kl + kc)E/(kl + kp + kc), e2 := klE/(kl + kp). The constants kl,
kp and kc denote the leak flux coefficient, the strength of the SERCA pumps
and the channel flux coefficient, respectively. The diffusion coefficient is given
by D. E denotes the concentration of free Ca2+ in the ER.

Simulations have demonstrated that the Ca2+ concentration rapidly equi-
librates upon a change in the number of open channels [31]. Hence, we will
approximate the Ca2+ dynamics by its stationary value in the remainder of
this work. The number of open channels no uniquely determines the Ca2+

concentration according to equation (1) and a = a0
3
√
no/N . The focus of the

two subsequent sections is the calculation of no.

3 Master equation

The number of open channels no depends on the state of the subunits of the
IP3Rs. A state of a subunit is determined by the occupation of its binding
sites. The De Young Keizer (DK) model has three binding sites per subunit
and hence eight subunit states. We reduce these eight states in two steps to
three states. Firstly, we eliminate the IP3 dynamics adiabatically since IP3

binding and unbinding are much faster than the Ca2+ dynamics in the frame-
work of this model. The resulting four states are labeled by a binary pair ij,
where the first index represents the Ca2+ activating binding site and the sec-
ond the Ca2+ inhibiting binding site [6]. An index equals 1 when the binding
site is occupied and 0 otherwise, e.g. 10 corresponds to the activatable state
of a subunit. The second approximation uses the fact that we are interested in
activation starting from a stationary state. Transitions among the inhibited
states 11 and 01 have little impact on that activation process. Moreover, these
states are rarely populated during puff initiation. Consequently we lump the
two inhibited state into one state h̄. Figure 1 depicts the transition scheme
for this 3 state model. The transition rates follow from [5] and [6].

Fig. 1. Transition scheme for the three state model of the IP3 receptor. d5 = b5/a5 is
the dissociation constant for Ca2+ activation, b6 the dissociation rate of Ca2+ from
the inhibiting site averaged over both IP3 binding states. We denote the number of
subunits in one of the three states by n10, n00 and nh̄



Modeling the dynamics of an IP3R on the basis of its subunits leads to
various consequences for a cluster of N IP3Rs . As long as every IP3R is
treated individually and subunits are assigned to individual channels - as has
been done in stochastic simulations [6] - the state of the cluster is uniquely
determined by the states of its subunits. However, an approach based on a
population of subunits not grouped into individual channels is more suitable
for the derivation of master equations and Fokker-Planck equations which we
would like to use. That requires to determine the number of open channels
from the total number of activatable subunits in the subunit population.
We assume that the activatable subunits are randomly scattered across the
channels. The distribution of the n10 activatable subunits on the 4N subunits
of a cluster decides upon the value of no and hence the Ca2+ concentration.
We show in the appendix that this distribution is sharply peaked around its
mean value. Therefore, we set no = 〈no〉 = na. na is defined in equation (52).

The stochastic nature of Ca2+ release through IP3Rs entails that the
exact number of subunits in either of the three states 10, 00 or h̄ at a given
time t, i.e. the triplet (n10(t), nh̄(t), n00(t)), cannot be specified exactly any
more. On the contrary, only the probability P (n10, nh̄, n00; t) to find a certain
realization of (n10, nh̄, n00) at time t is accessible. Since the total number
of subunits is fixed, the values of n10 and nh̄ suffice to specify the triplet
(n10, nh̄, n00; t), so that P (n10, nh̄, n00; t) = P (n10, nh̄; t).

The probability P (n10, nh̄; t) changes in the time interval [t, t+dt] due to
two opposing processes: Being in (n10, nh̄) at time t, binding or unbinding of
Ca2+ alters n10 or nh̄ during dt and hence reduces P (n10, nh̄; t). On the other
hand, transition from states as (n10 + 1, nh̄) or (n10 − 1, nh̄) into (n10, nh̄)
increases P (n10, nh̄; t). Taking all possible reactions according to the figure
1 into account, the time evolution of P (n10, nh̄; t) is captured by the master
equation [34]

Ṗ (n10, nh̄; t) =

− [n10[b5+a6c(n10)] + nh̄b6]P (n10, nh̄; t)+[n10+1]b5P (n10+1, nh̄; t)

− nh̄b6P (n10, nh̄; t) + [hN−nh̄−n10+1]a6c(n10)P (n10, nh̄−1; t)

− [hN−n10−nh̄] [a6c(n10)+a5c(n10)]P (n10, nh̄; t)

+
b6c(n10−1)[nh̄+1]

c(n10−1) + d5
P (n10−1, nh̄+1; t) +

b6d5[nh̄+1]

c(n10) + d5
P (n10, nh̄+1; t)

+ [hN−nh̄−n10+1]a5c(n10−1)P (n10−1, nh̄; t)

+ [n10+1]a6c(n10+1)P (n10+1, nh̄−1; t) .

(4)

For instance being in (n10, nh̄), the term proportional to a6c in the first line
denotes a transition from 10 to h̄, so that the final state is (n10 − 1, nh̄ + 1).
The Ca2+ concentration is given by equation (1). The Ca2+ concentration
in the master equation depends on n10, which is indicated by the notation
c(n10). The radius a in equation (1) follows from the number of activatable
subunits as a = a0

3
√
na/N according to the preceding discussions.



The adiabatic elimination of the IP3 dynamics leads to non-integer values
for the number of open channels. That demands a careful interpretation of
the size of the conducting membrane patch, which was assumed to take only
discrete values due to the discreteness of no. One approach is to truncate the
rational values of no as [no]+, where [no]+ denotes the largest integer that
is less or equal no. It entails c = cb as long as n0 < 1, where cb denotes
the base level of the Ca2+ concentration. This approach favors the closed
configuration during puff initiation. In another approach we will keep the
non-integer value of no and consider a as a quasi continuous function. We
will discuss the effects of both approaches with respect to puff initiation.

Equation (4) is an accurate description of the stochastic dynamics repre-
sented by the scheme in Figure 1. We will derive approximations like Fokker-
Planck equations to calculate escape time characteristics from this master
equation.

4 Fokker-Planck equations

The discrete nature of master equations often impedes an analytic treatment.
That holds in particular for master equations with nonlinearities or artificial
boundary conditions. In these cases, several approximations have been put
forward [11, 12, 18, 25, 34]. Despite the plethora of methods, there is still no
consensus which approximation is best [9]. Each of them possesses advantages
and drawbacks, so that the problem at hand finally decides which procedure
to use. We will concentrate on van Kampen’s Ω expansion and a method that
is similar to a Kramers-Moyal expansion. The latter keeps the nonlinearities
of the master equation in the fluctuations, whereas the former approximates
them in a linear fashion. Moreover, van Kampens’s expansion is only valid
when the macroscopic equation displays a single stable fixed point.

The Ω expansion requires a small parameter 1/Ω in the master equation,
which for our purposes is the inverse number of subunits, i.e. Ω = 4N . The
systematic expansion of equation (4) in powers of Ω is based on the trans-
formations n10 = Ωφ(t) + Ω1/2ξ and nh̄ = Ωψ(t) + Ω1/2η. They decompose
the variables of the master equation into macroscopic parts (φ, ψ) and fluc-
tuations (ξ, η). Inserting this ansatz into equation (4), the first non vanishing
order of Ω yields the macroscopic equations

∂φ

∂t
= − φ(a5c+ a6c+ b5) + ψ

(
b6c

c+ d5
− a5c

)
+ a5c , (5a)

∂ψ

∂t
= − (a6c+ b6)ψ + a6c , (5b)

with c = c(a0
3
√
φa) and φa := r3φ3(4−3rφ). r denotes the fraction of subunits

in the state 10 that are activated: r := I/(I + d1). Equations (5) correspond
to the rate equations that are associated with the transition scheme in figure
1, when the conservation condition n10 + nh̄ + n00 = 4N is applied. Note



that φa is the continuous limit (N → ∞) of equation (52). Therefore, φa is
the probability that at least 3 of the 4 subunits of an IP3R are activated.
The solutions of equation (5) represent the deterministic part of the above
transformation of variables. They have the stationary values

φ̄ =
d6c

(c+ d5)(c+ d6)
, ψ̄ =

c

c+ d6
, (6)

which agree with results in [33]. d6 = d2(I + d1)/(I + d3) is an effective
dissociation constant. d2 denotes the dissociation constant for Ca2+ inhibition
when the IP3 binding site is ligated, d1 and d3 represent the dissociation
constants of IP3 binding [5].

The next order in Ω determines the fluctuations through the probability
P (n10, nh̄; t)
= P (Ωφ+Ω1/2ξ,Ωψ +Ω1/2η; t) =: Π(ξ, η; t) according to

∂Π

∂t
=−

[
g11

∂

∂ξ
+ g21

∂

∂η

]
(ξΠ) −

[
g12

∂

∂ξ
+ g22

∂

∂η

]
(ηΠ)

+
1

2

[
h11

∂2

∂ξ2
+ 2h12

∂2

∂η∂ξ
+ h22

∂2

∂η2

]
Π .

(7)

The matrices (gij) and (hij) with h12 = h21 are defined as

g11 := b6d5ψc
1/(c+ d5)

2−a6

(
c+ φc1

)
−b5−a5

(
c− (1 − φ− ψ)c1

)
, (8a)

g21 := a6c
1 − a6ψc

1 , (8b)

g12 := b6c/(c+ d5) − a5c , (8c)

g22 := − (a6c+ b6) , (8d)

and

h11 := a5(1 − ψ − φ)c+ b6ψc/(c+ d5) + a6φc+ b5φ , (9a)

h21 := −b6ψc/(c+ d5) − a6φc , (9b)

h22 := a6(1 − ψ)c+ b6ψ . (9c)

with

c1 :=
dc

da
(a0

3
√
φa)

a0

3
3

√
φ−2

a

[
18r4φ3 − 12r3φ3 − 12r3φ2

]
. (10)

Equation (10) arises from inserting equation (52) into a = ao
3
√
na/N and

then expanding c(a) in powers of Ω. The matrix (gij) coincides with the
matrix of the linearized macroscopic equations (5). The fluctuations enter
through the matrix (hij). The Hurwitz criterion [15] assures that this matrix
is positive semi definite, which means that equation (7) is a linear multivariate
Fokker-Planck equation.

The linear treatment of the noise in equation (7) has cast some doubt on
the validity of the Ω expansion. Therefore, a different class of Fokker-Planck



equations have been proposed that keep the nonlinearities of the master equa-
tion. Kramers and Moyal have treated the shifts n10 ± 1, nh̄ ± 1 of n10 and
nh̄ in equation (4) by means of a Taylor expansion [18, 25]. Following this
procedure and defining the new variables φ := n10/Ω and ψ := nh̄/Ω, we
obtain a Fokker-Planck equation for the probability p = p(φ, ψ, t):

∂p

∂t
=
∂

∂φ

[
φa6c+ φb5 − (1 − ψ − φ)a5c−

b6c

c+ d5
ψ

]
p

+
∂2

2Ω∂φ2

[
φa6c+ φb5 + (1 − ψ − φ)a5c+

b6c

c+ d5
ψ

]
p

+
∂

∂ψ

[
b6 − (1 − ψ)a6c

]
p+

∂2

2Ω∂ψ2

[
b6 + (1 − ψ)a6c

]
p

− ∂

Ω∂ψ∂φ

[
φa6c+

b6c

c+ d5

]
p .

(11)

The nonlinearities are introduced through c = c(a0
3
√
φa) with φa defined as

after equation (5).

Equations (4), (7) and (11) constitute the starting point for a systematic
study of puff frequencies. Given a configuration (n0

10, n
0
h̄
) at time t = 0, they

all yield the probability for a configuration (nt
10, n

t
h̄
) at time t > 0. If we

identify (n0
10, n

0
h̄
) with the resting state of a cluster and (nt

10, n
t
h̄
) with the

first channel opening, such a transition in the configuration space gives the
probability for a Ca2+ puff. Consequently, we interpret a puff as an escape
process from the state (n0

10, n
0
h̄
) to the state (nt

10, n
t
h̄
). Although the above

equations allow the calculation of this escape probability, no general solutions
are known for two dimensional escape processes (see [13] for a recent result).
However, the time scale separation between Ca2+ activation and Ca2+ inhibi-
tion leads to a reduction of the two dimensional equations to one dimension.
Since the inhibiting processes are much slower than binding and unbinding
of Ca2+ to the activating binding site, we assume that nh̄ remains unchanged
during the initiation of a puff. That is identical to setting nh̄ = const, and
the master equation simplifies to

Ṗ (n10) = − b6c(n10)

c(n10) + d5
nh̄P (n10) +

b6c(n10 − 1)

c(n10 − 1) + d5
nh̄P (n10 − 1)

− a6c(n10)n10P (n10) + a6(n10 + 1)c(n10 + 1)P (n10 + 1)

− (4N − n10 − nh̄)a5c(n10)P (n10) − b5n10P (n10)

+ (4N − n10 − nh̄ + 1)a5c(n10 − 1)P (n10 − 1)

+ b5(n10 + 1)P (n10 + 1) .

(12)

For a later analysis, it is convenient to rewrite equation (12) in the form

Ṗ (n10) = − (gn10
+ rn10

)P (n10)+gn10−1P (n10−1)+rn10+1P (n10 +1) (13)



with

gn10
=

b6c(n10)

c(n10) + d5
[Ωψ̄] + (4N − [Ωψ̄] − n10)a5c , (14a)

rn10
= b5n10 + a6c(n10)n10 , (14b)

and ψ̄ defined as in equation (6). From equation (12), we could again derive
Fokker-Planck equations in the same manner as before. However, a more
direct approach for the one dimensional Ω expansion is setting η equal to zero
in equation (7) due to nh̄ = const. Keeping only the derivatives with respect
to φ in equation (11) gives the nonlinear Fokker-Planck equation. Note that
these one dimensional equations are only valid during the initiation phase of
a puff, whereas equations (4), (7) and (11) capture the full time evolution.
Nevertheless, we will concentrate on equation (12) and the entailing Fokker-
Planck equations in the remainder of this work, because they admit analytic
solutions and provide far reaching insights into puff frequencies. The existence
of analytic solutions is one of the most prominent features of van Kampen’s
expansion, so that we will treat the corresponding Fokker-Planck equation
most generally in the next section.

5 Escape times

The initiation of a Ca2+ puff corresponds to an escape from the stationary
state to the first channel opening. That requires the definition of the bound-
aries of the phase space area from which the escape occurs. Since we restrict
the discussion to one dimension in phase space, the boundary consists of two
points. We see from equation (12) that the lower boundary d is at n10 = 0
and that it is reflecting. That agrees with the interpretation of n10 as the
number of activatable subunits, which is always positive. The value of the
upper boundary b is chosen such that the number of open channels no = 1.
The upper boundary corresponds to the escape site, so that the boundary
condition is of absorbing type [8].

The time t to reach the absorbing boundary is a stochastic variable. It
is described by the probability density ρ(t) i.e. ρ(t)dt is the probability that
the stochastic process reaches b between t and t+ dt. ρ is most conveniently
computed from G(x, t) = 1 −

∫ t

0 ρ(x, τ)dτ , which represents the probability
that d ≤ n10 < b at time t when it started at x = n0

10 at t = 0. The
time evolution of G is governed by L̃, which is the adjoint of the Fokker-
Planck operator L [8]. Up to now, no general solution has been obtained
for arbitrary L. Yet, an analytic expression exists for G in the case of a
linear Fokker-Planck operator, e.g. van Kampen’s Ω expansion. Since the
following derivation always holds and is not restricted to the current problem,
we introduce new constants v and w. They are given by v = −g11 and w = h11

defined as in equations (8a) and (9a), respectively, in the present study. G



obeys the linear backward Fokker-Planck equation [8]:

∂G(x, t)

∂t
= −vx∂G(x, t)

∂x
+
w

2

∂2G(x, t)

∂x2
, v, w > 0 , (15)

with initial and boundary conditions

G(x, 0) =

{
1, d ≤ x ≤ b

0, else
,

∂G(d, t)

∂x
= 0 ∀t , G(b, t) = 0 ∀t . (16)

The initial condition states that d ≤ x < b at t = 0 with probability one.
The reflecting boundary condition at x = d in the adjoint Fokker-Planck
equation is expressed by a no-flux boundary condition. Setting G ≡ 0 at the
right boundary corresponds to an absorbing boundary. We solve equation
(15) with the ansatz G(x, t) = exp(−λt)u(x), λ ≥ 0 so that it reduces to the
ordinary differential equation

d2u

dx2
− 2vx

w

du

dx
+

2λ

w
u = 0 . (17)

Applying the transformation z := x2/4 we find for ū(z) := u(x)

z
d2ū

dz2
+

(
1

2
− 4vz

w

)
dū

dz
+

2λ

w
ū = 0 . (18)

It equals Kummer’s equation for ũ(z̃) := ū(z) with z̃ := 4vz/w

z̃
d2ũ

dz̃2
+

(
1

2
− z̃

)
dũ

dz̃
+

λ

2v
ũ = 0 . (19)

Two independent solutions of equation (17) are [1]

u1(x) := M

(
− λ

2v
,
1

2
,
vx2

w

)
, u2(x) := xM

(
1

2
− λ

2v
,
3

2
,
vx2

w

)
. (20)

M designates the confluent hypergeometric function

M(a, b, x) :=

∞∑

k=0

(a)k

(b)k

xk

k!
, (21)

where (a)0 := 1 and (a)k := a(a+ 1) . . . (a+ k− 1). The boundary condition
at n10 = b entails that a solution of equation (17) is

v(x) := C1

[
u1(x) −

u1(b)

u2(b)
u2(x)

]
= u1(x) −

u1(b)

u2(b)
u2(x) . (22)

Without loss of generality we set C1 = 1 because it merely serves as normal-
ization. The second boundary condition fixes the still unknown eigenvalues



λ. They constitute an infinite countable set {λn} due to the finiteness of d
and b. Therefore, the general solution of equation (15) can be expressed as

G(x, t) =

∞∑

n=0

an exp(−λnt)vn(x) . (23)

The subscript of vn(x) indicates that equation (22) has to be evaluated at
λ = λn (see equation (20)). The coefficients an are determined by the initial
condition G(x, 0) which results in

an =

∫ b

d

r(x)vn(x)dx

/∫ b

d

r(x)v2
n(x)dx , r(x) :=

2

w
exp

(
− v

w
x2
)
. (24)

Here we used the orthogonality relation of the eigenfunctions vn(x):

∫ b

d

vn(x)vm(x)r(x)dx = δm,n

∫ b

d

v2
n(x)r(x)dx . (25)

The probability ρ(x, t) that the absorbing state is reached between t and t+dt
is readily computed from G(x, t) as ρ = −∂tG(x, t). Note that ρ is already
normalized due to the initial condition G(x, 0). Hence, the mean first passage
time T (x) equals

T (x) := 〈t(x)〉 =

∫ ∞

0

tρ(x, t)dt = −
∫ ∞

0

t∂tG(x, t)dt =
∑

n

anvn(x)

λn
. (26)

Equation (26) includes an infinite number of eigenvalues. We found that
the first three terms of the sum over n were sufficient to achieve results
indistinguishable from the exact results of equation (30).

An alternative approach to the mean first passage time follows from the
differential equation [8]

−vxdT (x)

dx
+
w

2

d2T (x)

dx2
= −1 , (27)

with the solution

T (x) =
2

w

∫ b

x

dy

h(y)

∫ y

d

h(z)dz , h(x) := exp
{
− v

w
(x2 − d2)

}
. (28)

Performing the z integration we find

T (x) =

√
π

vw

∫ b

x

dy exp
( v
w
y2
)

erf

(√
v

w
y

)

+
π

2v
erf

(√
v

w
d

){
erfi

(√
v

w
x

)
− erfi

(√
v

w
b

)}
.

(29)



The functions erf(x) and erfi(x) = erf(ix)/i denote the Gaussian error func-
tion and the imaginary Gaussian error function, respectively. The remaining
integral can be solved by series expansion so that the final expression for the
mean first passage time takes the form

T (x) =
b2

w
F2;2

(
1, 1;

3

2
, 2;

w

v
b2
)
− x2

w
F2;2

(
1, 1;

3

2
, 2;

w

v
x2

)

+
π

2v
erf

(√
v

w
d

){
erfi

(√
v

w
x

)
− erfi

(√
v

w
b

)}
.

(30)

We employed the generalized hypergeometric function

Fp;q(a1, . . . , ap; b1, . . . , bq;x) =

∞∑

l=0

(a1)l · · · (ap)l

(b1)l · · · (bq)l

xl

l!
, (31)

and used the identiy

j!

2j + 2

j∑

l=0

(−1)l

(2l+ 1)(j − l)!l!
=

1

2

(1)j(1)j(
3
2

)
j
(2)j

. (32)

We defer the proof to the appendix. The reason for presenting two methods
for evaluating the mean first passage time is based on their different scopes
of applicability. If we were only interested in T , then equation (30) would be
preferable because it requires less computation. However, we are limited to
the first moment [8]. The advantage of the first approach is that we obtain any
moment by one integration. Moreover, we have access to the time evolution
of the escape process which allows for a more detailed analysis.

The above results could only be obtained analytically because the cor-
responding Fokker-Planck equation was linear. In the case of a nonlinear
Fokker-Planck equation, all quantities have to be computed numerically. The
mean first passage time is evaluated best from a generalization of equation
(28). For L = −∂xA(x) + ∂2

xB(x)/2 we find [8]

T (x) = 2

∫ b

x

dy

h(y)

∫ y

d

h(z)

B(z)
dz , h(x) := exp

{∫ x

d

2A(y)

B(y)
dy
}
. (33)

The study of Fokker-Planck equations instead of master equations is often
motivated by easier treatment. That holds in particular in higher dimensions,
because a broader spectrum of tools is available for Fokker-Planck equations
than for master equations [27] and even analytical calculations may be pos-
sible as in the case of equation (12). That constitutes one of the reasons for
the derivations in section 4. However, Fokker-Planck equations always repre-
sent approximations. The only way to test their quality is a comparison with
results obtained from a master equation.

To this end, we consider a general one step process, to which class equation
(12) belongs. We assume that this jump process starts at a site m at t = 0.



Being at site n the particle hops to the right with a rate gn and to the left with
a rate rn, respectively. When it reaches the left boundary L, it is reflected.
Then, the mean first passage time to arrive at a site R > m reads [34]

TR,m =

R−1∑

i=m

(
1

gi
+

i∑

l=L+1

riri−1 · · · rl
gigi−1 · · · gl

1

gl−1

)
. (34)

That allows us to estimate the validity of the preceding approximations. The
transition rates ri and gi follow from equation (14) for the current investiga-
tion.

6 Results

6.1 Mean first passage time

The calculation of the mean first passage times according to equations (26),
(33) and (34) necessitates a further specification of the boundaries. Since we
consider a cluster with N channels, the upper boundary φb for the nonlinear
Fokker-Planck equation is given by the solution of (rφb)

3(4 − 3rφb) = 1/N .
The left hand side corresponds to the fraction of open channels as discussed
after equation (5). For the lower boundary, we have φ = 0. This value holds
for the master equation, too. The upper boundary for the master equation
is obtained by rounding off Ωφb to its nearest integer value [Ωφb]. Before
specifying the boundary conditions for van Kampen’s expansion we note that
it describes the strength of the fluctuations ξ around the fixed point φ̄. The
left boundary is imposed by n10 > 0, whereas the right boundary has to
satisfy φb = φ̄+Ω−1/2ξ. Consequently, the boundaries of ξ are −Ω1/2φ̄ and
(φb − φ̄)Ω1/2, respectively, with φ̄ given by equation (6).

The mean first passage time depends strongly on the Ca2+ concentration
(see e.g. equations (14) and (34)). The results presented throughout the sec-
tions 6.1 - 6.3 are calculated with a constant base level concentration. The
number of open channels is an integer variable and there is no Ca2+ chan-
nel flux before the first channel opens. The Ca2+ concentration remains at a
steady value until a Ca2+ puff occurs. That leads to c1 ≡ 0 in equation (10)
and to coefficients linear in φ and ψ in equation (11).

Figure 2 depicts the mean first passage time as a function of the IP3

concentration for two different values of the basal Ca2+ concentration.
The master equation and the two Fokker-Planck equations exhibit an

increase of the mean first passage time with decreasing IP3 concentration.
This increment diverges for lower values of the IP3 concentration.

The nonlinear Fokker-Planck equation interpolates the master equation
very efficiently. The results agree well with experimental findings for puff peri-
ods, although the mean first passage time only constitutes its mean stochastic
fraction [21]. The discreteness of the master equation leads to discontinuities
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Fig. 2. Mean first passage time for cb = 50nM (left) and cb = 80nM (right) com-
puted from the master equation (solid), the Ω expansion (dashed) and the nonlinear
Fokker-Planck equation (dotted) for d1 = 0.13µM, d2 = 3µM, d3 = 0.9434µM, d4 =
0.4133µM, d5 = 0.24µM, a2 = a4 = 0.2 (µMs)−1 , a5 = 5 (µMs)−1 , N = 25. The
dots in the left panel represent the variance of the Ω expansion. The inset in the
right panel shows a blow up of the plot for large IP3 concentration.

in the mean first passage time. The plateaus correspond to ranges of φb that
are mapped to a single integer for the absorbing boundary of the master
equation. Whenever that integer increases by 1, a jump occurs in the mean
first passage time. Van Kampen’s expansion yields good results for higher
IP3 concentrations, but overestimates the escape times otherwise (figure 2).

Figure 3 depicts the influence of the base level on the mean first passage
time. The higher the basal concentration in this regime, the faster the first
channel opens. Van Kampen’s expansion improves with increasing base level
as a comparison between the two panels in figure 2 and the right panel of
figure 3 shows. The zigzag behavior of the relative difference τ := (TvK −
TME)/TME results from the discontinuities of TME , see figure 2. Additionally,
this quantifies the finding that the difference of the mean first passage time
between the master equation and the Ω expansion diminishes with increasing
IP3 concentration.

6.2 Role of fluctuations

The most important difference between the nonlinear Fokker-Planck equation
(11) and van Kampen’s expansion (7) is in the diffusion term. It is constant in
van Kampen’s expansion - describing additive noise - and linear in φ and ψ in
the nonlinear Fokker-Planck equation thus describing multiplicative noise. As
expected intuitively, the results in figure 2 show a better agreement between
the nonlinear Fokker-Planck equation and the master equation than between
van Kampen’s expansion and the master equation. However, van Kampen’s
expansion approximates the master equation results rather well for high IP3

and high base level of Ca2+ . That is quantified in figure 3. Consequently,
additive noise is probably a good approximation in these parameter areas.
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6.3 Distribution of first passage time

Van Kampen’s expansion allows a direct computation of the probability den-
sity of the first passage time ρ(0, t). ρ(0, t)dt is the probability that the ab-
sorbing boundary is reached between t and t+ dt. The starting point of the
escape process in the Ω expansion is ξ = 0. The IP3R cluster is exactly in
the macroscopic state φ̄ at t = 0, so that the noise vanishes at t = 0. The
results for ρ are depicted in figure 4. A convergence of the probability den-
sity according to equation (23) requires less than 10 eigenvalues. The curves
show the well known rising phase of ρ and the exponential decay. We find a
maximal probability that shifts toward shorter times for higher IP3 concen-
trations. The two graphs in figure 4 illustrate again the influence of the base
level. Lowering cb from 60nM to 40nM leads to an extreme broadening of the
probability distribution and hence to an increase of the mean first passage
time (see figure 3).

The probability density ρ permits an efficient computation of all moments
of t for the escape process. Since the eigenvalues λn and the coefficients an are
known, we immediately arrive at 〈tm〉 =

∑
nm!anλ

−m
n in analogy to equation

(26) due to vn(0) = 1 for all n. The dots in figure 2 depict the results for
the variance. The first six eigenvalues suffice for an excellent convergence.
That is a direct consequence of the spectrum of the backward Fokker-Planck
operator in equation (15).

Figure 5 shows the ratio of the first two eigenvalues λ1/λ0. λ1 is only a few
times larger than λ0 for large IP3 and d5. However, the ratio increases with
decreasing IP3 concentrations and spans more than one order of magnitude
for IP3 concentrations smaller than 1µM. Hence, already the second term in
the expansion (23) is considerably damped in the parameter range in which
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Fig. 4. Probability density ρ(0, t) for van Kampen’s expansion. Parameter values
as in figure 2 and I = 0.5µM. Left panel: cb = 0.06µM. Right panel: cb = 0.04µM.

we are interested (IP3 < 1µM). Since the eigenvalues constitute a strictly
increasing series, i.e. λi < λj for i < j, the subsequent terms in the expansion
decay even more rapidly. The prominent role of the first term is additionally
supported by the expansion coefficients ai. The ratio a1/a0 is depicted in the
right panel of figure 5. It decreases upon lowering the IP3 concentration and
tends to zero for very little concentrations. a1 is much smaller than a0 in
parameter ranges where λ1/λ0 ≫ 1 holds, i.e. where the second term of the
series in equation (23) decays much faster than the first one. Consequently,
higher terms only contribute marginally in this parameter regime. A detailed
analysis of the spectrum and further implications will be provided in an
upcoming report.
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(dotted), 0.183234µM (dashed) and 0.23234µM (chain-dotted). Insets show a blow-
up for small IP3 concentrations.



6.4 Continuous Ca2+ model

The results presented so far have been based on a discrete description of
the number of open channels. The most important consequence is that the
Ca2+ concentration remains constant as long as no channel opens. In the
past, investigations on stochastic properties of IP3R clusters often employed
a continuous model of the ratio of open channels [24,28,29]. In these models,
the Ca2+ concentration changes even for fractions of open channels corre-
sponding to less than one channel. Therefore, we have analyzed the impact
of a continuously modulated number of open channels on the mean first pas-
sage time. The nullclines of the deterministic dynamics for such an ansatz
with the same parameter values as before are displayed in the left panel of
figure 6. There is only one stationary state, which is linearly stable for all
IP3 concentrations. A prerequisite for a puff is that a sufficient number of
subunits can be activated during the escape process from this fixed point.
The value of ψ indicates that a large fraction of subunits is inhibited at al-
ready moderate IP3 concentrations. It turns out that the remaining fraction
of subunits is too low to induce a Ca2+ puff. The high degree of inhibition
results from the large Ca2+ fluxes that occur at an open cluster [31]. These
fluxes entail Ca2+ concentrations already in the µM range for sizes of the con-
ducting area that are much smaller than that of a single channel. Since these
concentrations exceed the dissociation constants for inhibition, most of the
subunits are inhibited. Lowering the IP3 concentration does not invoke puffs,
either. Although the fraction of inhibited subunits diminishes, the number of
subunits that can be activated decreases as well.
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Fig. 6. Nullclines of equation (5). Parameter values as in figure 3 and kl =
0.002s−1 , kc = 34500s−1 , kp = 80s−1, E = 750µM, a0 = 0.03µm, D = 40µm2s−1,
d5 = 0.1646µM, I = 0.06µM (left panel), d5 = 1.6468µM, I = 0.053µM (right
panel).

We compensate for the elevated Ca2+ concentrations with an increase in
the dissociation constant for Ca2+ activation, d5. The ensuing nullclines are



depicted in the right panel of figure 6. The left stationary state is linearly
stable and corresponds to a low degree of inhibition. The motion of φ in
phase space proceeds along an almost horizontal line through this fixed point
during puff initiation. These dynamics are bistable as the potential in figure
7 highlights. A Ca2+ puff parallels an escape process from the left well over
the barrier to the first channel opening.

The time for such an escape process depends on the position of the ab-
sorbing boundary with respect to the barrier of the potential. Figure 7 shows
the mean first passage time in dependence on the location φ of this boundary.
φ varies from the value of the potential maximum (see inset) to the value of
the first channel opening φb (see section 6.1). The steep increase of T for small
φ reflects the influence of the left well. As long as the absorbing boundary is
close to the maximum of the potential, reentrance in the left well is possible.
That becomes less dominant with increasing φ, so that the mean first passage
time reaches the plateau. For the upper range of IP3 concentrations in figure
7, the value of the plateau equals the mean first passage time. Consequently,
the time scale of the puff is set by the properties of the left well. The strong
increase of the mean first passage time for smaller IP3 concentrations is due
to two reasons. On the one hand, the left well of the bistable potential be-
comes broader and deeper with lower values of I. On the other hand, the
absorbing boundary increases in a disproportionally high manner and moves
higher on the right branch of the potential.
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Fig. 7. Left: Potential U(φ) for I = 0.0483µM. The inset depicts an enlarged view
for φ ≈ 0. Note the difference in scale for the axis. Right (Color): Mean first
passage time computed from the master equation (solid lines) and the nonlinear
Fokker-Planck equation (dotted lines) for I = 0.0553µM (black), 0.0513µM (red),
0.0473µM (green) and 0.0433µM (blue) in dependence on the position of the ab-
sorbing boundary φ. Parameter values as in figure 6, right panel.

We exclude van Kampen’s expansion in the above analysis, because its va-
lidity requires a single stationary state throughout the stochastic motion [34].
In contrast to a constant Ca2+ concentration, the nonlinear Fokker-Planck



equation underestimates the results of the master equation. Nevertheless, the
results in figure 7, which correspond to the stochastic fraction of the puff fre-
quency, are in the same range as experimentally determined puff periods [21].

7 Discussion

We have derived a master equation and two Fokker-Planck equations for
channel cluster behavior in IP3 mediated Ca2+ dynamics. Among the differ-
ent approaches to approximate a master equation by a Fokker-Planck equa-
tion we have chosen van Kampen’s Ω expansion and an ansatz based on
the Kramers-Moyal expansion. Master equations and corresponding Fokker-
Planck equations for intracellular Ca2+ dynamics have been investigated in
the past [24,28,29], but the study at hand is founded on different ideas. Most
of the previous contributions employ the Li-Rinzel model [20] for the dynam-
ics of a single subunit of an IP3 receptor. It describes the time evolution of
the fraction of subunits that are not inhibited yet, taking advantage of the
time scale separation between IP3 activation, Ca2+ activation and Ca2+ in-
hibition. We have used a state scheme for one subunit that only eliminates
the IP3 dynamics adiabatically. It focuses on Ca2+ activation, which is the
driving force behind puff initiation. Therefore, we consider Ca2+ activation
as the fluctuating variable, whereas Ca2+ inhibition is the random variable
in the Li-Rinzel model.

The Ca2+ concentration plays a pivotal role in the initiation of Ca2+ puffs.
On the one hand, it fixes the resting state of a cluster, i.e. the starting point of
the escape process. On the other hand, it determines the transition rates. The
present work has demonstrated that the Ca2+ concentration needs to stay at
base level until the first channel opens. Theory provides Ca2+ puffs that are in
agreement with experimental results [21] at physiological parameter values
only if the Ca2+ concentration remains constant during the entire escape
process. These findings underline the discrete character of IP3R channels in
a cluster [32, 33].

We use a realistic value for the channel flux constant kc in difference to
earlier studies [24,28,29]. That value is based on detailed simulations [31] and
leads to Ca2+ concentrations 2-3 orders of magnitude larger than base level
at an open channel. That causes models with a continuous number of open
channels to fail. The non-vanishing Ca2+ flux at fractions of open channels
smaller than 1 resulted in highly elevated Ca2+ concentrations at a cluster due
to the large flux density [31]. In turn, that induced a high degree of inhibition.
Decreasing the IP3 concentration reduced the level of inhibition, but the
number of subunits that could be activated decreased, too. The lack of Ca2+

puffs was resolved by increasing the dissociation constant for Ca2+ activation
d5. The ensuing mean first passage times again complied with experimental
results, but at unphysiological values of d5. These results demonstrate that
parameter values may decide upon the underlying mechanisms. The large



Ca2+ fluxes demand a discrete modeling of the Ca2+ release channels. This
discrete modelling is one of the aspects of this study setting it apart from
previous investigations of stochastic cluster dynamics [24, 28].

At a constant Ca2+ concentration, the main difference between van Kam-
pen’s expansion and the nonlinear Fokker-Planck equation is in the character
of fluctuations. They correspond to additive noise for the Ω expansion and to
multiplicative noise in the latter approach. Although the noise is intrinsically
multiplicative, van Kampen’s expansion provides a reasonable approxima-
tion, which improves with increasing base level and growing IP3 concentra-
tion. It opens up the opportunity for further studies since the Ω expansion
is the only method that yields analytic expressions for the probability den-
sity and all higher moments. That distinguishes it from the master equation
and the nonlinear Fokker-Planck equation, for which only the first moment
is directly accessible.

The dependencies of the mean first passage time on the Ca2+ concentra-
tion as well as on the IP3 concentration comply with physiological findings.
An increase of the basal Ca2+ concentration enhances the open probability
of the IP3R channel [4]. Consequently, the mean first passage time is to de-
crease with growing Ca2+ concentration. Our results fully agree with this
activating role of Ca2+ (see figure 3). The same tendency was observed when
we increased the IP3 concentration, which agrees with the activating role of
IP3.

The present study has provided a framework for a quantitative determi-
nation of Ca2+ puff frequencies. The mean first passage times correspond to
the stochastic fraction of the inter-puff interval, which is governed by the
activation of the IP3Rs. The second contribution to the inter-puff interval
is a deterministic part controlled by puff duration, inhibition and recovery
from it. Taking into account that Ca2+ puffs represent the fundamental build-
ing blocks of global Ca2+ patterns, our calculations may serve as a starting
point to compute periods of Ca2+ waves. Experiments and theoretical stud-
ies suggest that the initiation of Ca2+ waves occurs by a nucleation process.
Therefore, knowledge of the frequency of Ca2+ puffs is the first step in the
calculation of wave frequencies and leads to a deeper understanding of intra-
cellular Ca2+ dynamics.

8 Appendix A: Combinatorics for subunits

Measurements on the IP3 receptor have revealed that a minimum number
of subunits hm needs to be activated for the channel to open [4]. A sin-
gle IP3R possesses a non zero open probability only if at least hm subunits
are in the state 10. Activation in the cell occurs of course for a subunit al-
ready associated with a certain receptor. With our model, the number of
open channels depends on the arrangement of n10 activatable subunits on
the receptors. Here, we derive the distribution of open channels resulting



from such a random scattering of activatable subunits and its properties,
whereas the mean was used earlier. To this aim we consider N receptors with
h subunits each. Let ni, i = 1, . . . , h denote the number of receptors with i
activatable subunits, then the number of possible configurations for a given
set {ni} := {n1, . . . , nh} that satisfies

n0 + . . .+ nh = N , n1 + 2n2 + . . .+ hnh = n10 (35)

is

M ({ni}) :=
N !

n0! · · ·nh!

(
h

0

)n0
(
h

1

)n1

. . .

(
h

h

)nh

. (36)

The fraction represents the number of permutations for the set {ni}, whereas
the binomial coefficients take into account the number of ways how to dis-
tribute i activatable subunits on a single receptor. The total number of con-
figurations is given by

Γ :=
∑⋆

{ni}

M({ni}) (37)

The asterisk indicates the summation with the restrictions of equation (35).
To evaluate equation (37), we introduce a generating function

f1(z) :=
∑′

{ni}

M({ni})zl , l = n1 + . . .+ hnh . (38)

The prime refers to the restriction n0 + . . . + nh = N . Therefore, the total
number of configurations follows from the generating function as

Γ =
1

n10!

dn10

dzn10
f1(z)

∣∣∣
z=0

. (39)

Due to the identity

f1(z) =

N∑′

ni=0

N !

n0! · · ·nh!

(
h

0

)n0
[(
h

1

)
z1

]n1

. . .

[(
h

h

)
zh

]nh

=

[(
h

0

)
+ . . .+

(
h

h

)
zh

]N

= (1 + z)
hN

=

hN∑

j=0

(
hN

j

)
zj ,

(40)

we finally arrive at Γ =
(

hN
n10

)
, which complies with the combinatorics of

choosing n10 subunits from a total of hN subunits. Consequently, the prob-
ability distribution of nj for a fixed value of j ∈ {0, . . . , h} is given by

p(nj) =
1

Γ

∑⋆

{ni}
i6=j

N !

n0! · · ·nh!

(
h

0

)n0
(
h

1

)n1

. . .

(
h

h

)nh

=
1

Γ

(
N

nj

)(
h

j

)nj ∑⋆

{ni}
i6=j

(N − nj)!

h∏

l=0
l 6=j

1

nl!

(
h

l

)nl

.

(41)



Equation (41) is most conveniently computed as

p(nj) =
1

Γ

(
N

nj

)(
h

j

)nj 1

n10!

dn10

dzn10
f2(z)

∣∣∣
z=0

, (42)

where we used the generating function

f2(z) :=
∑′

{ni}
i6=j

Ñ !
h∏

l=0
l 6=j

1

nl!

[(
h

l

)
zl

]nl

=

Ñ∑

i=0

hi∑

l=0

(
Ñ

i

)(
hi

l

)[
−
(
h

j

)]Ñ−i

zl+j(Ñ−i) .

(43)

Here, the prime denotes the restriction

n0 + . . .+ nj−1 + nj+1 + · · · + nh = N − nj =: Ñ . (44)

In the case j = 0 the derivatives in equation (42) can be performed explicitly,
so that

p(n0) =
1

Γ

(
N

n0

) Ñ∑

j=0

(
Ñ

j

)(
jh

n10

)
(−1)Ñ−j . (45)

The above analysis remains valid, when we interchange the number of acti-
vatable subunits n10 and the number of the remaining Nh − n10 subunits.
Such a transition corresponds to the exchange of balls and voids in classical
combinatorics. In that picture, equation (45) would represent the probability
distribution of fully occupied receptors, i.e.

p(nh) =
1

Γ

(
N

nh

) Ñ∑

j=0

(
Ñ

j

)(
jh

Nh− n10

)
(−1)Ñ−j . (46)

Equation (46) arises from equation (45) by substituting n10 by Nh−n10 and
n0 by nh.

To gain further insight into the probability distributions we calculate the
first two moments. For the average we start with

〈nj〉 =
1

Γ

∑⋆

{ni}

njM ({ni}) , (47)

because a closed expression for the probability distribution is only available
for the two cases presented above. Defining the corresponding generating
function

f3(z) :=
1

Γ

∑′

{ni}

njM ({ni}) zl , l = n1 + . . .+ hnh , (48)



we find

〈nj〉 =
1

n10!

dn10

dzn10
f3(z)

∣∣∣
z=0

=
N

Γ

(
h

j

)(
h(N − 1)

n10 − j

)
. (49)

In the limit N → ∞, n10 → ∞ we recover the result from [3]. Analogously
evaluation of the second moments results in

〈nlnk〉 =
N(N − 1)

Γ

(
h

l

)(
h

k

)(
h(N − 2)

n10 − l − k

)
+δk,l

N

Γ

(
h

l

)(
h(N − 1)

n10 − l

)
. (50)

Applying these general expressions to IP3Rs requires values for h, hm and
N . The tetrameric structure of the receptor ensues h = 4. However, previous
results by different groups are based on h = 3. We therefore compute the
statistics for both cases. Experiments on a single channel have shown four
conductance levels, each a multiple of 20pS, with a predominance of opening
to the third level [4, 35]. Thus, we set hm = 3. The number of receptors in
a cluster has not been measured yet. We employ N = 25 following recent
estimates by Swillens and Dupont [30].
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Fig. 8. (Color) Probability distribution p(no) for no = n3, h = 3 (solid) and no =
n3 + n4, h = 4 (dotted) for N = 25 and different n10. Values of n10 are 25 (black),
50 (red), 60 (green) and 70 (blue).

The probability distributions p(n3 +n4) with h = 4 and p(n3) with h = 3
are depicted in figure 8. They both agree very well. This is also supported
by their mean and variance as shown in figure 9. In the left panel we also
include the position of the maxima of the distributions indicated by dots.
They closely follow the average. Due to the narrowness of the distributions
demonstrated by the small variance as well as the accordance between the
mean and the maximum we calculate the number of open channels nc from



the average for a given value of n10:

n(3)
a =Nr3

n10

3N

n10 − 1

3N − 1

n10 − 2

3N − 2
, (51)

n(3,4)
a =Nr3

n10

4N

n10 − 1

4N − 1

n10 − 2

4N − 2

[
n10 − 3

4N − 3
(4 − 3r) + 4

(
1 − n10

4N

)]
(52)

Here r := I/(I + d1) denotes the fraction of subunits in the activatable
state 10 that are activated. The subscripts (3) and (3, 4) indicate that we
used p(n3), h = 3 and p(n3 + n4), h = 4 for averaging, respectively. Note
that in the limit N → ∞, n10 → ∞ equations (51), (52) reduce to the well
known expressions of the deterministic description. All results in section 6
are based on equation (52), which can be further simplified by approximating
all denominators by 4N due to 4N ≫ 1.
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Fig. 9. Mean (left) and variance (right) of no for no = n3, h = 3 (solid) and
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9 Appendix B: Proof of equation (32)

This section deals with the proof of equation (32). It is based on the identity

j∑

k=0

(
j

k

)
(−1)k

2k + 1
=

22j (j!)
2

(2j + 1)!
, (53)

which we now proof. We transform the left hand side of equation (53) ac-
cording to

j∑

k=0

(
j

k

)
(−1)k

∫ 1

0

t2kdt =

∫ 1

0

j∑

k=0

(
j

k

)
(−t2)kdt =

∫ 1

0

(
1 − t2

)j
dt . (54)



It can be simplified with Euler’s Beta function B(z, w). From its definition

B(z, w) :=

∫ 1

0

tz−1(1 − t)w−1dt (55)

follows ∫ b

a

(t− a)z−1(b − t)w−1dt = (b − a)z+w−1B(z, w) . (56)

Hence we express the integral in equation (54) through

∫ 1

0

(
1 − t2

)j
dt =

1

2

∫ 1

−1

(t+ 1)j(1 − t)jdt = 22jB(j + 1, j + 1) . (57)

According to [1] the Beta function is related to the Gamma function Γ (z)
via B(z, w) = Γ (z)Γ (w)/Γ (z + w), so that we find

j∑

l=0

(
j

l

)
(−1)l

2l+ 1
= 22j Γ (j + 1)2

Γ (2j + 2)
=

22j (j!)2

(2j + 1)!
(58)

due to n! = Γ (n+ 1), which proofs equation (53). Expanding the right hand
side yields

22j (j!)
2

(2j + 1)!
=

2 · 1
2

· 2

3
· 2 · 2

4
· 2

5
· 2 · 3

6
· · · 2 · j

2j
· 2

2j + 1
j! =

j!(
3
2

)
j

. (59)

This proofs equation (32) when we use j! = (1)j .

References

1. M. Abramowitz and I. Stegun, editors. Handbook of mathematical functions.
Dover Publications, New York, 1974.

2. Jerry M. Adams and Suzanne Cory. The bcl-2 protein family: Arbiters of cell
survival. Science, 281(5381):1322–1326, 1998.

3. M. Bär, M. Falcke, H. Levine, and L. S. Tsimring. Discrete stochastic modeling
of calcium channel dynamics. Phys. Rev. Lett., 84:5664–5667, 2000.

4. I. Bezprozvanny, J. Watras, and B.E. Ehrlich. Bell-shaped calcium-response
curves of Ins(1,4,5)P3- and calcium-gated channels form endoplasmic reticulum
of cerebellum. Nature, 351:751–754, 1991.

5. G.W. De Young and J. Keizer. A single inositol 1,4,5-triphosphate-receptor-
based model for agonist-stimulated oscillations in Ca2+ concentration. Proc.
Natl. Acad. Sci. USA, 89:9895–9899, 1992.

6. M. Falcke. On the role of stochastic channel behavior in intracellular Ca2+

dynamics. Biophys. J., 84:42–56, 2003.
7. M. Falcke. Reading the pattern in living cells - the physics of Ca2+ signaling.

Advances in Physics, 53:255–440, 2004.



8. C.W Gardiner. Handbook of stochastic methods. Springer, Berlin, 3 edition,
2004.

9. M. Gitterman and G.H. Weiss. Some comments on approximations to the
master equation. Physica A, 170:503–510, 1991.

10. A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge
University Press, Cambridge, 1996.

11. H. Grabert, P. Hänggi, and I.Oppenheim. Fluctuations in reversible chemical
reactions. Physica, 117A:300–316, 1983.

12. P. Hänggi, H. Grabert, P. Talkner, and H. Thomas. Bistable systems: Maser
equation versus Fokker-Planck modelling. Phys. Rev. A, 29:371–378, 1984.

13. H. Henry and H. Levine. Wave nucleation in excitable systems in the low noise
limit. Phys. Rev. E, 68:031914–1–5, 2003.

14. B. Hille. Ion channels of excitable membranes. Sinauer Assoicates, Inc. Pub-
lishers, Sunderland, MA USA, 3rd edition, 2001.

15. Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, Cambridge, 1999.

16. M. Howard and A. D. Rutenberg. Pattern formation inside bacteria: Fluctu-
ations due to low copy number of proteins. Phys. Rev. Let., 90:128102–1–4,
2003.

17. J. Keener and J. Sneyd. Mathematical physiology. Springer, New York, 1998.
18. H.A. Kramers. Brownian motion in a field of force and the diffusion model of

chemical reactions. Physica, 7:284–304, 1940.
19. MD Levin, CJ Morton-Firth, WN Abouhamad, RB Bourret, and D Bray.

Origins of individual swimming behavior in bacteria. Biophysical Journal,
74(1):175–181, 1998.

20. Y. Li and J. Rinzel. Equations for InsP3 receptor-mediated [Ca2+]i oscillations
derived from a detailed kinetic model: A hodgkin-huxley like formalism. J.
theor. Biol., 166:461–473, 1994.

21. J.S. Marchant and I. Parker. Role of elementary Ca2+ puffs in generating
repetitive Ca2+ oscillations. EMBO J., 20:65–76, 2001.

22. Mark P. Mattson. Pathways towards and away from alzheimer’s disease. Nature,
430(7000):631–639, 2004.

23. Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene expres-
sion. Proceedings of the National Academy of Sciences, 94(3):814–819, 1997.

24. L. Meinhold and L. Schimansky-Geier. Analytical description of stochastic
calcium-signal periodicity. Phys. Rev. E, 66:050901(R)–1–4, 2002.

25. J.E. Moyal. Stochastic processes and statistical physics. J. Roy. Stat. Soc. B,
11:150–210, 1949.

26. Christopher V. Rao, Denise M. Wolf, and Adam P. Arkin. Control, exploitation
and tolerance of intracellular noise. Nature, 420:231–237, 2002.

27. H. Risken. The Fokker-Planck equation. Springer, Berlin, 1984.
28. J. W. Shuai and P. Jung. Optimal intracellular calcium signalling. Phys. Rev.

Lett., 88(6):068102–1–4, 2002.
29. J. W. Shuai and P. Jung. Stochastic properties of Ca2+ release of inositol

1,4,5-trisphosphate receptor clusters. Biophys. J., 83(1):87–97, 2002.
30. S. Swillens, G. Dupont, L. Combettes, and P. Champeil. From calcium blips to

calcium puffs: Theoretical analysis of the requirements for interchannel com-
munication. Proc. Natl. Acad. Sci. USA, 96:13750–13755, 1999.

31. R. Thul and M. Falcke. Release currents of IP3 receptor channel clusters and
concentration profiles. Biophys. J., 86:2660–2673, 2004.



32. R. Thul and M. Falcke. Stability of membrane bound reactions. Phys. Rev.
Lett., 93:188103–1–4, 2004.

33. R. Thul and M. Falcke. Reactive clusters on a membrane. Phys. Biol., 2:51–59,
2005.

34. N.G. van Kampen. Stochastic processes in physics and chemistry. North-
Holland, Amsterdam, 2001.

35. J. Watras, I. Bezprozvanny, and B. Ehrlich. Inositol 1,4,5-trisphosphate-gated
channels in cerebellum: presence of multiple conductance states. J. Neurosci.,
11:3239–3245, 1991.



Continuous Wavelet Spectral Analysis of

Climate Dynamics

D. Maraun1 and Jürgen Kurths1

Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, D-14415
Potsdam, maraun@agnld.uni-potsdam.de

1 Introduction

Climate is a fascinating complex system. It spans a wide range of spatial
and temporal scales, reaching from the behaviour of a single cloud up to
ocean wide phenomena, from 60 day rythms of tropical rainfall to the thou-
sands of years lasting glacial cycles. These processes are subject to insta-
tionarities on a variety of scales: Although the equations describing the El
Niño/Southern Oscillation (ENSO) phenomenon are deterministic, changing
background conditions lead to a decadally changing behaviour. Although the
glacial cycles itself are triggered by mere orbital oscillations, the response
of the climate system induces complex nonlinear regime shifts on millenial
scales.

This vast spectral bandwidth illustrates the necessity of a reliable scale
and time resolved decomposition of available observations to separate and
describe single processes as individual parts of the whole system. Often, the
comlex interplay between climate subsystems plays an essential role and the
understanding of coupling mechanisms is of crucial importance for the study
and prediction of at first sight independent phenomena. Continuous wavelet
transformation (CWT) is the prototypic instrument to address these tasks: As
an important application, it transforms time series to the time/scale domain
for estimating the linear non-stationary spectral properties of the underlying
process.

The continuous wavelet spectra of paradigmatic processes as Gaussian
white noise [8] or fractional Gaussian noise [10] have been studied. The
method has been applied to various real world problems of physics, clima-
tology [6], life sciences [5] and other fields of research. Hudgins et. al. [9]
defined the wavelet cross spectrum to investigate scale and time dependent
linear relations between different processes. This measure found its applica-
tion e.g. in atmospheric turbulence [9], the analysis of time varying relations
between El Niño/Southern Oscillation and the Indian monsoon [16] as well
as interrelations of business cycles from different national economies [3].

It was the merit of Torrence and Compo [15] to place continuous wavelet
spectral analysis into the framework of statistical data analysis by formulating
pointwise significance tests against reasonable background spectra. However,
given a realization of white noise, large patches of spurious significance are



detected, making it - without further insight - impossible to judge which
features of an estimated wavelet spectrum differ from a background noise and
which are just artefacts. Furthermore, given realizations of two independent
processes, regions of spurious interrelations show up in the estimated wavelet
cross spectrum.

In this contribution we describe a framework of non-stationary Gaussian
processes defined in wavelet domain. These processes are characterized by
their time dependent spectral properties and thus can be utilized to investi-
gate the behavior of wavelet spectral estimators. To overcome the problems
arising from pointwise significance testing, we present an areal significance
test that takes advantage of basic properties of continuous wavelet trans-
form. Also, we discuss the pitfalls of cross wavelet analysis and advocate for
coherency analysis as an alternative.

2 Continuous Wavelet Transformation

CWT might be interpreted as a generalization of the Gabor transformation,
which in turn is the time resolved extension of Fourier transformation. For a
detailed discussion of CWT basics please refer to the comprehensive literature
[2,4,8]. Given a time series s(t), its wavelet transformation Wgs(b, a) at time
b and scale a (scale refers to 1/frequency) with respect to the chosen wavelet
g(t) is given as

Wgs(b, a) =

∫
dt

1√
a
ḡ

(
t− b

a

)
s(t) (1)

The L2-normalization 1/a
1
2 is chosen to ensure that the spectra defined in

Sec. 3.2 exhibit the same scale dependency as the corresponding estimated
spectra (Sec. 4.1). Being important for the further discussion, we recall the
covariances of CWT:

Wgs[t− b′](b, a) = Wgs[t](b− b′, a) (2)

Wgs[t/a
′](b, a) = Wgs[t](b/a

′, a/a′) (3)

Here, the brackets [.] denote dependencies of a variable, whereas (.) denote
dependencies of the resulting transformation.

For every wavelet in a strict sense, g(t), a reconstruction wavelet h(t)
fulfilling certain properties can be found [8]. Utilizing this, one can define an
inverse transformation from the positive half plane H to the real axis, i.e. the
time domain.

Mhr(t) =

∫

H

db da

a3/2
r(b, a)

1√
a
h

(
t− b

a

)
(4)

We point out that this operation from two dimensions to one dimension is
not the unique possible inverse transformation. Two properties of CWT will



appear to be important for our study: Not every function on the positive
half-plane is a wavelet transformation. Thus the successive transformation
of an arbitrary function in time and scale to the time domain and back to
the time/scale domain projects this function onto the subspace of all wavelet
transformations.

As a consequence, r(b, a) is a wavelet transformation, if and only if

r(b, a) =

∞∫

0

da′

a′

∞∫

0

db′
1

a′
Kg,h

(
b − b′

a′
,
a

a′

)
r(b′, a′) (5)

and Kg,h((b− b′)/a′, a/a′) = Wgh((b−b′)/a′) is called the reproducing kernel
[8]. The reproducing kernel of the Morlet wavelet is plotted in Fig. 1.

Fig. 1. Reproducing kernel of the Morlet wavelet for three different scales: (a) s=8,
(b) s=32 and (c) s=128. The width in time and in scale direction increases linearly
with scale (i.e. in scale direction it appears constant on a logarithmic scale axis)

The redundancies of CWT are reflected in internal correlations of any
wavelet transformation r(b, a). For Gaussian white noise η(t), these correla-



tions are given by the reproducing kernel [2, 8]:

C(b, a; b′, a′) = 〈Wgη[t](b, a),Wgη[t](b
′, a′)〉

∼ Kg,h

(
b− b′

a′
,
a

a′

)
(6)

These correlations constitute a fundamental difference of any time-frequency
(or scale) resolved analysis to time independent Fourier analysis, where neigh-
boring frequencies are asymptotically uncorrelated.

3 Stochastic Processes defined in Wavelet Domain

Stationary Gaussian processes are completely defined by their Fourier spec-
trum S(ω). A realization of any such process can be simulated by trans-
forming Gaussian white noise to the Fourier domain, multiplying it with a
function f(ω) and transforming it back to the time domain (see e.g. [14]).
The spectrum of this process is then given by |f(ω)|2 where f(ω) is called
a Fourier multiplier. We suggest to extend this concept to non-stationary
Gaussian processes using wavelet multipliers m(b, a) as a function of time
and scale.

3.1 Definitions

We define an equivalence class of non-stationary Gaussian processes in wavelet
domain by the wavelet multipliers m(b, a). Realizations are given as

s(t) = Mhm[b, a]Wgη(t) (7)

with driving Gaussian white noise η(t) ∼ N (0, 1) and 〈η(t1)η(t2)〉 = δ(t1−t2).
Following the projection property, the realization m[b, a]Wgη(t) in the

time/scale domain is in general not a wavelet transformation and thus re-
alizations s(t) in the time domain depend - usually weakly - on the chosen
wavelet g(t) and the reconstruction wavelet h(t) respectively. To ensure at
least asymptotic independence of the (reconstruction) wavelet, we define the
processes such that for smaller and smaller scales more and more reproducing
kernels fit into local structures of the process:

∂am(b, a) < O(a−1+ǫ)

∂bm(b, a) < O(a−1+ǫ)
(8)

m(b, a) ≡ m(a) defines a stationary Gaussian process in wavelet domain. In
this special case, the stationary Fourier spectrum exists with

f(ω) ≈ m

(
1

ω

)
C1 +

1

ω
m′

(
1

ω

)
C2, (9)



C1 and C2 being constants. As expected, the Fourier spectrum is given by
the wavelet spectrum plus a correction term. The latter depends on the lo-
calization of the used wavelets and on the slope of the wavelet spectrum. For
the asymptotic behavior defined in Eq. (8), it vanishes for high frequencies.
For details and derivations refer to [?].

3.2 Spectral Measures

For non-stationary processes, continuous wavelet spectral measures have been
defined as the expectation value of the corresponding estimator [11]. This
brings along certain difficulties: In reality, one usually observes only one real-
ization of a certain process, i.e. one has no access to the expectation value as
an ensemble average. Furthermore, the analysis is local in time and hence re-
placing the ensemble average by the time average is not valid. Using wavelet
multipliers one can define time dependent spectral measures, that elegantly
overcome these difficulties.

Given wavelet multipliers m(b, a), one can define a wavelet independent
spectrum

Sg(b, a) = |m(b, a)|2 (10)

The spectrum denotes the variance of the process at a certain time b and scale
a. With the chosen normalization of the wavelet transformation (Eq. (1)),
white noise is given by Sg(b, a) = |m(b, a)|2 = const ..

Given two wavelet multipliersm1(b, a) andm2(b, a), one can define a cross
spectrum

CS g(b, a) = m1(b, a)m
∗
2(b, a) (11)

In general, this is a complex function and may be decomposed into amplitude
and phase:

CS g(b, a) = A(b, a) exp(Φ(b, a)) (12)

The cross spectrum denotes the covarying power of two processes. Real-
izations of such two processes are constructed by the same driving noise
realization (plus some possible superimposed independent noise): s1(t) =
Mhm1[b, a]Wgη(t) and s2(t) = Mhm2[b, a]Wgη(t) respectively.

The coherency is defined as the normalized cross spectrum. Exhibiting
values between zero and one, it denotes the linear relationship between two
processes. The squared coherency reads

COH 2
g(b, a) =

|m1(b,a)m∗

2(b,a)|

[(|m1(b,a)+m1i(b,a)|2)(|m2(b,a)+m2i(b,a)|2)]1/2 . (13)

, where m1(b, a) and m2(b, a) denote the covarying part and a superimposed
independent contribution is given by m1i and m2i.



3.3 Example

We illustrate the concept with the following example: We define a linear
stochastic chirp given by

m(b, a) = exp

(
− (b− b0(a))

2

2σ2(a)

)
(14)

with b0(a) = β0 + c log(a) and σ(a) = σ0a
1−ǫ, i.e. every voice (stripe of

constant scale) is given by a Gaussian with time position and width varying
with scale. The power of 1 − ǫ ensures the process exhibiting the desired
asymptotical behavior. Figures 2(a) and (b) show the spectrum |m(b, a)| and
a typical realization respectively.

Time

(b)

0 50 100 150 200

Fig. 2. (color online) Stochastic chirp with ǫ = 0.3. (a) The spectrum |m(b, a)|2.
(b) A typical realization in the time domain, calculated with a Morlet Wavelet,
ω0 = 6.

4 Estimating Wavelet Spectra

4.1 Spectral Estimators

When estimating any continuous wavelet spectral measure, one has to re-
strict the analysis to a finite number of scales. The amount of independent
scale information is limited by the reproducing kernel (see Eq. (6)). Thus, a

reasonable choice of scales is aj = a02
i−1

Nvoice with i = 1...Nvoice ·Noctave . Here,



a0 corresponds to a frequency lower than or equal to the Nyquist frequency,
Noctave denotes the number of octaves (i.e. powers of two), and Nvoice the
number of voices (i.e. calculated scales) per octave. The matrix of calculated
wavelet spectral coefficients is called wavelet spectral matrix.

Given a realization s(t) of a non-stationary process, one can estimate its
spectrum (i.e. calculate the wavelet sample spectrum) using a wavelet g(t)
by

Ŝg(b, a) = A(|Wgs(t)|2), (15)

where A(.) denotes an averaging operator defined in Sec. 4.2. Following the
notation of Fourier analysis, without averaging, the wavelet spectral estimate
is either called scalogram or wavelet periodogram. Estimators of a process
property are marked by a hat .̂ .

Given realizations s1(t) and s2(t) of two processes, the cross spectrum
can be estimated as

ĈS g(b, a) = A(Wgs1(t)W
∗
g s2(t)), (16)

or decomposed into amplitude and phase,

ĈS g(b, a) = Â(b, a) exp(Φ̂(b, a)), (17)

whereas the squared coherency is estimated as

ĈOH
2

g(b, a) =
|ĈS g(b, a)|

(Ŝg,1(b, a)Ŝg,2(b, a))1/2
. (18)

For coherency, averaging is essential. Otherwise, one attempts to infer covary-
ing oscillations without observing the oscillations and consequently obtains
a trivial value of one for any two processes.

4.2 Variance of the Wavelet Sample Spectrum

As discussed in Sec. 3.1, we constructed the class of nonstationary Gaus-
sian processes such, that they become locally stationary for small scales (see
Eq. (8)). Hence, when the averaging kernel A(.) is adapted to the process
variability on each scale, it includes more and more reproducing kernels,
such that the variance of the spectral estimate vanishes in the limit of small
scales. Then, the following relation for the variance VarA(a) of the averaged
wavelet spectral estimate holds:

VarA(a) ∼ Var(a)a1−α, (19)

where Var(a) denotes the variance of the wavelet scalogram at each scale
and α describes the scaling of the averaging window. The factor a1 results
from the width of the reproducing kernel in smoothing direction. Figure 3
shows the variance of the averaged wavelet sample spectrum of white noise
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Fig. 3. Asymptotic behavior of the variance of the averaged wavelet sample spec-
trum of Gaussian white noise. Solid line: Estimation based on 1000 realizations,
dashed line: theoretically expected behavior.

(α = 0.75): The solid line depicts the variance estimated from an ensemble
of 1000 Gaussian chirps, the theoretically expected behavior is plotted as a
dashed line.

The prior discussion appears to be rather academic: In general, one does
not a priori know the asymptotical behavior for small scales of an observed
process. Also, finite sampling restrains the investigation of small scales. Fi-
nally, one often is interested in nonstationary behavior on scales large com-
pared to the sampling time.

In fact, retaining a scale independent variance appears to be a reason-
able choice. This might be accomplished by averaging the same amount of
independent information on every scale, i.e. by choosing the length of the
averaging kernel according to the reproducing kernel [11]:
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Fig. 4. Smoothing according to the reproducing kernel to provide a constant vari-
ance for all scales. (a) In scale direction, the length of the smoothing window stays
constant (for a logarithmic scale axis). (b) In time direction, the length of the
smoothing window increases linearly with scale.



• Averaging in scale direction should be done with a window exhibiting
constant length (for logarithmic scales), see Fig. 4(a). Half window length
is wa in the same units as Nvoice .

• Averaging in time direction should be done with a window exhibiting a
length proportional to scale, see Fig. 4(b). Half window length is wb · a.
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Fig. 5. Variance of the wavelet sample spectrum as a function of the length of an
averaging square window in scale (a) and time (b) direction. The graphs resemble
the shape of the reproducing kernel.

The (scale independent) variance as a function of the width of a square
averaging window is shown in Fig. 5. The graphs for averaging in scale as
well as in time direction resemble the shape of the reproducing kernel. An
averaging window short compared to the effective width of the reproducing
kernel includes only a minor part of independent information and thus fails
to notably reduce the variance.



4.3 Bias of the Wavelet Sample Spectrum

The bias of the estimated wavelet spectrum reads

Bias(Ŝg(b, a)) =

〈A( |WkMh︸ ︷︷ ︸
Ph→k

m(b, a)Wgη(t) |2 ) 〉 − |m(b, a)|2, (20)

where Wg and Mh denote the pair of wavelets used to simulate the process
and Wk the wavelet used for the estimation. For processes following Eq. (8),
this term vanishes for small scales [?]. For averaging on finite scales, one has
to consider the trade off between bias and variance.

4.4 Example

Fig. 6. (color online) Estimation of the stochastic chirp based on the realization in
Fig. 2(b). (a) the wavelet scalogram, i.e. the sample spectrum without averaging.
(b) Averaged sample spectrum with wa/Nvoice = 0.5. (c) Averaged sample spectrum
with wa/Nvoice = 0.5 and wb = 3. (d) the spectrum estimated as the mean of 1000
realizations.

We recall the example from Sec. 3.3. Figure 6(a) depicts the wavelet scalo-
gram of the realization shown in Fig. 2(b). It is easy to see, that a single re-
alization without averaging yields a rather insufficient estimation of the real
spectrum. Averaging, shown in (b) and (c), reduces the variance, but pro-
duces a bias. The estimation based on 1000 realizations (d) yields a pretty
accurate result of the underlying process.

5 Significance Testing

5.1 Sensitivity vs. Specificity

Accounting for its purpose, every significance test has to be designed indi-
vidually: A medical test should always warn the patient in case of a severe



disease; on the other hand, establishing a result by means of statistics, a test
should preferably reject false positive results. These antithetic demands are
represented by the terms of sensitivity and specificity:

Sensitivity =
NTP

NTP +NFN
(21)

Specificity =
NTN

NFP +NTN
(22)

Here,NTN ,NTP ,NFN andNFP refer to the numbers of true negative/positive
and false negative/positive results, respectively. Given a null hypothesis H0

and N applications of the test, where H0 is right in NR cases and wrong
in NW = N − NR cases. Then the sensitivity relates the number NTP of
true rejections of H0 to the total number of wrong H0, NW = NTP +NFN .
On the other hand, the specificity measures the number NTN of true accep-
tances of H0 in relation to the total number of right H0, NR = NFP +NTN .
A sensitive test rejects H0 in preferably every case it is wrong (low β-error),
whereas a specific test preferably only rejects H0 when it is definitely wrong
(low α-error). For finite data, no test can be perfectly sensitive and specific
simultaneously.

5.2 Pointwise Testing of the Wavelet Spectrum

To our knowledge, Torrence and Compo [15] were the first to establish sig-
nificance tests for wavelet spectral measures. They assumed a reasonable
background spectrum for the null hypothesis and tested for every point in
the time/scale plane separately (i.e. pointwise) whether the power exceeded
a certain critical value corresponding to the chosen significance level. Since
the critical values of the background model are difficult to be accessed ana-
lytically [11], they need to be estimated based on a parametric bootstrap:

• Choose a significance level 1 − α.

• Choose a reasonable model (e.g. an AR[1] process in case of climate data
following Hasselmann [7]) as null hypothesis H0 and fit it to the data.

• Estimate the (1 − α)-quantile Scrit (i.e. the critical value) of the corre-
sponding background spectrum by Monte Carlo simulations. Depending
on the chosen background model and the chosen normalization of the
spectral estimator, the critical value in general depends on scale.

• Check for every point in the wavelet domain, whether the estimated spec-
trum exceeds the corresponding critical value. The set of all pointwise
significant wavelet spectral coefficients is given as

Ppw = { (b, a) | Ŝg(b, a) > Scrit } (23)



5.3 Areal Testing of the Wavelet Spectrum

The concept of pointwise significance testing always leads to multiple testing:
Given a significance level 1 − α, a repetition of the test for N wavelet spec-
tral coefficients leads to, on an average, α ·N false positive results. For any
time/scale resolved analysis, a second problem comes into play: According
to the reproducing kernel Eq. (6), neighboring times and scales of a wavelet
transformation are correlated. Correspondingly, false positive results always
occur as contiguous patches. These spurious patches reflect oscillations, which
are randomly stable 1 for a short time.

For the interpretation of data from a process with unknown spectrum,
these effects mark a problem: Which of the patches detected in a pointwise
manner remain significant when considering multiple testing effects and the
inherent correlations of the wavelet transformation? Fig. 7 illustrates that

Fig. 7. (color online) Pointwise significance test of the wavelet sample spectrum
of Gaussian white noise (Morlet wavelet, ω0 = 6, ws = 0) against a white noise
background spectrum of equal variance. Spuriously significant patches appear.

a mere visual judgment based on a sample spectrum will presumably be
misleading: Even in the case of white noise, the test described in Sec. 5.2
yields a large number of - by construction spuriously - significant patches.

We develop an areal test, which utilizes information about the size and
geometry of a detected patch to decide whether it is significant or not. The
main idea is simple: If the inherent correlations are given by the reproducing
kernel, Eq. (6), then also the typical patch area for random fluctuations is
given by the reproducing kernel. Following the dilation covariance Eq. (3) and
as illustrated in Fig. 1, the typical patch width in time and scale direction
should grow linearly with scale.

1As physicists, we would rather say coherent. We prefer to use the term stable
to avoid confusion with the term coherence, which here refers to the interrelation
between two processes



However, investigating the wavelet spectral matrices Fig. 7 reveals that
many spurious patches are not formed “typical” but rather arbitrary and
complex. Patches might exhibit a large extend in one direction, but be very
localized in the other direction (Patch A in Fig. 7). Other patches might con-
sist of rather small patches connected by thin “bridges” (Patch B in Fig. 7).
These patches are spurious even though their area might be large compared
to the corresponding reproducing kernel. Thus, not only the area but also the
geometry has to be taken into account: Given a pointwise significant patch, a
point inside this patch is areally significant, if a reproducing kernel (dilated
according to the investigated scale) containing this point totally fits into the
patch. Consequently, small as well as long but thin patches or bridges are
sorted out as being insignificant.

We call the particular area given by the dilated and translated reproducing
kernel at time b and scale a critical area Pcrit (b, a), as it corresponds to a
critical value in a pointwise significance test. It is given as the subset of
the time/scale domain, where the dilated reproducing kernel exceeds the
threshold of a certain critical level Kcrit :

Pcrit (b, a) = { (b′, a′) | (K(b, a; b′, a′) > Kcrit } (24)

The set of all patches Ppw is given by Eq. (23). Then the subset of additionally
areally significant wavelet spectral coefficients is given as

Pareal =
⋃

Pcrit(b,a)⊂Ppw

Pcrit (b, a) (25)

The determination of the critical area as a function of a desired significance
level appeared to be rather non-trivial.

The characteristic functions of the pointwise and areal patches Ppw and
Pareal are defined as

χPpw(a, b) =

{
1 if (a, b) ∈ Ppw,

0 otherwise

χPareal
(a, b) =

{
1 if (a, b) ∈ Pareal ,

0 otherwise

(26)

Then the corresponding areas Apw and Aareal result as

Apw =

∫

(a,b)

db da

a2
χPpw(a, b)

Aareal =

∫

(a,b)

db da

a2
χPareal

(a, b)

(27)

Note, that on every scale a, the area is related to the corresponding measure
a2. We now define the significance level of the areal test as

1 − αareal = 1 − 〈Aareal

Apw
〉, (28)



i.e. one minus the average ratio between the areas of areally significant patches
and pointwise significant patches.

As a matter of fact, we had to estimate the corresponding critical area
Pcrit as a function of a desired significance level 1 − αareal by a root finding
algorithm individually for every pair (ω0, ws). The idea of this algorithm is
outlined in [?]. It turned out that the critical area does not depend on the
chosen background model.

The actual areal test is performed as follows:

• Perform the pointwise test according to Sec. 5.2 on the 1 − α level.
• Stretch the reproducing kernel for every scale according to Eq. (3), choose

a significance level 1 − αareal for the areal test and the corresponding
critical area Pcrit (b, a) of the reproducing kernel.

• Slide the critical area Pcrit (b, a) (for every scale the corresponding dilated
version) over the wavelet matrix. Every point inside a patch is defined
as areally significant, if the critical area containing this point totally lays
within the patch.

Fig. 8. (color online) Areal significance test performed on the example from Fig. 7.
Most of the by construction spurious patches are sorted out.

Figure 8 illustrates the areal test based on the result of the pointwise test for
a Gaussian white noise realization shown in Fig. 7. The areal test is capable
of identifying about 90% of the spuriously significant area from the pointwise
test.

5.4 Sensitivity and Specificity of the Areal Test

For the time/scale analysis of real data, it is important to have an idea of what
time and scale dependent structures in principle can be identified. Especially
geophysical processes exhibit power on a wide range of scales, where only a
narrow band of time localized oscillations might be interesting. The question



arises, how strong the localization in time and scale might be in relation to
the background noise to be in principle identifiable. This question addresses
the sensitivity of the test. On the other hand, it is relevant to know, how
many true features the test detects compared to the number of false positive
results. This question addresses the specificity of the test. To investigate these
questions, we defined Gaussian bumps

m(b, a) = exp

(
− (b− b0)

2

2σ2
b

)

· exp

(
− (c log(a) − c log(a0))

2

2σ2
a

)
, (29)

where b0 and a0 denote mean time and scale respectively, whereas σb and
σb define the width in time and scale direction. The logarithm of the scale
provides a Gaussian bump in the typical logarithmic scale axis wavelet ma-
trix. Figure 9 displays an example. The amplitude of the driving noise was
chosen as ση = 1. However, the variance of the resulting bump is much lower
(at the peak around 0.2ση, as the bump is confined to a small spectral band.
Thus, the superimposed noise with σn = 0.1ση represents a 50% noise-level
in relation to the bump itself.

We performed the following study:

• We simulated Gaussian bumps of different widths σb and σa, superim-
posed by background noise. As a simple model we chose Gaussian white
noise η ∼ N (0, σ) with zero mean and variance σ. For each set of values
(σb, σa, σ), we simulated N = 10000 realizations.

• To every realization, we applied the pointwise (αpw = 0.95) and the areal
test (αareal = 0.9).

Based on this experiment, we compared the sensitivity and specificity of the
areal significance test to those of the pointwise test. We define the area of
the bump (i.e. the set of points where we assume H0 as being true) as PB =
{(a, b) |m(a, b) > 1/e2}, the complement as PNB = {(a, b) |m(a, b) ≤ 1/e2},
the true positive patches as PTP = P ∩ PB and the true negative patches
PTN = P̄ ∩ PNB, the false positive PFP = P ∩ PNB and the false negative
PFN = P̄ ∩ PB , where P stands for either Ppw or Pareal and P̄ denotes the
complement. Using characteristic functions as in Eq. (26), we calculate the
corresponding areas AB , ANB, ATP , ATN , AFP and AFN as in Eq. (27).
Then we can define Sensitivity = ATP

AB
and Specificity = AT N

ANB
.

We summarize the results: On the one hand, the sensitivity of the point-
wise test is higher than that of the areal test, as the latter one sorts out
small patches in the area of the bump. The sensitivity depends strongly on
the signal to noise ratio: For low background noise, both tests perform very
well, although the part of the bump area not detected by the areal test is
around twice as large than that not detected by the pointwise test, because
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Fig. 9. (Color online) Gaussian bump with b0 = 50, a0 = 4, σb = 16 and σa = 0.5
superimposed by white noise with a relative amplitude of σn = 10% (of the bump’s
driving noise ση. Due to the limited spectral bandwidth of the bump, this means
a noise-level of around 50% of the bump itself.). (a) m(a,b), (b) a realization in
time domain using a Morlet wavelet with ω0 = 6, (c) the corresponding wavelet
sample spectrum calculated using the same wavelet. Thin and thick lines surround
pointwise and areally significant patches, respectively.



the areal test sorts out small patches. As the noise-level increases to the or-
der of the bump’s driving noise, the sensitivity decreases rapidly. For a zero
signal to noise ratio, the sensitivity of the pointwise test should converge to
αpw = 0.05, that of the areal test to αpw · αareal = 0.005. However, the ra-
tio between the parts of the area not detected by the two tests converges to
(1 − αpw)/(1 − αpw · αareal) ≈ 0.95. In other words, for a very bad signal to
noise ratio, the performance of the pointwise test is not really better. The
decrease of the sensitivity with noise is much larger for small bumps than for
large bumps. That means that small patches get rather invisible as they get
superimposed by strong noise.

On the other hand, the specificity of the areal test is higher than that
of the pointwise test, as the latter one detects many more patches outside
the area of the bump. Whereas the specificity of the areal test appears to
be almost independently of the signal to noise ratio close to one, that of
the pointwise test decreases for high background noise, as more and more
spurious patches appear. The ratio of the numbers of false positive results
ranges from 1 for a high signal to noise ratio to (1 − αareal)/αareal = 9 for a
zero signal to noise ratio in favor of the areal test.

For typical geophysical data sets exhibiting a broad spectrum (i.e. a low
signal to noise ratio), this study brings along important consequences: Many
of the patches resulting from the pointwise patches are likely to be spurious.
Applying the areal test drastically increases the reliability of the interpreta-
tion.

5.5 Testing of Covarying Power

Compared to testing the single wavelet spectrum, the inference of covarying
power is rather non-trivial. Such as for the stationary Fourier cross spectrum
and the covariance (its time domain counterpart), no significance test for
the wavelet cross spectrum exists. As it is not a normalized measure, it is
impossible to decide whether a cross spectral coefficient is large because the
one or the other process exhibits strong power or if actually covarying power
does exist. Maraun and Kurths [11] illustrated this problem and analyzed
a prominent example. To overcome this problems, one normalizes the cross
spectrum and tests against zero coherence. Also here, a pointwise and an
areal test might be done. However, the areal test alone is not capable to infer
coherence in a strict sense.

The structure of the pointwise test is similar to that developed for the
wavelet spectrum. As the coherence is normalized to the single wavelet spec-
tra, the critical value becomes independent of the scale as long as the smooth-
ing is done properly according to Sec. 4.2, i.e. when the geometry of the
reproducing kernel is accounted for.

In the case of Fourier analysis, the coherence critical value is independent
of the processes to be compared, if they sufficiently well follow a linear de-
scription [1, 13]. This independency, however, holds exactly only in the limit



of long time series. As wavelet analysis is a localized measure, this condi-
tion is not fullfilled. Hence, for different AR[1] processes (from white noise
to almost nonstationary processes), we found a marginal dependency on the
process parameters.

Also here, an areal test can be performed to sort out false positive patches
being artefacts from time/frequency resolved analysis. The procedure is ex-
actly the same as for the wavelet spectrum, only the critical patchsize Pcrit (b, a)
has to be reestimated. Areal significant patches denote significant common
oscillations of two processes. Here, common means that two processes exhibit
a rather stable phase relation on a certain scale for a certain time intervall.

If one is also interested in deriving significant coherence in the sense of
coupling between the processes, the areal test has to be succeeded by another
step: It has to be tested, if the time intervall of the common oscillations
is significantly long compared to typical randomly common oscillations of
independent processes. The length distribution of such intervals is related to
the decorrelation times of the individual processes and might be estimated
by a bootstrap ansatz.

If the covariance is restricted to the dominant oscillations of the underly-
ing processes and only the time resolved phase relation but no amplitude and
scale information is desired, another method might be superior to wavelet
coherency analysis: An instantanious phase relation might be derived by
Hilbert phase analyis. This method originated from synchronization anal-
ysis [?,?]. We combined this approach with a geometrically motivated filter-
ing [?] and successfully utilized it for the analysis of the coupling between El
Niño/Southern Oscillation (ENSO) and the Indian monsoon [12].

6 Conclusions

We outlined a framework to define nonstationary Gaussian processes in wavelet
domain: A driving Gaussian noise is transformed to the wavelet domain, mul-
tiplied with wavelet multipliers defining the desired nonstationary spectrum
and finally transformed back to the time domain with a suitable reconstruc-
tion wavelet. These processes are completely defined by its wavelet multipliers
and the wavelets used for the construction. We defined the process behavior
in such a way, that the dependency on the wavelets vanishes for small scales.
This concept elegantly allows to define wavelet spectra and wavelet cross
spectra. For the stationary case, these spectra are closely related to Fourier
spectra. Based on this framework, we investigated the variance and bias of
continuous wavelet spectral estimation and developed an areal significance
test to overcome multiple testing effects.

For kernel averaging to reduce the variance of a wavelet sample spectrum,
the extension of the averaging kernel has to be chosen corresponding to the re-
producing kernel on every scale. Otherwise, the variance and bias will change



with scale. The reproducing kernel also gives a reasonable minimum length
of the averaging kernel for effectively reducing the variance.

Due to multiple testing, the wavelet sample spectrum of uncorrelated
noise exhibits typical spurious patches with a size distribution related to the
reproducing kernel. Consequently, a pointwise significance test disregarding
information about the size of detected patches yields many false positive re-
sults. We developed an areal significance test utilizing information about the
area of detected patches to decide whether they contain significant structure.
The minimum area of a patch to be areally significant is determined by the
reproducing kernel, smaller patches are in principle indistinguishable from
noise. As it sorts out patches small in relation to the reproducing kernel,
the areal test is less sensitive but more specific. Given a typical geophysical
data set with a broad spectrum, the conventional test mimics a misleading
structure that is successfully uncovered by the areal test.

However, even though the effect of multiple testing has been dramatically
reduced by the areal test, the outcome is still of a mere statistical nature. As
for any statistical result, it is up to the researcher to provide a reasonable
interpretation. A wavelet analysis in principle can barely be the end of a
study but rather the starting point for a deeper physical understanding.

The presented framework is paradigmatically suitable for nonparametric
bootstrapping in wavelet domain. Aside from the construction of nonstation-
ary surrogate data, this approach allows to perform significance testing with
a more complex nonstationary background spectrum. Amongst others, this
is important for the analysis of processes with a trend in the variance. The
concept might also easily be extended to non-Gaussian noise. These ideas,
however, will be subject of future research.

To estimate wavelet spectra and to perform areal significance tests, we de-
veloped a free R-package based on the package Rwave by Carmona et. al. [2].
All wavelet plots in this paper have been realized with this software. It can
be downloaded from http://www.agnld.uni-potsdam.de/∼maraun/wavelets
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1 Introduction

Synchronization is a fundamental nonlinear phenomenon. Its essence can be
explained quite simply: weakly coupled oscillating objects can adjust their
rhythms and start oscillating with common frequencies and tightly related
phases. This qualitative description goes back to famous Christiaan Huygens
who discovered and experimentally investigated this phenomenon at the be-
ginning of the era of the modern science [23]. Being the oldest scientifically
described nonlinear effect, synchronization continues to attract attention of
researches from various fields of natural science and engineering. Though the
mechanisms leading to synchrony in relatively simple systems like a period-
ically forced limit cycle oscillator or two interacting periodic oscillators are
well understood theoretically and are widely used in practice, the theory of
synchronization is still far from being completed.

The foundations of the classical theory has been laid by B. van der Pol and
E. Appleton [2,51] some eighty years ago. Further developments [3,28] provide
a quite complete description of frequency and phase locking of periodical
noise-free self-sustained oscillators and rotators. An important contribution
to the theory has been done by R. Stratonovich [46] who extended the theory
to account for the presence of fluctuations.

In spite of well-developed classical theory, the interest to investigation of
synchronization phenomena essentially increased within last two decades and
this discipline still remains a field of active research, due to several reasons.
First, a discovery and analysis of chaotic dynamics in low-dimensional deter-
ministic systems posed a problem of extension of the theory to cover the case
of chaotic oscillators as well. Second, a rapid development of computer tech-
nologies made a numerical analysis of complex systems, which still cannot be
treated analytically, possible. Finally, a further development of synchroniza-
tion theory is stimulated by new fields of application in physics (e.g., systems
of coupled lasers and Josephson junctions), chemistry (oscillatory reactions),
and in biology, where synchronization phenomena play an important role on
all levels of organization, from cells to physiological subsystems and even
organisms.

One can outline the following main directions of contemporary studies of
synchronization phenomena.



1. Chaotic systems. Here the mere notion of synchrony is non-trivial, and
several concepts have been developed. The effect of phase synchronization
is a direct extension of the classical theory to the case of a subclass of self-
sustained continuous time chaotic oscillators which admit a description
in terms of phase. Synchronization of these systems can be described as a
phase and frequency locking, in analogy to the theory of synchronization
of noisy systems. An alternative approach considers a synchronization of
arbitrary chaotic systems as a coincidence of their state variables (com-
plete synchronization) or as an onset of a functional relationship between
state variables of two unidirectionally coupled systems (generalized syn-
chronization). Although physical mechanisms behind the two latter phe-
nomena essentially differ from the mechanisms of phase and frequency
locking, all these effects constitute the field of application of the modern
synchronization theory.

2. Noise-induces oscillations and excitable systems. These systems
represent a separate class exhibiting synchronization. Without noise, these
systems are stable and do not oscillate. In the presence of noise the dy-
namics is similar to the dynamics of noisy self-sustained oscillators, and
therefore synchronization-like effects are possible. Analysis of these effects
and further references can be found, e.g., in [7, 16, 17, 36, 50].

3. Oscillators with multiple time scales. A typical example of multi-
scale dynamics is neural bursting (see discussion and plots below). These
systems have attracted the interest quite recently [29] and their theoret-
ical description is still under development.

4. Large systems. If two oscillators can adjust their rhythms due to an
interaction, then one can expect similar behavior in large populations
of units. Among different models under investigation we outline regular
oscillator lattices (which in the limit case provide a description of ex-
tended systems) [9], ensembles of globally (all-to-all) coupled elements,
the main topic of the present contribution, random oscillator networks
(small world networks, scale-free networks, etc), and spatially-extended
systems [10, 44, 55].

5. Systems with delays. Oscillators with internal delays [18], delays in
coupling [53], and delayed-feedback control of chaotic and noise-induced
oscillations [6, 45] represent another field of actual research.

Different aspects of synchronization theory can be found in a number
of monographs [1, 11, 28, 30, 34, 38, 47]. It is important to emphasize that
synchronization is an essentially nonlinear effect. In contrast to many classical
physical problems, where consideration of nonlinearity gives a correction to
a linear theory, here the account of nonlinearity is crucial: the phenomenon
occurs only in intrinsically nonlinear, so-called self-sustained systems.



2 Simplest case: periodically forced self-sustained
oscillator

2.1 Self-sustained oscillators

Self-sustained oscillators are mathematical models behind natural oscillating
objects, and these models are essentially nonlinear. To be not too abstract,
we consider a classical device, that gave birth to synchronization theory, the
pendulum clock. Let us discuss how it works. Its mechanism transforms the
potential energy of the lifted weight (or compressed spring, or electrical bat-
tery) into the oscillatory motion of the pendulum. In its turn, this oscillation
is transferred into the rotation of the hands on the clock’s face. We are not
interested in the particular design of the mechanism; important is only that
it takes energy from the source in order to compensate the loss of energy due
to dissipation, and in this way maintains a steady oscillation of the pendu-
lum, which continues without any change until the supply of energy expires.
The next important property is that the exact form of the oscillatory motion
is entirely determined by the internal parameters of the clock and does not
depend on how the pendulum was put into motion. Moreover, after being
slightly perturbed, following some transient process, the pendulum restores
its previous internal rhythm.

In physics such oscillatory objects are denoted as self-sustained oscilla-
tors. Mathematically, such an oscillator is described by an autonomous (i.e.,
without an explicit time dependence) nonlinear dynamical system. It differs
both from linear oscillators (which, if a damping is present, can oscillate only
due to external forcing) and from nonlinear energy conserving systems, whose
dynamics essentially depends on initial state. Dynamics of oscillators is typ-
ically described in the phase (state) space. Periodic oscillations, like those of
the clock, correspond to a closed attractive curve in the phase space, called
the limit cycle.The limit cycle is a simple attractor, in contrast to a strange
(chaotic) attractor. The latter is a geometrical image of chaotic self-sustained
oscillations.

Examples of self-sustained oscillatory systems are electronic circuits used
for the generation of radio-frequency power, lasers, Belousov–Zhabotinsky
and other oscillatory chemical reactions, pacemakers (sino-atrial nodes) of
human hearts or artificial pacemakers that are used in cardiac pathologies,
and many other natural and artificial systems. An outstanding common fea-
ture of such systems is their ability to be synchronized.

This ability of periodic self-sustained oscillators is based on the existence
of a special variable, phase φ. Mathematically, φ can be introduced as the
variable parameterizing the motion along the stable limit cycle in the state
space of an autonomous continuous-time dynamical system. One can always
choose phase proportional to the fraction of the period, i.e. in a way that it
grows uniformly in time,

dφ

dt
= ω0 , (1)



where ω0 is the natural frequency of oscillations. The phase is neutrally stable:
it’s perturbations neither grow no decay. (In terms of nonlinear dynamics,
the neutral stability means that the phase is a variable that corresponds
to the zero Lyapunov exponent of the dynamical system.) Thus, already
an infinitesimal perturbation (e.g. external periodic forcing or coupling to
another system) can cause large deviations of the phase – contrary to the
amplitude, which is only slightly perturbed due to the transversal stability
of the cycle. The main consequence of this fact is that the phase can be very
easily adjusted by an external action, and as a result the oscillator can be
synchronized!

2.2 Entrainment by external force: An example

We begin our discussion of synchronization phenomena by considering the
simplest case, an entrainment of a self-sustained oscillator by an external
periodic force. Before we describe this effect in mathematical terms, we illus-
trate it by an example. We will again speak about clocks, but this time about
biological clocks that regulate daily and seasonal rhythms of living systems
– from bacteria to humans.

In 1729 Jean-Jacques Dortous de Mairan, the French astronomer and
mathematician, who was later the Secretary of the Académie Royale des Sci-
ences in Paris, reported on his experiments with a haricot bean. He noticed
that the leaves of this plant moved up and down in accordance with the
change of day into night. Having made this observation, de Mairan put the
plant in a dark room and found that the motion of the leaves continued
even without variations in the illuminance of the environment. Since that
time these and much more complicated experiments have been replicated in
different laboratories, and now it is well-known that all biological systems,
from rather simple to highly organized ones, have internal biological clocks
that provide their “owners” with information on the change between day
and night. The origin of these clocks is still a challenging problem, but it is
well established that they can adjust their circadian rhythms (from circa =
about and dies = day) to external signals: if the system is completely iso-
lated from the environment and is kept under controlled constant conditions
(constant illuminance, temperature, pressure, parameters of electromagnetic
fields, etc.), its internal cycle can essentially differ from a 24-hour cycle. Un-
der natural conditions, biological clocks tune their rhythms in accordance
with the 24-hour period of the Earth’s daily cycle.

Experiments show that for most people the internal period of biologi-
cal clocks differs from 24 h, but it is entrained by environmental signals,
e.g., illuminance, having the period of the Earth’s rotation (Fig. 1). Obvi-
ously, the action here is unidirectional: the revolution of a planet cannot be
influenced by mankind (yet); thus, this case constitutes an example of syn-
chronization by an external force. In usual circumstances this force is strong
enough to ensure perfect entrainment; in order to desynchronize a biological
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Fig. 1. Schematic diagram of the behavioral sleep–wake rhythm. This cycle (termed
circadian rhythm) represents the fundamental adaptation of organisms to an envi-
ronmental stimulus, the daily cycle of light and dark. Here the circadian rhythm
is shown entrained for five days by the environmental light–dark cycle and au-
tonomous for the rest of the experiment when the subject is placed under constant
light conditions. The intrinsic period of the circadian oscillator is in this particu-
lar case greater than 24 hours. Correspondingly, the phase difference between the
sleep–wake cycle and daily cycle increases: the internal “day” begins later and later.
Such plots are typically observed in experiments with both animals and humans,
see, e.g., [4, 15,33].

clock one can either travel to polar regions or go caving. It is interesting that
although normally the period of one’s activity is exactly locked to that of the
Earth’s rotation, the phase shift between the internal clock and the exter-
nal force varies from person to person: some people say that they are “early
birds” whereas others call themselves “owls”. Perturbation of the phase shift
strongly violates normal activity. Every day many people perform such an
experiment by rapidly changing their longitude (e.g., crossing the Atlantic)
and experiencing jet lag. It can take up to several days to re-establish a
proper phase relation to the force; in the language of nonlinear dynamics one
can speak of different lengths of transients leading to the stable synchronous
state. As other commonly known examples of synchronization by external
force we mention radio-controlled clocks and cardiac pacemakers.

2.3 Phase dynamics of a forced oscillator

For a mathematical treatment of synchronization we recall that the phase of
an oscillator is neutrally stable and can be adjusted by a small action, whereas
the amplitude is stable. This property allows a description of the effect of



small forcing/coupling within the framework of the phase approximation.
Considering the simplest case of a limit cycle oscillator, driven by a periodic
force with frequency ω and amplitude ε, we can write the equation for the
perturbed phase dynamics in the form

dφ

dt
= ω0 + εQ(φ, ωt) , (2)

where the coupling function Q depends on the form of the limit cycle and of
the forcing (see [28,38] for derivation of the phase equation (2) from coupled
equations for state variables). As the states with the phases φ and φ+2π are
physically equivalent, the function Q is 2π-periodic in its both arguments,
and therefore can be represented as a double Fourier series. If the frequency
of the external force is close to the natural frequency of the oscillator, ω ≈ ω0,
then the series contains fast oscillating and slow varying terms, the latter can
be written as q(φ−ωt). Introducing the difference between the phases of the
oscillation and of the forcing ψ = φ−ωt and performing an averaging over the
oscillation period we get rid of the oscillating terms and obtain the following
basic equation for the phase dynamics:

dψ

dt
= −(ω − ω0) + εq(ψ) . (3)

Function q is 2π-periodic, and in the simplest case q(·) = sin(·) Eq. (3)
is called the Adler equation. One can easily see that on the plane of the
parameters of the external forcing (ω, ε) there exist a region εqmin < ω −
ω0 < εqmax, where Eq. (3) has a stable stationary solution. This solution
corresponds to the conditions of phase locking (the phase φ just follows the
phase of the force, i.e. φ = ωt + constant) and frequency entrainment (the
observed frequency of the oscillatorΩ = 〈φ̇〉 exactly coincides with the forcing
frequency ω; brackets 〈〉 denote time averaging).

Generally, synchronization is observed for high-order resonances nω ≈
mω0 as well. In this case the dynamics of the generalized phase difference
ψ = mφ − nωt, where n,m are integers, is described by the equation sim-
ilar to Eq. (3), namely by d(ψ)/dt = −(nω − mω0) + εq̃(ψ). Synchronous
regime then means perfect entrainment of the oscillator frequency at the ra-
tional multiple of the forcing frequency, Ω = n

mω, as well as phase locking
mφ = nωt+ constant. The overall picture can be shown on the (ω,ε) plane:
there exists a family of triangular-shaped synchronization regions touching
the ω-axis at the rational multiples of the natural frequency m

n ω0, these re-
gions are usually called Arnol’d tongues (Fig. 2(a)). This picture is preserved
for moderate forcing, although now the shape of the tongues generally differs
from being exactly triangular. For a fixed amplitude of the forcing ε and var-
ied driving frequency ω one observes different phase locking intervals where
the motion is periodic, whereas in between them it is quasiperiodic. The curve
Ω vs. ω thus consists of horizontal plateaus at all possible rational frequency
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Fig. 2. Family of synchronization regions, or Arnold tongues (schematically). The
numbers on top of each tongue indicate the order of locking; e.g., 2 : 3 means that
the relation 2ω = 3Ω is fulfilled. (b) The Ω/ω vs. ω plot for a fixed amplitude of
the force (shown by the dashed line in (a)) has a characteristic shape, known as the
devil’s staircase. (In this scheme the variation of the frequency ratio between the
main plateaus of the staircase is not shown).

ratios; this fractal curve is called Devil’s staircase (Fig. 2(b)). A famous ex-
ample of such a curve is the voltage–current plot for a Josephson junction
in an ac electromagnetic field; in this context synchronization plateaus are
called Shapiro steps. Note that a junction can be considered as a rotator
(rotations are maintained by a dc current); this example demonstrates that
synchronization properties of rotators are very close to those of oscillators.

Finally, we note that phase difference in the synchronous state is not
necessarily constant, but may oscillate around a constant value. Indeed, a
solution mφ − nωt = constant was obtained from Eq. (2) by means of av-
eraging, i.e. by neglecting the fast oscillating terms. If we take this terms
into account, then we have to reformulate the condition of phase locking as
|mφ−nωt| < constant. Thus, in the synchronous regime the phase difference
is bounded, otherwise it grows infinitely.

3 Globally coupled oscillators

Having considered synchronization of a single oscillator driven by external
force, we proceed with a much more complicated case. Now we study syn-
chronization phenomena in large ensembles of oscillators, where each ele-
ment interacts with all others. This is usually denoted as global, or all-to-all



coupling. To illustrate this by a representative example, we cite the Dutch
physician Engelbert Kaempfer [25]1 who, after his voyage to Siam in 1680
wrote:

“The glowworms . . . represent another shew, which settle on some
Trees, like a fiery cloud, with this surprising circumstance, that a
whole swarm of these insects, having taken possession of one Tree,
and spread themselves over its branches, sometimes hide their Light
all at once, and a moment after make it appear again with the utmost
regularity and exactness . . . .”

This very early observation reports exactly on synchronization in a large
population of oscillating systems. The same physical mechanism that makes
the insects to keep in synchrony is responsible for an onset of rhythms in
neuronal populations or for an emergence of synchronous clapping in a large
audience. The latter phenomenon, a self-organization in a large applauding
audience, has probably been experienced by everyone, e.g., in a theater. In-
deed, if the audience is large enough, then one can often hear a rather fast
(several oscillatory periods) transition from noise to a rhythmic, nearly pe-
riodic, applause. This happens when the majority of the public applaud in
unison, or synchronously.

The each-to-each interaction is also denoted as a mean field coupling. In-
deed, each firefly is influenced by the light field that is created by the whole
population (see Fig. 3). Similarly, each applauding person hears the sound
that is produced by all other people in the hall. Thus, we can say that all
elements are exposed to a common force. This force results from the summa-
tion of outputs of all elements. Let us denote these outputs by xk(t), where
k = 1, . . . , N is the index of an oscillator, and N is the number of elements
in the ensemble; x can be variation of light intensity or of the acoustic field
around some average value, or, generally, any other oscillating quantity. Then
the force that drives each oscillator is proportional to

∑
k xk(t). It is conven-

tional to write this proportionality as εN−1
∑

k xk(t), so that it includes the
normalization by the number of oscillators N . The term N−1

∑
k xk(t) is just

an arithmetic mean of all oscillations, what explains the origin of the term
“mean field coupling”.

Thus, the oscillators in a globally coupled ensemble are driven by a com-
mon force. Clearly, this force can entrain many oscillators if their frequencies
are close. The problem is that this force (the mean field) is not predeter-
mined, but arises from interaction within the ensemble. This force determines
whether the systems synchronize, but it itself depends on their oscillation –
it is a typical example of self-organization [20]. To explain qualitatively the
appearance of this force (or to compute it, as is done in [28, 38]) one should
consider this problem self-consistently.

1Citation taken from [12].
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Fig. 3. Qualitative explanation of the emergence of collective synchrony in a mean
field coupled ensemble.

First, assume for the moment that the mean field is zero. Then all the
elements in the population oscillate independently, and their contributions
to the mean field nearly cancel each other. Even if the frequencies of these
oscillations are identical, but their phases are independent, the average of the
outputs of all elements of the ensemble is small if compared with the ampli-
tude of a single oscillator. (According to the law of large numbers, it tends
to zero when the number of interacting oscillators tends to infinity; the fluc-
tuations of the mean field are of the order N−1/2.) Thus, the asynchronous,
zero mean field state obeys the self-consistency condition.

Next, to demonstrate that synchronization in the population is also pos-
sible, we suppose that the mean field is non-vanishing. Then, naturally, it
entrains at least some part of the population, the outputs of these entrained
elements sum up coherently, and the mean field is indeed nonzero, as assumed.
Which of these two states – synchronous or asynchronous – is realized, or,
in other words, which one is stable, depends on the strength of interaction
between each pair and on how different the elements are. The interplay be-
tween these two factors, the coupling strength and the distribution of the
natural frequencies, also determines how many oscillators are synchronized,
and, hence, how strong the mean field is.

We discuss now how the synchronization transition occurs, taking the
applause in an audience as an example (experimental study of synchronous
clapping is reported in [35]). Initially, each person claps with an individual
frequency, and the sound they all produce is noisy.2 As long as this sound is
weak, and contains no characteristic frequency, it does not essentially affect
the ensemble. Each oscillator has its own frequency ωk, each person applauds

2Naturally, the common (mean) acoustic field is nonzero, because each individ-
ual oscillation is always positive; the intensity of the sound cannot be negative,
it oscillates between zero and some maximal value. Correspondingly, the sum of
these oscillations contains some rather large constant component, and it is the de-
viation from this constant that we consider as the oscillation of the mean field and
that is small. Therefore, the applause is perceived as some noise of almost constant
intensity.



and each firefly flashes with its individual rate, but there always exists some
value of it that is preferred by the majority. Definitely, some elements behave
in a very individualistic manner, but the main part of the population tends to
be “like the neighbor”. So, the frequencies ωk are distributed over some range,
and this distribution has a maximum around the most probable frequency.
Therefore, there are always at least two oscillators that have very close fre-
quencies and, hence, easily synchronize. As a result, the contribution to the
mean field at the frequency of these synchronous oscillations increases. This
increased component of the driving force naturally entrains other elements
that have close frequencies, this leads to the growth of the synchronized clus-
ter and to a further increase of the component of the mean field at a certain
frequency. This process develops (quickly for relaxation oscillators, relatively
slow for quasilinear ones), and eventually almost all elements join the major-
ity and oscillate in synchrony, and their common output – the mean field –
is not noisy any more, but rhythmic.

The physical mechanism we described is known as the Kuramoto self-syn-
chronization transition [27]. The scenario of this transition does not depend
on the origin of the oscillators (biological, electronic, etc.) or on the origin
of interaction. In the above presented examples the coupling occurred via
an optical or acoustic field. Global coupling of electronic systems can be
implemented via a common load; in this case the voltage applied to individual
systems depends on the sum of the currents of all elements. (As an example
we mention an array of the Josephson junctions.) Chemical oscillators can
be coupled via a common medium, where concentration of a reagent depends
on the reaction in each oscillator and, on the other hand, influences these
reactions. The Kuramoto transition can be treated as a nonequilibrium phase
transition, the mean oscillating field serving as an order parameter (Fig. 4
below).

The scenarios of the Kuramoto transition may be also more complicated,
e.g., if the distribution of the individual frequencies ωk has several maxima.
Then several synchronous clusters can be formed; they can eventually merge
or coexist. Clustering can also happen if, say, the strength of interaction of
an element of the population with its nearest (in space) neighbors is larger
than with those that are far away.

In summary, investigation of synchronization in large populations of in-
teracting oscillatory elements is an intensively developing branch of nonlin-
ear science [20, 26, 28, 38, 48, 52, 54], relevant to many problems of physics,
chemistry, and life sciences, in particular, to neuroscience. For example, syn-
chronization can occur in arrays of lasers and Josephson junctions, where
this phenomenon may play a constructive role for generation of a strong co-
herent field. In other cases synchronization may be harmful; an illustrative
example is the excitation of the left-to-right swaying motion of the London’s



Millennium Bridge observed at its opening day3. This motion appeared due
to mutual synchronization of steps of hundreds of pedestrians. To prevent
the onset of such synchronization, the bridge has been reconstructed in a
way that the damping of its corresponding oscillatory mode was essentially
increased. In many cases, when such a direct intervention into the system is
not possible, it is nevertheless desirable to control the synchronous motion,
in particular, to suppress it, when it appears.

3.1 Globally coupled ensemble as a model of neural synchrony

An important issue is the collective dynamics of neuronal populations. Indeed,
synchronization of individual neurons is believed to play the crucial role in
the emergence of pathological rhythmic brain activity in Parkinson’s disease,
essential tremor and in epilepsies; the detailed discussion of this topic and
numerous citations can be found in [19,31,48]. Obviously, the development of
the techniques for suppression of the undesired neural synchrony constitutes
an important clinical problem. Technically, this problem can be solved by
means of implantation of the micro-electrodes into the impaired part of the
brain with subsequent electric stimulation through these electrodes [8, 13].
However, in spite of successful experimental studies followed by clinical ap-
plications, the physiological mechanisms of such stimulation remain unclear
and the development of effective stimulation techniques is a challenging prob-
lem of neuroscience and biological physics. In particular, it is important to
minimize the intervention caused by stimulation, e.g. by designing the tech-
niques which allow suppression of the pathological rhythm by weak though
precisely timed pulses [48].

The model of globally coupled oscillators is commonly used as a simplest
model of neural synchrony. We illustrate this using a computationally effi-
cient neuronal model, proposed by Rulkov [42,43]. In this model a neuron is
described by a 2D map. In spite of its simplicity, this model reproduces most
regimes exhibited by the full Hodgkin-Huxley model, but at essentially lower
computational costs, thus allowing detailed analysis of the dynamics of large
ensembles. The model reads

xi(n+ 1) =
4.3

1 + x2
i (n)

+ yi(n) + εX(n) + C ,

yi(n+ 1) = yi(n) − 0.01(xi(n) + 1) ,

(4)

where n is the discrete time, i = 1, . . .N is the index of a neuron in the
population, and

X(n) =
1

N

N∑

1

xi(n)

3The corresponding video can be found on the WEB-page of the firm that
constructed the bridge: www.arup.com/MillenniumBridge/.



is the mean field. The term C, describing an additional control of the ensem-
ble, will be specified below.

Global coupling in an ensemble is a theoretically convenient approxima-
tion. Here we numerically explore how good this approximation works, if the
neurons are in fact coupled in a more complex, random, way. There are many
possibilities to model a randomly coupled network. We consider that each of
N = 10000 neurons has Nl links, i.e., it is coupled to Nl randomly chosen
elements of the population. The coupling strength ε within each pair is taken
to be the same. In Fig. 4 we plot the dependence of the variance of the mean
field var(x) on ε for different number of links Nl. The synchronization tran-
sition is similar to the case of the global coupling, though it takes place for
higher values of ε. We see that the bifurcation curve for Nl = 50 practically
coincide with that for the global coupling case. Thus, the dynamics of an
ensemble with random coupling to Nl neighbors is qualitatively close to the
dynamics of the globally coupled population.
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Fig. 4. Comparison of synchronization transition in ensembles with all-to-all cou-
pling and random coupling, when each unit is coupled to Nl units. Bold red line
shows the transition for the case of all-to-all coupling. It is seen that the dynamics
of the ensemble with global coupling is very close to the case of an ensemble with
Nl = 50. For smaller number of links, the dynamics is qualitatively similar, though
the synchronization transition happens for larger coupling ε.

4 Controlling neural synchrony

A particular problem of high practical importance is to develop techniques
for control of collective neuronal activity. The importance of this task is re-
lated to the hypothesis that pathological brain rhythms, observed e.g. in
patients with Parkinson’s disease and epilepsies, appear due to synchrony



in many thousands of neurons. Correspondingly, suppression of undesirable
collective synchrony in a population of neurons is a challenging problem of
neuroscience. Its solution may essentially improve the so-called Deep Brain
Stimulation (DBS) technique, currently used in medical practice to suppress
Parkinsonian and essential tremor [8]. This technique implies implantation
of microelectrodes deep into the brain of a patient, either to subthalamic
nucleus or to globus pallidus, and continuous stimulation of this target by
a high frequency (about 100 or 120 Hz) periodic pulse train; the stimuli are
delivered by a controller implanted into the chest. Important, that in spite
of rather broad usage of DBS4 the neurophysiological mechanisms of such
stimulation are poorly (if at all) understood, and therefore its parameters
are chosen by trial and error. Most likely, high frequency DBS mimics le-
sion of the tissue by quenching the firing of neurons. This fact, as well as
the necessity to apply the (rather strong) stimulation continuously, calls for
development of more efficient suppression techniques.

Development of model based DBS techniques exploiting the methods of
nonlinear dynamics and statistical physics was pioneered by P. A. Tass, who
proposed a number of approaches. The main idea of these approaches is
that suppression of the pathological rhythm should be achieved in such a
way that (i) activity of individual units is not suppressed, but only their
firing becomes asynchronous, and (ii) the stimulation should be minimized,
e.g., it is desirable to switch it off as soon as the synchrony is suppressed
(see [48,49] and references therein). Following these ideas we suggested in our
previous publications [40, 41] a delayed feedback suppression control scheme
(Fig. 5) which we further analyze in this paper (cf. delayed and non-delayed
techniques for stabilization of low-dimensional systems [5, 22, 39]) and for
control of noise-induced motion [24]). In our approach it is assumed that the
collective activity of many neurons is reflected in the local field potential
(LFP) which can be registered by an extracellular microelectrode. Delayed
and amplified LFP signal can be fed back into the systems via the second
or same electrode (see [37] and references therein for a description of one
electrode measurement – stimulation setup.) Numerical simulation as well as
analytical analysis of the delayed feedback control demonstrate that it indeed
can be exploited for suppression of the collective synchrony.

For an introduction of the delayed feedback control of collective synchrony
we consider suppression of the mean field in an ensemble of N = 10000 iden-
tical Hindmarsh-Rose neurons (Eqs. (5)) in the regime of chaotic bursting.
The dynamics of the ensemble is described by the following set of equations,

ẋi = yi − x3
i + 3x2

i − zi + 3 +KX +Kf(X(t− T ) −X(t)) ,
ẏi = 1 − 5x2

i − yi ,
żi = 0.006 · (4(xi + 1.56)− zi) ,

(5)

4For example, one of the producers of DBS controllers, the Medtronic Inc, re-
ports on over 20 thousands of patients using their devices.
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Fig. 5. Scheme of the suggested approach to deep brain stimulation [40, 41]. The
local electrical field in a neuronal population should be measured by the recording
electrode and fed back via the field application electrode. The device should contain
a delay line and an amplifier.

where X = N−1
∑N

i=1 xi is the mean field, and the terms KX and Kf (X(t−
T ) − X(t)) = C describe the global coupling and the feedback control, re-
spectively.

The results are presented in the Fig. 6 for the strength of the internal
coupling K = 0.08. The feedback control was switched on at t0 = 5000, i.e.
Kf = 0 for t < t0 and Kf = 0.036 for t ≥ t0; the delay time is T = 72.5. Here
the panels (a) and (b) show the mean field and the control signal, respec-
tively. It is clearly seen that switching on of the feedback results in a quick
suppression of the mean field in the ensemble, so that only small noise-like
fluctuations remain (we remind, that the mean field models here the patho-
logical brain activity). Important is that the control signal decays rapidly and
then the asynchronous state of the ensemble is maintained by feeding back a
very weak signal. Another important feature of the technique is illustrated in
the panels (c) and (d) where we show the bursting dynamics of two neurons
before (c) and after (d) the feedback was switched on. One can see that the
dynamics of individual units barely change, however they burst incoherently
and therefore produce no macroscopic oscillation. Thus, the feedback con-
trol suppresses the collective synchrony in the ensemble without suppressing
the firing of individual neurons and maintains such state with a weak inter-
vention. Simulations with the Rulkov models (4) [40] demonstrate that the
variance of the field fluctuations in the suppressed state scale decrease with
the ensemble size as 1/

√
N . This means that for very large ensembles the

control signal tends to zero, and therefore the control is non-invasive.
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Fig. 6. (a) Suppression of the mean field X in the ensemble of 10000 Hindmarsh-
Rose neurons (Eqs. (5)). The delayed feedback is switched on at t = 5000. (b)
The control signal C = εf (X(t − T ) − X(t)) quickly decays to the noise level
and the desired, asynchronous, state of the system is maintained with a minimal
intervention. (c,d) Synchronous and asynchronous bursting of two neurons in the
absence and in the presence of the feedback, respectively.

A theoretical analysis of the delay controlled ensemble dynamics is based
on the assumption that emergence of collective synchrony can be understood
as the Kuramoto transition [27, 28, 32, 52]. The analytical treatment of the
problem can be performed only for an idealized model under assumption of
(i) global (each-to-each) interaction, (ii) infinitely large ensemble size, and
(iii) weak coupling (i.e., in the phase approximation) [40]. Another approach
is based on a quite general consideration of the Kuramoto synchronization
transition in an ensemble as the Hopf bifurcation for the mean field, and on
the analysis of the corresponding model amplitude equation (normal form)
for the dynamics of the complex mean field A [14,28]. With the account of a
delayed feedback loop, this equation takes the form [41]

Ȧ = (ε− εcr + iω)A+ εfe
−iαC − ζ|A|2A . (6)

Here the factor ε describes the internal global coupling in the ensemble; if it
exceeds the critical value εcr then synchrony sets in in the population and
macroscopic mean field appears. εf describes the strength of the feedback and
τ is the delay; the phase shift α depends on the properties of individual oscil-



lators and on how the feedback term appears in their equations. The term C
has different form for different feedback schemes, discussed and compared be-
low. Qualitatively, the effect of the delayed feedback can be understood in the
following way: for proper feedback parameters εf , τ the delayed term com-
pensates the instability due to internal coupling (described by the increment
ε− εcr) and thus changes the linear stability of the system.

A theoretical analysis of Eq. (6) provides the domains of control, i.e.
the ranges of delay time and amplification in the feedback loop for which
the control is effective. These results are in a good correspondence with the
numerical simulation of the ensemble dynamics with different neuron mod-
els used for the description of individual units (Bonhoefer - van der Pol or
Hindmarsh-Rose equations [21], Rulkov map model [42]).

The delayed-feedback control is described by the term C. Here we consider
two types of feedback: direct control C = X(t − τ) and differential control
C = (X(t− τ) −X(t)). The parameters in Eqs. (4) are chosen in such a way
that individual units are in the regime of chaotic bursting. The efficiency of
suppression is quantified by the suppression factor

S = (var(X)/var(Xf ))1/2 . (7)

High values of S = S(τ, εf) (Fig. 7) provide the domains of control. Cer-
tainly, the suppression in the system (4) is not perfect: the suppression factor
remains finite due to finite-size effects, discussed below. In other words, the
suppressed mean field is not zero, but exhibits some irregular fluctuations
due to a finite number of the elements in the ensemble. Correspondingly, the
borders of the control domains can be determined only approximately, by set-
ting some cut-off level. However, the shape and position of domains of control
are in a good correspondence with the results of the theoretical analysis of
Eq. (6), which describes the idealized case of infinitely large population size.

Figure 7 demonstrates that suppression of the synchrony can be achieved
both by the direct and differential control schemes. This example also shows
that differential control provides less number of the domains of control, but
these domains are generally larger and the suppression factor is higher. An-
other advantage of the differential control scheme is that it provides nonin-
vasive suppression, in the sense that limN→0 C = 0, whereas for the direct
control suppression is generally invasive, limN→0 C = const.

Now we discuss a possibility of control of randomly coupled oscillators,
Fig. 4. The delayed feedback control (direct scheme with τ = 30 was used
here) shifts the bifurcation curves (Fig. 8), thus allowing one to control the
transition, as in case of global coupling.5 Indeed, a shift of the bifurcation
curve to the right means decrease of the mean field variance for given value
of the internal coupling in the ensemble, thus providing suppression up to
the level of noise fluctuations in the system if the bifurcation value becomes

5Note that sufficiently strong feedback, εf = 0.04, changes the type of the
bifurcation; now the transition exhibits hysteresis, see blue curve in Fig. 8.
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Fig. 7. Domains of control for the system (4) in the parameter plane delay – feed-
back strength, for differential (top panel) and direct (bottom panel) schemes. Color
codes the coefficient of suppression (see text). Internal coupling is ε = 0.06.

larger than the internal coupling. This is supported by the computation of the
control domains (the results are similar to those shown Fig. 7 and therefore
are not given here).

Red curve in Fig. 8 illustrates the case when the feedback signal is not the
mean field of the whole population but the local field, acting on one neuron.
It is, C = εfN

−1
l

∑
l xl, where index l = 1, . . . , Nl numerates the neurons

linked to the chosen one. This example demonstrates that such an imperfect
measurement however provides suppression, though it is not so effective as the
control via mean field X (yellow curve). Summarizing the results presented
in Fig. 8, we conclude that mean field approximation works very well even
for moderate connectivity of the network (50 links in an network of 10000
elements in our example).

5 Conclusion

In this chapter we described general properties of synchronization of coupled
oscillators. Remarkably, many properties of coupled complex systems of dif-
ferent nature can be described in a framework of a simple model of coupled
phase oscillators. Moreover, it appears to be possible to control synchrony in
coupled ensembles. Different control schemes, as well as experimental imple-
mentations of the control, certainly deserve an thorough investigations in the
future.
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of Control of Noise-Induced Motion Phys. Rev. Lett., 93:010601 (2004).

25. E. Kaempfer. The History of Japan (With a Description of the Kingdom of
Siam). Sloane, London, 1727. Posthumous translation; or reprint by McLehose,
Glasgow, 1906.

26. H. Kori and A. S. Mikhailov Entrainment of Randomly Coupled Oscillator
Networks by a Pacemaker Phys. Rev. Lett., 93:254101 (2004).

27. Y. Kuramoto. Self-entrainment of a population of coupled nonlinear oscillators.
In H. Araki, editor, International Symposium on Mathematical Problems in
Theoretical Physics, page 420, New York, 1975. Springer Lecture Notes Phys.,
v. 39.

28. Y. Kuramoto. Chemical Oscillations, Waves and Turbulence. Springer, Berlin,
1984.

29. P. S. Landa, M. Rosenblum, and A. Pikovsky. Synchronization of multi-scale
oscillatory systems. in preparation, 2006.



30. S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette. Emergence of Dynamical
Order: Synchronization Phenomena in Complex Systems, volume 2 of Lecture
Notes in Complex Systems. World Scientific, Singapore, 2004.

31. J. Milton and P. Jung, editors. Epilepsy as a Dynamic Disease. Springer,
Berlin, 2003.

32. R. Mirollo and S. Strogatz. Synchronization of pulse-coupled biological oscilla-
tors. SIAM J. Appl. Math., 50:1645–1662, 1990.

33. R. Y. Moore. A clock for the ages. Science, 284:2102–2103, 1999.
34. E. Mosekilde, Yu. Maistrenko, and D. Postnov. Chaotic Synchronization. Ap-

plications To Living Systems. World Scientific, Singapore, 2002.
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1 Introduction

In 2003, the geophysicist Vladimir Keilis-Borok, director of the International
Institute of Earthquake Prediction Theory and Mathematical Geophysics in
Moscow issued an alarm for an upcoming earthquake of magnitude 6.4 or
greater within a 12.440 square miles area of southern California that includes
portions of the eastern Mojave Desert, Coachella Valley, Imperial Valley (San
Bernardino, Riverside and Imperial Counties) and eastern San Diego County,
during a time interval of nine months (January 5 - September 5, 2004). This
prediction was based on previous observations of microearthquake patterns
forming chains. Keilis-Borok and co-workers claimed to have predicted two
earthquakes correctly by means of such chains – one in Hokkaido, Japan in
September 2003 and the second in San Simeon, California in December 2003.
However, the deadline of the recent forecast passed and no earthquake fitting
the alarm occurred.

Apart from the social and the economic dimension, this failed predic-
tion raises also basic scientific questions in earth sciences: Is a prediction of
earthquakes solely based on the emergence of seismicity patterns reliable? In
other words, is there a “magic parameter”, which becomes anomalous prior
to a large earthquake? Is it necessary that such a parameter is based on a
physical model? Are pure observational methods without specific physical
understanding, like the pattern recognition approach of Keilis-Borok, also
sufficient? Taking into account that earthquakes are monitored continuously
only since about 100 years and the best available data sets (“earthquake cata-
logs”) cover only a few decades, it seems questionable to forecast earthquakes
solely on the basis of observed seismicity patterns, because large earthquakes
have recurrence periods of decades to centuries; consequently, data sets for
a certain region include not more than ten large events making a reliable
statistical testing questionable.

The relation between frequency and magnitude of earthquakes in a large
seismically active region is given by the empirical Gutenberg-Richter law [20]

logN = bM − a, (1)

where N is the frequency of earthquakes with magnitude equal to or greater
than M ; a is a measure of the overall seismicity level in a region and the



slope b is the Richter b value, which determines the relation between large
and small earthquakes.

A key problem is the evaluation of the relevance of observed seismicity
patterns. First, it is important to decide whether an observed pattern has
a physical origin or is an artifact, arising for example from inhomogeneous
reporting or from man-made seismicity, like quarry blasts or explosions. Sec-
ond, the non-artifical events have to be analyzed with respect to their un-
derlying mechanisms. This leads to an inverse problem with a non-unique
solution, which can be illustrated for the most pronounced observed seismic-
ity pattern, the occurrence of aftershocks. It is empirically known that the
earthquake rate Ṅ after a large event at time tM follows the modified Omori
law [37,50]

Ṅ =
c1

(c2 + t− tM )p
, (2)

where t is the time, c1 and c2 are constants, and the Omori exponent p is
close to unity. In particular, aftershocks are an almost universal phenomenon;
that is, they are observed nearly after each mainshock. The underlying mech-
anisms leading to aftershocks are, however, unknown. Various physical mod-
els have been designed in order to explain aftershock occurrence following
Eq. (2). These models assume physical mechanisms including viscoelastic-
ity [22], pore fluid flow [34], damage rheology [7, 44], and special friction
laws [18]. The question, which mechanism is realistic in a certain fault zone,
remains open. Detailed comparisons of observed and modeled seismicity with
respect to the aftershock rate, the duration of aftershock sequences, the de-
pendence on the mainshock size, and other features are necessary to ad-
dress this problem. Additionally, the results from lab experiments on rupture
dynamics, and satellite observations in fault zones, provide important con-
straints for the evaluation of such models.

Apart from aftershock activity, other seismicity patterns are well-known
from observations, e.g. foreshocks [28], seismic quiescence [24, 52, 59], and
accelerating seismic moment release [12,27]. These patterns have been docu-
mented in several cases before large earthquakes. They occur, however, less
frequent than aftershocks. For example, foreshocks are known to preceed
only 20-30% of large earthquakes [51]. Therefore, their predictive power is
questionable. Moreover, it is not clear whether or not these findings can
be attributed to physical processes or to random fluctuations in the highly
noisy earthquake catalogs. This problem can be addressed by using concep-
tual fault models which allow to simulate long earthquake sequences over at
least 1000 years. If the models are to some extent physical, the occurrence of
seismicity patterns can be studied with reasonable statistics. The main ingre-
dients of such models are the geometry of a fault region, empirically known
friction laws, quenched spatial heterogeneities, and stress and displacement
functions in accordance to dislocation theory [15, 35]. In order to allow for
detailed studies of the relations between the imposed mechanisms and the
observed seismicity functions, it is important that the number of adjustable



parameters is limited. It is emphasized that these models do not aim to re-
produce an observed earthquake catalog in detail. Instead, the main goal is
to address questions like: Why is the Parkfield segment of the San Andreas
fault characterized by relatively regular occurrence of earthquakes with mag-
nitude M ≈ 6, while on the San Jacinto fault in California the properties of
earthquake occurrence are more irregular?

Conceptual models for seismicity are mainly based on one or more solid
blocks, which are driven by a plate over a rough surface. The plate and the
blocks are connected with springs. This model can produce stick-slip motion
of the blocks, where a slip event is considered to simulate an earthquake.
The model setup allows to govern a wide range of complexity, beginning with
a single-block model which produces periodic occurrence of earthquakes of
uniform size, ending with a network of connected blocks leading to complex
sequences of earthquakes with variable size. The latter model has been pro-
posed by Burridge and Knopoff [13]. In order to reduce the computational
effort, i.e. solving coupled differential equations, the use of cellular automata
became popular [30, 36]. Mathematically, these models include maps instead
of differential equations; physically, this corresponds to instantaneously oc-
curring slip events, neglecting inertia effects. The main ingredients of such
models are (1) external driving (plate motion), and (2) sudden change of sys-
tem parameters (stress), when a critical value (material strength) is reached,
followed by an avalanche of block slips (stress drop and co-seismic stress
transfer during an earthquake). While the first process lasts for years to sev-
eral decades, the second occurs on a time scale of a few seconds. The simplest
model including these feature has been formulated by Reid [39] and is known
as Reid’s elastic rebound theory; in terms of spring-block models, this cor-
responds to a single-block model with constant plate velocity. Accounting
for spatial heterogeneity and fault segmentation, many interacting blocks, or
fault segments, have to be considered. This leads to a spatiotemporal stress
field instead of a single stress value. In general, the material strength will also
become space-dependent. Such a model framework can be treated with the
methodology of statistical physics similar to the Ising model or percolation
models [32]. In this context, large earthquakes are associated with second-
order phase transitions [45]. The view of earthquakes as phase transitions in
a system with many degrees of freedom and an underlying critical point, is
hereinafter referred to as the “critical point concept”. It is interesting to note
that the period before such a phase transition is characterized by a prepara-
tion process, or a “critical state”, e.g. in terms of growing spatial correlation
length following a power law [9]. However, depending on the parameters of a
model, different scenarios are conceivable: the system trajectory can enter the
critical state and the critical point frequently (“supercritical”) or it becomes
never critical (“subcritical”). A case of special interest is the class of models
showing self-organized criticality (SOC) [2], which have their origin in a sim-
ple cellular automaton model for a sandpile [3]. Here, the system drives itself



permanently in the vicinity of the critical point with almost scale-free char-
acteristics. Consequently, each small event can grow into a large earthquake
with some probability [19].

Long simulations of earthquake activity allow to calculate statistical fea-
tures like the frequency-size distribution with high precision. Despite the
scaling behavior (Eq. (1)) for small and intermediate earthquakes, which is
observed for all sets of model parameters, clear deviations become visible for
large magnitudes. Such deviations are known from real catalogs, but their
statistical significance is not clear in all cases. The model simulations sug-
gest that deviations from scaling for strong earthquakes can be attributed to
physical properties. One important property is the spatial disorder of brittle
parameters of the fault. The presence of strong heterogeneities suppresses
system-wide events with some probability, whereas such events can evolve
more easily on smooth faults. The degree of quenched (time-independent)
spatial heterogeneity turns out to be a key parameter for statistical and
dynamical properties of seismicity. This includes the temporal regularity of
mainshock occurrence, various aspects of stress and displacement field, and
a spontaneous mode-switching between different dynamical regimes without
changing parameters. It is interesting that the degree of heterogeneity can
act as a tuning parameter that allows for a continuous change of the model
dynamics between the end-member cases of supercritical and subcritical be-
havior. Such a dependence, which is observed also for other parameters, can
be visualized in phase diagrams similar to the phase diagram for the different
aggregate states of water. For increasing complexity of a model, the number
of axis of the phase diagram, representing the relevant model parameters,
will increase. The above mentioned question of distinguishing different faults
like the Parkfield segment and the San Jacinto fault can be rephrased to the
problem of assigning the faults to different points in such a diagram. An im-
portant step in this direction is the physical modeling of observed seismicity
patterns like aftershocks (Eq. (2)), foreshocks, and the acceleration of seis-
mic energy release before large earthquakes. The latter phenomenon which
is known to occur over large regions including more than one fault, can be
interpreted in terms of the approach towards a critical point. This view is
supported by an observational study of the growth of the spatial correlation
length which is a different aspect of the same underlying physics.

In Section 2, the physical fault model is developed. Results from numerical
simulations are presented and discussed in Section 3. A summary is given in
Section 4.

2 Modeling seismicity in real fault regions

Numerous conceptual models have been used to simulate seismic cycles (see
e.g. [8,13,22,26,36] and references therein). These include spring-block models
and continuous cellular automata, which are so-called “inherently discrete”



models; that is, they are not obtained by discretizing the differential equations
from a continuous model – the discreteness is an inherent feature of the
imposed physics. In this section, we focus on the question, how the framework
of conceptual models can be adjusted in order to simulate seismicity of a real
fault region, e.g. the Parkfield segment of the San Andreas fault in California.

2.1 Fault geometry and model framework

A first constraint for a specific model is to include the geometry of the fault
segment. As shown in Fig. 2, the region of Parkfield is characterized by a
distribution of fault segments, which have in good approximation the same
orientation. It is therefore reasonable to map these segments in the model
on a straight line from SE to NW. Using a similar procedure in depth leads
to a rectangular fault plane. The dimensions of the fault segment are chosen
to be 70km in length and 17.5km in depth. As discussed in [8], this geome-
try corresponds approximately to the San Andreas fault near Parkfield. It is
emphasized that the plate boundary is assumed to have infinite length, but
the brittle processes are calculated on the above defined segment of finite
length. The discretization of the plane is imposed by a computational grid
with 128 × 32 computational cells of uniform size, where stress and slip are
calculated. The size of the computational cells is not determined by observa-
tional findings, rather it depends on the magnitude range under consideration
and the computational effort; a single cell would correspond to a single mag-
nitude. A higher resolution of the grid increases the magnitude range, because
the magnitude is calculated from the slip of all cells during an earthquake.
The degree of complexity as a function of the model geometry is determined
by the resolution of the computational grid. A change of the physical dimen-
sions leads only to a rescaling of time and magnitude axis. Following [8], the
material surrounding the fault is assumed to be a homogeneous elastic half
space of infinite size, which is characterized by two quantities:

1. The elastic properties are expressed by the Lamé constants λ and µ, which
connect stress and strain in Hook’s law. For many rocks, these constants
are almost equal; therefore we use λ = µ, denoting µ as the rigidity.
An elastic solid with this property is called a Poisson solid. Because the
strain is dimensionless, µ has the same dimension as the stress. In the
present study, we use µ = 30GPa.

2. The (static) Green’s function G(y1,y2) defines the static response of the
half space at a position y1 on a displacement at y2, which may arise from
(coseismic) slip or (aseismic) creep motion. Due to the discretization of
the fault plane into computational cells, we use the Green’s function for
static dislocations on rectangular fault patches of width dx and height
dz, which is given in [15] and [35]. For a model including a single vertical
fault, the Green’s function is calculated only on a plane: G(x1, z1;x2, z2),
where x and z denote the coordinates along strike and in depth (for



a sketch see Fig. 1(a)). Further reduction of the computational effort is
given by the symmetry along strike G(x1, z1;x2, z2) = G(|x1−x2|, z1, z2).
Therefore, x2 = 0 can be used without loss of generality and the Green’s
function has the following form:

G(x1, z1; 0, z2) =
µ

2π
·

4∑

i=1

σi ·
[
2

3
(εi

A + εi
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2
εi
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]
. (3)

The sign σi is defined by

σ1 = 1 σ2 = −1
σ3 = −1 σ4 = 1.

(4)

With the notation

t1 = dx/2 − x1 t2 = dx/2 − x1

t3 = −dx/2 − x1 t4 = −dx/2 − x1
(5)
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(6)
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(7)
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Fig. 1. (a) Sketch to illustrate the terms in Eq. (3)-(8); (b) Sketch of the fault
model framework.



The main difference of this Green’s function to the nearest-neighbor in-
teraction of spring-block models is the infinite-range interaction following
a decay according to 1/r3, where r is the distance between source cell and
receiver point.

A sketch of the fault model framework is given in Fig. 1(b).
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Fig. 2. (a) Distribution of faults in the Parkfield (California) region; (b) fault region
in the model.

2.2 Plate motion

The motion of the tectonic plates, indicated in Fig. 2, is responsible for the
build-up of stress in the fault zone. Satellite-based measurements of surface
displacements allow to estimate the velocity of the plates. For the San An-
dreas fault, a value of vpl = 35mm/year as a long-term average is widely ac-
cepted and is therefore adopted for the model [42]. The displacement ∆u(i, j)
of a cell with coordinate i along strike and j in depth during a time period
∆t is simply ∆u(i, j) = vpl ·∆t. While the average slip rate u̇ is independent
of the location of the cell, the stress rate τ̇ depends on space. The assumption
that the fault zone is embedded in a medium which performs constant creep,
suggests that cells at the boundaries of the grid are in general higher loaded
than cells in the center of the grid. The properties of the elastic medium are
determined by the Green’s function G(i, j; k, l), which defines the interaction
of points (i, j) and (k, l) in the medium. In particular, the stress response at
a position (i, j) on a static change of the displacement field ∆u(k, l) is given
by

∆τ(i, j) = −
∑

(k,l)∈halfspace

G(i, j; k, l) ·∆u(k, l), (9)

where the minus sign stems from the fact that forward (right-lateral) slip of
regions around a locked fault segment is equivalent to back (left-lateral) slip



of the locked fault segment. Taking into account that

∑

(k,l)∈halfspace

G(i, j; k, l) = 0, (10)

Eq. (9) can be written as

τ(i, j; t) = −
∑

(k,l)∈halfspace

G(i, j; k, l) · [u(k, l; t) − vplt], (11)

where u(k, l; t) is the total displacement at position (k, l) and time t since the
begin of the simulation. Because the surrounding medium performs stable
sliding, u(k, l; t) = vplt for (k, l) /∈ grid, the slip deficit outside the fault region
vanishes and it is sufficient to perform the summation on the computational
grid:

τ(i, j; t) =
∑

(k,l)∈grid

G(i, j; k, l) · [vplt− u(k, l; t)]. (12)

Equation (12) can be decomposed in a part for the tectonic loading and
a residual part for other processes, especially coseismic slip. The tectonic
loading follows the formula

τload(i, j; t) = γ(i, j) · t (13)

with the space-dependent, but time-independent loading rate

γ(i, j) = vpl ·
∑

(k,l)∈grid

G(i, j; k, l). (14)

2.3 Friction and coseismic stress transfer; quasidynamic

approach

It is widely accepted that most earthquakes are due to frictional processes on
pre-existing faults. The friction is therefore an important empirical ingredient
of a fault model [43]. Numerous laboratory experiments have been carried
out to characterize frictional behavior of different materials (see e.g. [14]).
An important finding is that the friction defined as the ratio of shear stress
τshear and normal stress τnormal, µf = τshear/τnormal at the initiation of slip,
is approximately constant for many materials; the value of µf lies between 0.6
and 0.85. This observation, known as Byerlee’s law, is related to the Coulomb
failure criterion [11] for the Coulomb stress CS,

CS = τshear − µfτnormal. (15)

The Coulomb stress depends on a plane, where shear stress and normal stress
are calculated. The Coulomb criterion for brittle failure is

CS ≥ 0, (16)



which is for CS = 0 Byerlee’s law.
The North-American plate and the Pacific plate move in opposite di-

rection along the fault plane performing strike-slip motion. The absence of
normal and thrust faulting reduces the problem to a one-dimensional mo-
tion: all parts of the fault move along the fault direction. The stress state of
the fault is fully determined by the shear stress τxy in the coordinates given
in Fig. 2(b). Slip is initiated, if τxy exceeds µfτyy. This quantity, which is
called the material strength or static strength τs, is constant in time, if µf

is assumed to be constant. Note that the normal stress on a strike-slip fault
does not change [1]. The shear stress τxy will be denoted simply by τ . In this
notation, the failure criterion Eq. (16) reduces to

τ ≥ τs. (17)

When a cell (k, l) fails, the stress drops in this cell to the arrest stress τa:

τ(k, l) → τa, (18)

with a constant value τa, which may become space-dependent later. In terms
of slip, this corresponds to a displacement

∆u(k, l) =
τ(k, l) − τa
G(k, l; k, l)

(19)

with the self-stiffness G(k, l; k, l) of cell (k, l).
The observational effect of dynamic weakening includes also a strength

drop from the static strength to a lower dynamic strength:

τs → τd. (20)

In particular, slipping material becomes weaker during rupture and recovers
to the static level at the end of the rupture. This behavior of the strength is
known as the static-kinetic friction law.

The values τs, τd, and τa are connected by the dynamic overshoot coeffi-
cient D:

D =
τs − τa
τs − τd

. (21)

Motivated by elastodynamic model simulations, Madariaga [31] proposesD =
1.25, which is used to constrain the choice of these values in our model.

The redistribution of the stress release ∆τ(k, l) = τ(k, l) − τa from cell
(k, l) to a point (i, j) at time t is

τ(i, j; t) = G(i, j; k, l) · δ
(
t− r(i, j; k, l)

vs

)
· τ(k, l) − τa
G(k, l; k, l)

, (22)

where δ(x, y) denotes the δ-function, which is 1 for x = y and 0 else; vs is the
constant shear-wave velocity, and r(i, j; k, l) is the distance between source



cell (k, l) and receiver position (i, j). That is, cells far from the slipping cell
receive their stress portion later than cells close to the slipping cell. The
value of vs is assumed to be constant. Each “stress transfer event” denotes an
instantaneous transfer of a stress ∆τ from a source cell (k, l) to a receiver cell
(i, j) at time t. This time-dependent stress transfer is called the quasidynamic
approach in contrast to the quasistatic approach used in most of the similar
models.

The evolution of stress and strength in a cell, where an earthquake is ini-
tiated (hypocenter cell), is shown in a sketch in Fig. 3. When the earthquake
is initiated, the stress and the strength drop. Due to coseismic stress transfer
during the event, the cell may slip several times, before the earthquake is
terminated and instantaneous healing takes place in all cells. The piecewise
constant failure envelope (dashed line) indicates static-kinetic friction.
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Fig. 3. Pictorial evolution of stress (solid line) and strength (dashed line) of a
hypocenter cell in the quasidynamic approach.

We note that the Green’s function leads to an infinite interaction range.
Using open boundary conditions with respect to the computational grid, the
stress release from a slipping cell is not conserved on the grid, but on the
(infinite) fault plane.

2.4 Model algorithm

Equation (19) shows the correspondence of stress and slip in our model. The
model can be formulated either by maintaining stress or by maintaining slip.
The algorithm is given for both formulations.

Stress formulation:

1. Load the fault according to Eq. (13), until the first cell is critical; that
is, the cell fulfills the failure criterion Eq. (17). Initiate earthquake.

2. Reduce stress in critical cell to τa and strength to τd. Schedule stress
transfer events according to Eq. (22) on the intra-event timescale.

3. Perform stress transfer event with the smallest time. Check whether re-
ceiver cell is critical.



(a) If no, remove current stress transfer event from the scheduler: (i) if
last stress transfer event, terminate earthquake and go to point 4; (ii)
else go back to the beginning of point 3.

(b) If yes, go to point 2.
4. Set strength to τs for all cells (instantaneous healing).

Slip formulation:

1. Load the fault according to Eq. (13), until the first cell is critical; that
is, the cell fulfills the failure criterion Eq. (17). Initiate earthquake.

2. Reduce stress in critical cell to τa and strength to τd; update coseismic
slip u → u + ∆u in this cell with ∆u from Eq. (19). Schedule stress
transfer events according to Eq. (22) on the intra-event timescale.

3. Perform stress transfer event with the smallest time. Check whether re-
ceiver cell is critical.
(a) If no, remove current stress transfer event from the scheduler: (i) if

last stress transfer event, terminate earthquake and go to point 4; (ii)
else go back to the beginning of point 3.

(b) If yes, go to point 2.
4. Set strength to τs for all cells (instantaneous healing).
5. Calculate stresses τ(i, j) of all cells after the earthquake from the initial

stresses τ(i, j; 0) and the new positions u(k, l; t):

τ(i, j; t) = τ(i, j; 0) +
∑

(k,l)∈grid

G(i, j; k, l) · [vplt− u(k, l; t)]. (23)

2.5 Data

The model produces two types of data, earthquake catalogs and histories
of stress and displacement fields. As demonstrated below, all parameters of
the model have physical dimensions and can therefore be compared directly
with real data, where they are available. This is in contrast to most of the
slider-block and cellular automaton models.

Earthquake catalogs include time, hypocenter coordinates, and earth-
quake size. The time of an earthquake is the time of the first slip; the hypocen-
ter is determined by the position of the corresponding cell along strike and
depth. The size of an event can be described by different measures: The
rupture area A is the total area, which slipped during an earthquake. The
potency

P =

∫

grid

∆u(x, z)dxdz (24)

measures the total slip during the event and is related to the seismic moment
m0 by the rigidity: m0 = µP . The (moment) magnitude M can be calculated
from the potency using

M = (2/3) log10 (P ) + 3.6, (25)

where P is given in cm · km2.



3 Results

Numerous simulations of the model described in the previous section have
been performed. The first catalogs [60] produced by simulations have been
studied with respect to the influence of the quasidynamic approach and the
discretization of the intra-event time scale in comparison with the quasistatic
model of [8]. Then, a large fraction of the parameter space has been analyzed
to find relationships between input parameters and observed seismicity fea-
tures. In this section, a selection of key results is presented and discussed in
the light of critical states of seismicity.

3.1 Frequency-size distributions

The frequency-size (FS) distribution is one of the most important characteris-
tics of observed seismicity. For worldwide seismicity as well as for large faults
systems, this distribution is given by the Gutenberg-Richter law (Eq. (1)).
Figure 4 shows the FS distribution of California from 1970 to 2004. Here we
use the non-cumulative version of Eq. (1), where N is the number of earth-
quakes with magnitude between M and M + dM with a time bin dM .
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Fig. 4. Frequency-size distribution for California from 1970 to 2004; the dashed
line denotes a power-law fit to the data.

For individual faults or small fault systems, the FS distribution can de-
viate from Eq. (1), especially for high magnitudes. An example is given in
Fig. 5, which shows the FS distribution of the Parkfield segment (Fig. 5(a))
and for the San Jacinto fault (Fig. 5(b)) in California calculated for a time
span of 45 years. The distribution of the Parkfield segment consists of two
parts: A scaling regime for 2.2 ≤ M ≤ 4.5 and a significant “bump” for
4.5 < M ≤ 6.0. For the San Jacinto fault, the scaling range is observed for
almost all events (2.2 ≤ M ≤ 5.0). The slight decrease for M ≈ 2 in both
plots is due to lacking catalog completeness.

A FS distribution as shown in Fig. 5(a) is called a characteristic earth-
quake distribution, because of the increased probability for the occurrence of
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Fig. 5. Frequency-size distribution for two faults in California: (a) the Parkfield
segment, and (b) the San Jacinto fault calculated over 45 years.

a large (“characteristic”) event. In contrast, distributions with a broad scal-
ing regime following power-law behavior according to the Gutenberg-Richter
law, are denoted as “scale-free”, because a power law distribution indicates
the absence of a characteristic scale of the earthquake size [48]. In terms of
critical point processes, the absence of a characteristic length scale indicates
that the system is close to the critical point. In this state, earthquakes of
all magnitudes can occur, or each small rupture can grow into a large one.
Therefore, the frequency-size distribution can serve as a proxy for the current
state of a system in relation to a critical point.

In a model, the easiest way to tune the FS distribution is a variation of the
mean stress 〈τ〉 on the fault, where 〈〉 denotes the spatial average. This can
be achieved, for instance, by varying brittle properties, e.g. in terms of the
dynamic overshoot coefficient D (Eq. (21)), or by introducing dissipation [21,
60]. Figure 6 shows FS distributions for two different values of D, first D =
1.25 (Fig. 6(a)) from [31], and second a higher value D = 1.67 (Fig. 6(b)).
While Fig. 6(a) follows a characteristic earthquake behavior similar to the
Parkfield case (Fig. 5(a)), Fig. 6(b) resembles the shape of the FS distribution
of the San Jacinto fault (Fig. 5(b)).

As an outcome, three cases can be distinguished by means of a critical
mean stress τcrit:

1. subcritical fault (〈τ〉 < τcrit): the mean stress on the fault is too small
to produce large events. The system is always far from the critical point.
The FS distribution is a truncated Gutenberg-Richter law.

2. supercritical fault (〈τ〉 > τcrit): the mean stress is high and produces
frequently large events. After a large earthquake (critical point), the stress
level is low (system is far from the critical point) and recovers slowly
(approaches the critical point). The FS distribution is a characteristic
earthquake distribution.

3. critical fault (〈τ〉 ≈ τcrit): the system is always close to the critical point
with scale-free characteristics. The FS distribution is a Gutenberg-Richter
law with a scaling range over all magnitudes.
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Fig. 6. Frequency-size distribution for model realizations with different dynamic
overshoot coefficients (Eq. (21)): panel (a) D = 1.25, panel (b) D = 1.67.

This result demonstrates that, for isolated faults, the Gutenberg-Richter
law is not the rule, but the exception. If the FS distribution is plotted as a
function of the parameters controlling 〈τ〉, the result can be visualized by a
phase diagram [16,21, 60, 61].

While it is obvious that the mean stress drop 〈∆τ〉 ≈ 〈τs − τa〉 controls
the mean stress 〈τ〉 on the fault, it has also been found that the spatial
distribution of the stress drop has significant influence on the FS distribution.
In [61], it is demonstrated that the degree of spatial disorder of the stress drop
acts as a tuning parameter for the FS distribution and can thus be added as
an independent axis in a phase diagram.

3.2 Temporal occurrence of large earthquakes

The finding that quenched spatial heterogeneities have influence on the rup-
ture propagation suggests that also temporal clustering properties will be
affected. While the end member case of a smooth fault produces regular oc-
currence of events, it can be assumed that a strongly disordered fault will
show irregular earthquake occurrence. In Fig. 7, we focus on the regularity of
the largest earthquakes in a simulation, e.g. earthquakes with M ≥ 5.7, for
two different degrees of spatial disorder. Each plots is based on an earthquake
sequence covering 1000 years. Figure 7(a) corresponds to a smooth fault and
Fig. 7(b) to a rough (disordered) fault; the ordinate has no meaning. Although
no strictly periodic mainshock occurrence is observed, the sequence for the
smooth fault (Fig. 7(a)) is characterized by relatively regular mainshock se-
quences. In contrast, the sequence for the highly disordered fault Fig. 7(b)
shows a more disordered and clustered behavior. It is interesting to note that
sequences similar to the Parkfield sequence can be found in Fig. 7(a), e.g. be-
tween t ≈ 600years and t ≈ 720years, where an almost periodic mainshock
sequence is followed by a gap before the next large event occurs. This resem-
bles the most recent Parkfield event on September 28, 2004, which occurred
16 years after it was predicted based on the approximate period of 22 years
for M6 events on this fault segment.



A more quantitative measure for temporal clustering properties of earth-
quake sequences is the coefficient of variation [57]

CV = σ∆t/〈∆t〉 (26)

calculated for the interevent-time distribution, where σ∆t is the standard de-
viation and 〈∆t〉 the mean value of the interevent-time distribution. High
values of CV denote clustered activity, while low values represent quasiperi-
odic occurrence of events. The limit case CV = 1 corresponds to a random
Poisson process [17]. Figure 8 shows CV as a function of the earthquake
magnitude for a relatively smooth fault. The figure demonstrates that the
degree of temporal regularity increases for growing earthquake sizes. In [61],
the coefficient of variation is calculated for different degrees of spatial disor-
der. The results support the relationship between disorder and CV suggested
by Fig 7.

(b)

(a)

Fig. 7. Mainshock sequence from model simulations of a smooth fault (panel (a))
and a rough fault (panel (b)). The plots show earthquakes with M ≥ 5.7; the
ordinate has no meaning.

3.3 Aftershocks and foreshocks

The most pronounced pattern in observed seismicity is the emergence of
strongly clustered aftershock activity following a large earthquake. Apart
from the Omori law (Eq. (2)), it is widely accepted that aftershocks are
characterized by the following properties:

1. The aftershock rate scales with the mainshock size [38].
2. Aftershocks occur predominantly at the edges of the ruptured fault seg-

ments [49].
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3. B̊ath’s law [4]: The magnitude of the largest aftershock isMm−D1, where
Mm is the mainshock magnitude and D1 ≈ 1.2.

Deviations from the Omori law, especially for rough faults, are discussed
in [33]. While aftershocks are observed after almost all large earthquakes,
foreshocks occur less frequent [51]. As a consequence, much less is known
about the properties of these events. Kagan and Knopoff [29] and Jones and
Molnar [28] propose a power law increase of activity according to an “inverse”
Omori law.
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Fig. 9. Earthquakes before and after a mainshock: (a) the M7 Landers (California)
earthquake; (b) M7 earthquake in the basic version of the model.

Figure 9(a) shows an example for the aftershock sequence following the
M7 Landers earthquake in California on June 28, 1992. An earthquake of
similar size generated by the model is given in Fig. 9(b). The absence of
aftershocks in the simulation is clearly visible. The reason for the lack of
aftershocks is the unloading of the fault resulting from the mainshock: When
a large fraction of the fault has ruptured, the stress in this region will be
close to the arrest stress after the event. Consequently, the seismic rate will
be almost zero until the stress field has recovered to a moderate level.



It is not surprising that a model which imposes only tectonic loading and
coseismic stress redistribution, produces no aftershocks, because it is likely
that aftershocks are due to additional mechanisms triggered by the main-
shock. A discussion on candidates for such mechanisms is given in [58].
A common feature is the presence of postseismic stress which generates
aftershock activity. In [22], for instance, postseismic stress has been at-
tributed to a viscoelastic relaxation process following the mainshock. In the
present work, continuous creep displacement following the constitutive law
u̇creep(i, j; t) = c(i, j) · τ3(i, j; t) with space dependent, but time-independent
creep coefficients c(i, j) is assumed [5]. Additionally, the computational grid
is divided by aseismic barriers from the free surface to depth into a couple of
seismically active fault segments. As discussed in [58], this modification re-
sults in a concentration of stress in the aseismic regions during rupture and,
subsequently in a release of stress after the event according to the coupled
creep process. This stress release triggers aftershock sequences obeying the
Omori law (Eq. (2)). A typical aftershock sequence after a M6.8 event is
shown in Fig. 10(a). According to B̊ath’s law, the strongest aftershock has
the magnitude M = 5.5. The sequence shows also the effect of secondary
aftershocks, namely aftershocks of aftershocks [47]. The stacked earthquake
rate as a function of the time after the mainshock is given in Fig. 10(b). In
this case, where the barriers are characterized by creep coefficients, which are
by a factor of 105 higher than the creep coefficients in the seismic patches, a
realistic Omori exponent of p = 1 is found.
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Fig. 10. (a) Earthquakes before and after a mainshock with M = 6.8 in the mod-
ified model; (b) Earthquake rate as a function of time for the model with seismic
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mainshocks. A fit of the Omori law (Eq. (2)) with p = 1 is denoted as a solid line.
The dashed line gives the estimated background level of seismicity.

Aftershock sequences like in in Fig. 10(a) emerge after all large events
in the extended model. In contrast, there is no clear foreshock signal visible
in single sequences. However, stacking many sequences together, unveils a



slight increase of the earthquake rate prior to a mainshock supporting the
observation of rarely occurring foreshock activity. An explanation of these
events can be given in the following way: Between two mainshocks, the stress
field organizes itself towards a critical state, where the next large earthquake
can occur. This critical state is characterized by a disordered stress field and
the absence of a typical length scale, where earthquakes of all sizes can oc-
cur. The mainshock may occur immediately or after some small to moderate
events. The latter case can be considered as a single earthquake, which is in-
terrupted in the beginning. This phenomenon of delayed rupture propagation
has already provided a successful explanation of foreshocks and aftershocks
in a cellular automaton model [23, 25].

The hypothesis that foreshocks occur in the critical point and belong, in
principle, to the mainshock, can be verified by means of the findings from
Section 3.1. In particular, the frequency-size distribution in the critical point
(or close to the critical point) is expected to show scale-free statistics. If an
overall smooth model fault following characteristic earthquake statistics is
studied over a long time period, the approach of the critical point can be
calculated precisely in terms of a change of the frequency-size distribution
towards Gutenberg-Richter behavior. This change of frequency-size statistics
is observed in the model (Fig. 11) and supports thus the validity of the critical
point concept [57].
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3.4 Accelerating moment release

In the previous section, it has been argued that large earthquakes are asso-
ciated with a critical point and the preparation process is characterized by
increasing disorder of the stress field and increasing tendency to scale-free
characteristics in the frequency-size distribution. Further support for criti-
cal point dynamics has been provided by the observational finding of [12]



that the cumulative Benioff strain ΣΩ(t) follows a power law time-to-failure
relation prior to the M7 Loma Prieta earthquake on October 17, 1989:

ΣΩ(t) =

N(t)∑

i=1

√
Ei = A+B(tf − t)m (27)

Here, Ei is the energy release of earthquake i, and N(t) is the number of
earthquakes before time t; tf is the failure time and A,B and m > 0 are
constants. The systematic study of [10] verifies this behavior also for other
large earthquakes in California. Similar studies for numerous seismically ac-
tive regions followed (see [56] and references therein).

The time-to-failure relation Eq. (27) has been proposed by [41] and [46]
from the viewpoint of renormalization theory. Moreover, they demonstrated
that a complex exponent m = α + iβ results in an additional term of log-
periodic oscillations decorating the power-law increase of ΣΩ(t). This law
has been fitted by [46] to the data of [12]. Although the fit shows good
agreement with the data, there is no evidence that this concept is feasible for
the prediction of earthquakes so far. In particular, the fit operates with a large
number of free parameters including amplitude and phase of the fluctuations
and a cutoff time. Therefore, Eq. (27) with real m will be used to describe
accelerating moment release in this study.

Similar to the findings about foreshocks, this pattern is not universal.
Therefore, a stacking procedure is adopted in order to obtain robust results
on the validity of Eq. (27) in the model. This is not straightforward, since the
interval of accelerating moment release is not known a priori and the duration
of a whole seismic cycle, as an upper limit, is not constant. To normalize the
time interval for the stacking, the potency release (Eq. (24)) is computed as
a function of the (normalized) stress level (Fig. 12). Taking into account that
the stress level increases almost linearly during a large fraction of the seismic
cycle, the stress level axis in Fig. 12 can effectively be replaced by the time
axis leading to a power-law dependence of the potency release on time. The
best fit is provided with an exponent s = −1.5. Transforming the potency
release to the cumulative Benioff strain (Eq. (27)), results in an exponent
m = 0.25 in Eq. (27). This finding is based on a simulation over about
5000 years; the exponent is in good agreement with the theoretical work of
Rundle et al. [40], who also derive m = 0.25 from a spinodal model, and
the analytical result of m = 0.3 in the damage mechanics model of Ben-Zion
and Lyakhovsky [6]. An observational study of California seismicity finds m
between 0.1 and 0.55 [10].

4 Summary and conclusions

The present work deals with the analysis, the understanding and the in-
terpretation of seismicity patterns with a special focus on the critical point



 10

 100

 1000

 0.01  0.1  1

<
 p

ot
en

cy
 >

stress level   (max-x)/(max-min)

~ (max-x)^(-1.5)

Fig. 12. Mean potency release (Eq. (24)) as a function of the stress level. The stress
level is normalized to the maximum (max) and minimum (min) observed stress.

concept for large earthquakes. Both, physical modeling and data analysis are
employed. This study aims at practical applications to model data and earth-
quake catalogs from real fault systems. A point of particular interest is the
detection of phenomena prior to large earthquakes and their relevance for a
possible prediction of these events. While aftershocks are an almost universal
phenomenon, there is no precursor obeying a similar degree of universality.
It is, therefore, interesting to study less frequent precursory phenomena by
means of long model simulations.

For this aim, we use a numerical model which is on the one hand to
some degree physical, and on the other hand simple enough that it allows
to perform long simulations. The basic version of the model consists of a
segmented two-dimensional strike-slip fault in a three-dimensional elastic half
space and is inherently discrete, because it does not arise from discretizing a
continuous model.

The results of the simulations indicate an overall good agreement of the
synthetic seismicity with real earthquake activity, with respect to frequency-
size distributions and various features of earthquake sequences. An important
role for the characteristics of a simulated catalog seems to play the degree of
spatial heterogeneity on the fault, which is implemented by means of space-
dependent brittle parameters. Smooth faults are governed by characteristic
earthquake statistics, regular occurrence of mainshocks and overall smooth
stress fields. On the other hand, rough faults obey scale-free Gutenberg-
Richter statistics, irregular mainshock occurrence, and overall rough stress
fields. A closer look at the disorder of the stress field shows, however, that
even on a smooth fault a gradual roughening takes place when the next large
earthquake is approached. This is reflected in the frequency-size distribution
which evolves towards the Gutenberg-Richter law. Such a state is denoted as
a critical state of seismic dynamics. This finding allows to establish a rela-
tion between the closeness to the underlying critical point, the (unobservable)
stress field, and the (observable) frequency-size distribution. Moreover, the
concepts of “self-organized criticality” and the “critical earthquake concept”



can be interpreted as special cases of a generalized concept, which is further
supported by the observation of accelerating moment release and growing
spatial correlation length prior to large earthquakes [53–56].

We conclude that a multiparameter approach including parameters re-
lated to different seismicity patterns is promising for the improvement of
seismic hazard assessment.
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24. S. Hainzl, G. Zöller, J. Kurths, J. Zschau: Geophys. Res. Lett. 27, 597 (2000)
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60. G. Zöller, M. Holschneider, Y. Ben-Zion: Pure Appl. Geophys 161, 2103 (2004)
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1 Introduction

Ecological systems and their component biological populations exhibit a
broad spectrum of non-equilibrium dynamics ranging from characteristic nat-
ural cycles to more complex chaotic oscillations [1]. Perhaps the most spec-
tacular example of this dynamic is Ecology’s well known hare-lynx cycle.
Despite unpredictable population fluctuations from one cycle to the next
in the snowshoe hare (Lepus americanus) and the Canadian lynx (Lynx
canadensis), the overall oscillation tends to follow a tight rhythm with a
period of ∼ 10 years. Curiously, hare-lynx populations from different regions
of Canada synchronize in phase to a collective cycle that manifests over mil-
lions of square kilometers [2–6]. Similar spatially synchronized fluctuations
have been observed across widely separated sites for many other ecological
populations and are also prominent in the dynamics of many biological, eco-
logical and epidemiological contexts and may involve disparate animal taxa
across widely separated sites [6, 7]. The underlying causes of such popula-
tion cycles, which persist in time and are synchronised over space, remain a
longstanding enigma.

The spontaneous onset of synchronization, as exhibited by the lynx pop-
ulations over Canada, is one of the most remarkable phenomena found in bi-
ological systems and relies on the coordination and interaction among many
scattered organisms. Synchronization arises in a large class of systems of
various origins, ranging from physics and chemistry to biology and social
sciences. Examples include swarms of fireflies that flash in unison, crickets
that chirp in synchrony, and synchronous firing cardiac pacemaker cells. The
presence, absence or degree of synchronization can be an important part of
the function or malfunction of a biological system, as for example epileptic
seizures or heart fibrillation. In ecology, the synchronization of populations is
often seen as detrimental to spatially structured populations. This is because
asynchrony enhances the global persistence of a population through rescue
effects, even when there are local extinctions.

Many hypotheses have been advanced to explain the causes of spatially
synchronized population oscillations [8,9]. Moran [5] suggested that extrinsic
large-scale climatic forcing may often be responsible for entraining popula-
tions over vast geographic distances [10]. Intrinsic predator-prey and consumer-
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Fig. 1. Relative frequency of predator fish selachian at the market of Fiume during
and after WWI (data from Kot (2001)).

resource relationships within the foodweb, including density dependent and
time-delayed effects, may also be responsible for generating population cy-
cling, with local migration enhancing spatial synchronization [4,6]. The plethora
of ecological processes at work underscores the need to develop determinis-
tic conceptional models capable of realistically reproducing these complex
population dynamics. Simply formulated robust foodweb models are able to
achieve this goal and provide the necessary framework for studying ecological
synchronization and pattern formation effects.

2 Predator prey systems and oscillations

2.1 The Lotka-Volterra model - does war favour sharks?

Historically the mathematical description of predator-prey systems goes back
to the times of the first World War. The Italian biologist Umberto D’Ancona
made the observation that in the years after the war the proportion of preda-
tory fishes, which were caught in the Upper Adriatic Sea, was found to be
considerably higher than in the years before the war (see Fig. 1). Obviously,
during the war fishery in the Adriatic had been strongly reduced. However,
it was unclear why this should give benefit to the predatory compared to the
prey fish. In other words, why should war favor sharks? D’Ancona (Volterra’s
future son in law) put the question of this unexpected side-effect of war to
Vito Volterra, who set up the following model to describe the dynamics of
the predator and prey species

Ṙ = aR− k1RN

Ṅ = −bN + k2RN. (1)
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Fig. 2. Predator-prey cycles in Lotka-Volterra system (1). Left: neutrally stable
center in the phase plane. Oscillations are seen as closed loops of orbits around
the center. Different initial values lead to different trajectories. Right: typical time
series of predator N(t) (solid line) and of prey R(t) (dotted line).

In these equations, N is the predator and R is the prey species. It is assumed
that the dynamics of the prey and predator populations in the absence of the
other species is given by exponential growth Ṙ = aR or decay Ṅ = −bN .
Predation is taken into account in the form of a mass action RN term with
rates k1 and k2. Model (1) became famous as the Lotka-Volterra model [11]
(some of the work of Volterra was preceded by that of Alfred J. Lotka in a
chemical context [12]).

The model contains two fixed points: the trivial equilibrium (R∗, N∗) =
(0, 0) where both predator and prey disappear and the feasible equilibrium
(R∗, N∗) = (b/k2, a/k1). Interestingly, in the feasible equilibrium the abun-
dance of the predator or prey population is independent of their own respec-
tive growth or death rates but instead is set by the productivity of the other
species. Stability analysis reveals that the trivial equilibrium is a saddle point
and the feasible equilibrium is a neutrally stable center with purely imagi-
nary eigenvalues λ1,2 = ±i

√
ab. As a consequence, solutions show oscillations

around the center point with a frequency that is given by the square root
of the growth and death terms ω =

√
ab (as shown in Fig. 2). The intu-

itive explanation for the origin of the oscillations are delayed predator-prey
interactions. Assume that initially there are not many predators. Then, at
first, the prey population is rising. With increasing prey abundance also the
growth condition for the predators is improving and after a typical time de-
lay predator numbers begin to grow. However with sufficiently predators to
cash in, the prey numbers become decimated, which again is followed by a
decrease of the predators since they have overexploited their own food. Now
with small predation pressure prey numbers are on the rise again, and the
cycle repeats anew.

Going back to D’Ancona’s problem of inhibited fishing in the Adria, we
include the effects of fishing into the Lotka-Volterra model (1) by introducing



a linear loss term with harvesting rate h for both predator and prey species

Ṙ = aR− k1RN − hR

Ṅ = −bN + k2RN − hN. (2)

These equations correspond exactly to the original model (1), however with
reduced prey birth rate, a− h, and increased predator mortality, b+ h. Con-
sequently, with the inclusion of fishing the feasible equilibrium reads

R∗(h) =
b+ h

k2
, N∗(h) =

a− h

k1
. (3)

Thus, under fishing pressure the equilibrium level of the prey is increasing
whereas that of the predator is reduced. This result is known as Volterra’s
principle: whenever the population sizes of predator and prey determine each
other, a reduction of the growth rates (e.g., by harvesting) leads to an increase
of the prey and a decrease of the predator population. Strictly speaking, this
principle holds only for the equilibrium values, whereas the typical model
dynamics are oscillatory. However, by separation of variables in the equations
(1) one can easily show that the equilibrium value in the Lotka-Volterra model
equals the time average over one period

R∗ =
1

T

∫ τ+T

τ

R(t) dt, N∗ =
1

T

∫ τ+T

τ

N(t) dt. (4)

The principle of Volterra provides an answer to the unexpected dynamics
of the predator fish numbers in the Adriatic Sea. The predator abundance
during the war (low fishing) corresponds to the unperturbed model, whereas
after, or before, the war, with the onset of fishing according to Eq. (3), preda-
tor numbers must be reduced. Volterra’s principle has been confirmed by
some catastrophic failures in insect pest control. Pesticides usually act not
only on the pest species but also, with even stronger impact, on their natural
enemies, the predators. Thus often, although the pesticide does indeed hurt
the prey, it is simultaneously reducing the predator numbers with an, even
larger, positive secondary influence on the prey. As a result of this indirect
effect treatment can counterintuitively lead to an effective increase of the pest
species.

2.2 The Rosenzweig-MacArthur model

Being able to provide a theoretical explanation for the commonly observed
predator-prey oscillations and also by predicting the effects of harvesting in
such systems, the Lotka-Volterra equations constitute one of the first big
successes of Theoretical Ecology. However, the same model later was heavily
criticized for a number of disturbing drawbacks, all of which can be traced
back to the neutral stability of the feasible equilibrium. As shown in Fig.2,
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Fig. 3. Phase portrait of the modified Lotka-Volterra models in the (R, N)-phase
plane (solid lines). Graphical analysis revolves around plotting the isoclines in the
prey-predator phase plane that denote zero-growth of the model predator and prey
populations [13] (dashed lines). a) Nonlinear density dependence g(R) leads to a
decreasing prey isocline and is stabilizing. b) Type-II functional response f(R) gives
rise to an increasing prey isocline and is destabilizing.

the amplitude of oscillation depends on the initial values, meaning that in
contrast to ecological observation there is no typical amplitude of the solution.
Even more disturbing, from a theoretical point of view, is the structural
instability of the model due to the nonhyperbolic fixed point, which means
that the oscillatory solutions are destroyed by arbitrarily small changes in
the structure of the model.

To overcome these shortcomings, modified predator-prey models were
sought for which should improve the most important oversimplifications of
the Lotka-Volterra model. In general, the dynamics of two populations, which
are coupled by predation, can be generalized as follows

Ṙ = g(R) − f(R)N

Ṅ = −bN + χf(R)N. (5)

These equations contain two functional relationships which take into account
for saturation effects with increasing prey density R. The first term g(R) de-
scribes the density dependence of the prey growth due to intraspecific com-
petition. The second term f(R), the so-called functional response, models the
saturation of the food uptake with the density of the prey. The parameter χ
describes the efficiency of energy conversion and b is the predator mortality.

To analyze the possible dynamic outcomes of model (5) we study both
possible model modifications separately. At first we only consider a nonlinear
density dependence using a logistic growth for the prey g(R) = aR(1 − R

K )
with carrying capacity K, while the uptake function remains linear f(R) =
kR (type-I functional response). The modified dynamics can be understood
from the geometry of the iscoclines in phase space. The R-isocline (obtained
by setting Ṙ = 0) leads to a straight line with negative slope in phase space
N = a

k (1 − R
K ), whereas the N -isocline (Ṅ = 0) is a vertical line R = b/(χk)

(see Fig.3a). Compared to the basic model (1), nonlinear density dependence



leads to a change of the R-isocline from a horizontal to a tilted straight line,
with a slope that depends on the carrying capacity K. As an effect, the
rotating trajectory is ‘squeezed’ in phase space and finally results in damped
rotations, for every value of K. In this way, the introduction of arbitrarily
weak nonlinear density dependence destroys the Lotka-Volterra oscillations,
i.e., it has a stabilizing effect.

Now we keep the prey growth rate linear g(R) = aR but instead use a
more realistic type-II functional response, f(R) = kR/(KM +R), to describe
the food-uptake. As shown in Fig.3b again the N -isocline is a vertical line,
but the R-isocline N = a

k (KM + R) is now a straight line with increasing
slope. This has the consequence that the rotating trajectory is increasing
in amplitude. Thus, the effect of a functional response is to destabilize the
Lotka-Volterra oscillations.

As revealed by Fig.3 both modification types of the original Lotka-Volterra
model (1) have a profound impact on the dynamics. Using a more realistic
description for the prey growth destroys the oscillations, while a saturation
of the food uptake is destabilizing. So the question remains what are the
minimal requirements to come up with a model that is able to show ro-
bust fluctuating population numbers. It was the insight of Rosenzweig and
MacArthur [14] that the solution is to simultaneously include both antago-
nistic model modifications, i.e., both stabilizing and destabilizing forces, into
the model, which leads to the following equations

Ṙ = aR(1 − R

K
) − kN

R

KM +R

Ṅ = −bN + χkN
R

KM +R
. (6)

As demonstrated in Fig.4 the Rosenzweig-MacArthur model (6) can give
rise to self-sustained oscillations and limit cycle behaviour. This becomes ap-
parent by examination of the models isoclines. In the model (6), including
both logistic prey growth and Holling type-II functional response, the prey
isocline is given by the parabola N = a

k (1 − R
K )(KM +R). Stability depends

on whether the intersection between the two isoclines in phase space occurs
in the increasing or the decreasing branch of the parabola (see Fig. 4). This
is evident, for example, by studying the effect of enrichment in the predator-
prey model (6), i.e. by increasing the carrying capacity K and so allowing
the prey to grow to higher densities in the absence of predators [15]. As
demonstrated in Fig.4 increasing the availability of resources will destabilize
the community dynamics from a stable equilibrium to oscillatory dynamics.
The phenomenon has been coined as the “paradox of enrichment” [15–17].
Attempts to establish the destabilizing effects of resource enrichment in ex-
periments or in the wild met with only partial success [18]. This indicates
that real communities respond to enrichment in a more complicated way
than simple models suggest. Environmental conditions and properties of the
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Fig. 4. Enrichment in the Rosenzweig-MacArthur model (6) with logistic prey
growth and Holling type-II functional response. Plotted are typical trajectories
(solid lines) in the (R,N)-phase plane for increasing values of the carrying capacity
K (from left to right) and corresponding isoclines (dotted lines). Left) For small
values of K the intersection occurs in the right, decreasing portion of the prey iso-
cline, and the equilibrium is locally stable. Middle) Critical enrichment gives rise to
a neutrally stable center, similar to the Lotka-Volterra model (see Fig. 2). Right)
With sufficient enrichment K > Kcr the intersection occurs in the left, increas-
ing branch of the prey isocline and mark unstable equilibria, leading to limit cycle
dynamics.

community (web-like structure, shift to inedible prey) have been offered as
explanations for why communities might fail to destabilize as a consequence
of enrichment [18]. Here, we provide a different explanation based on a hid-
den supersensitivity to model structure which is contained in the general
predator-prey model (5) [19].

A loophole to structural instability The classical Rosenzweig-MacArthur model
(6) is probably the simplest formulation of a trophic community to pro-
duce realistic predator-prey cycles. However, as is the case for most bio-
logical processes, the exact analytical form of the functions, which are in-
volved in the model such as the functional response f(R), are not known.
In praxis, therefore, one has to use functions which serve as phenomenolog-
ical descriptor of resource uptake. Minimal requirements for realistic uptake
functions f(R) are that the function be zero at zero resource concentra-
tion, be monotonically increasing with resource density, and be saturating
when resource density goes to infinity. Here, we restrict ourselves to type-
II functional response curves with negative curvature over the whole prey
range (the case of sigmoidal uptake functions will be discussed below). The
most widely used functions that fulfil these requirements are Holling’s type-
II function fH(R) = kHR/(1 + κHR) [20] and Ivlev’s function fI(R) =
kI [1−exp(−κIR)] [21]. However also other functions, e.g. trigonometric func-
tions fT (R) = kT tanh(κTR) may be used.

In [19] it was studied whether the specific analytical form of the functional
response affects the community dynamics that the model (5) predicts. Given
the error with which resource uptake by real organisms is measured, it is
usually unjustified to identify a best fitting model. Thus, structurally different



  
  

Fig. 5. Response to enrichment in the Rosenzweig-MacArthur model. Left Three
nearly congruent resource uptake curves. Black: ”Ivlev”; blue: ”Holling”; red:
”trigonometric”. Nonlinear least squares fits to Ivlev’s response with kI = 1, κI = 2.
(Holling: kH = 3.05, κH = 2.68, trigonometric: kT = 0.99, κT = 1.484). Right: sta-
bility analysis. Real part, τ , of the largest eigenvalue of the community matrix vs.
the carrying capacity K for different uptake curves. Positive values of τ indicate an
unstable equilibrium. Other parameters: a = 1, b = 0.1, χ = 1.

analytical forms may be used interchangeably. In Fig. 5 we chose a generic
parameterization of Ivlev’s functional response and used a nonlinear least
squares fit to maximize the phenomenological similarity with Holling’s type-
II and a response curve based on a trigonometric function. Interestingly,
the almost identical uptake curves lead to drastic differences in the dynamic
stability of the system (Fig. 5, right). Although the system with Hollings
function is far from the stability boundary at large K, a subtle change in
model structure may stabilize the equilibrium. With enrichment (by raising
the carrying capacity) all three functions eventually become destabilizing,
however not to the same degree. In fact, the enrichment level at which the
equilibrium is destabilized varies by a factor of > 20 in the three uptake
functions. The vastly differing conditions at which destabilization occurs will
be disconcerting to anyone using mathematical models as a predictive tool.
This phenomenon of supersensitivity to model structure where analytical
functions, which are seemingly identical for all practical purposes, can give
completely different outcomes in terms of model dynamics has been described
for several ecological models [19, 22–24].

To come up with an explanation, we note that logistic prey growth, g(R)
and resource uptake f(R) are structurally very similar functions at small prey
numbers R. This has consequences for the prey isocline N̂(R) = g(R)/f(R).
Recall that in model (5) the stability of the equilibrium depends on the slope
of N̂(R) at equilibrium. In the extreme case that the two functions are exactly
identical, the isocline is a constant N̂(R) = 1, and has slope zero everywhere.
Thus, linear stability is not well defined and the system is structurally un-
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Fig. 6. Typical dynamics of model (7) in the oscillatory regime. a) Phase portrait in
the (R, N)-phase plane showing the limit cycle (solid line) and the isoclines (dotted
lines). Note, that the prey isocline is a ‘cubic’ function. b) Time series of prey (solid
line) and predator (dashed line) show recurrent population outbreaks.

stable. But assume that in some range close to the equilibrium point the two
functions differ slightly cf(R) = g(R)+ ǫ(R), where ǫ(R) is a small function.
Now the isocline can be approximated as N̂(R) = c[1 − ǫ(R)/g(R)] and in
this range the sign of the slope of N̂(R) entirely depends on the difference
ǫ(R). Therefore, arbitrary small deviations of resource uptake f(R) from the
prey growth rate g(R) determine the stability of the equilibrium.

We emphasize that the whole argument relies on the fact that in the rele-
vant interval the prey growth g(R) and resource uptake f(R) are structurally
very similar functions. In the model (5) this is always the case for small prey
numbers because both g(R) and f(R) start from 0 as a negatively curved
function (as becomes apparent from a Taylor expansion of f(R) up to sec-
ond order). Thus, whenever the equilibrium is at small prey levels, e.g. for
small mortality m (as in Fig. 5), the model is sensitive to minor variations in
the form of the functional response curve. In contrast, if the equilibrium is
at large value of R, where prey growth and resource uptake are significantly
different functions, the effect of sensitivity to model structure is not observed.

The same mechanism lies at the heart of the above mentioned major
drawback of the original Lotka-Volterra model (1), which can be seen as the
special case of the general model (5) where the prey growth and resource
uptake are linear functions, i.e. g(R) = aR and f(R) = bR. In this model
per definition g(R)/f(R) = const, which leads to structural instability in
the whole parameter range. With the introduction of nonlinear logistic prey
growth and a saturating functional response Rosenzweig and MacArthur tried
to circumvent these problems. While this works out for most parameter ranges
the same difficulties of sensitivity to infinitesimal variations in the model
structure are still inherent in the general model (5).

2.3 Excitable systems and population outbreaks

So far, we have only considered type-II functional responses, where the func-
tion g(R) is saturating with negative curvature over the whole range of prey
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Fig. 7. Model (7) in the excitatory regime. a) Compared to Fig. 6 the predator
isocline is shifted to the left so that the intersection is in the decreasing portion
of the prey isocline. b) Time series of prey (solid line) and predator (dashed line)
show a single population outbreak after a small perturbation from the stable fixed
point.

densities. In many cases, however, it has been observed that the food-uptake
(or predation rate) is switched on only when the prey numbers exceed a
certain, critical density. In such cases the functional response becomes a sig-
moidal function (type-III functional response). This can be realized for ex-
ample with Holling type-III function g(R) = bN Rα/(κα +Rα). If α = 1 this
reduces to a function of type-II, however, for α > 1 the functional response
is sigmoidal. Typically values for α are even integer numbers such as α = 2
or α = 4.

The major new property, when including a type-III food uptake in the
predator prey model (5) is that the prey isocline becomes a “cubic-like” func-
tion. Again, the dynamics depend on the exact location of the intersections of
predator- and prey-isoclines. If the intersection is in one of the two decreasing
branches of the prey isocline (see Fig. 7), the model exhibits a stable fixed
point. Otherwise, the fixed point becomes unstable giving rise to limit cycle
oscillations (see Fig. 6).

The phase portraits in Figs. 6 and 7 are reminiscent to those of other
excitable systems. This is even more so if the characteristic time scales of
the prey are fast compared to that of the predators (as it is typically the
case, since prey species usually have smaller biomass than their predators).
The time scale separation can be made explicit in the model with the help
of a new dimensionless parameter ǫ. This leads to the following excitatory
predator-prey model

Ṙ =
1

ǫ

[
aR(1 − R

K
) − kN

Rα

κα +Rα

]

Ṅ = −bN + χkN
Rα

κα +Rα
. (7)

Depending on the intersection of the isoclines in phase space, the model can
be in the oscillatory or in the excitatory regime. In the excitatory regime, a



perturbation from the fixed point may result in a large excursion in phase
space, before the stable fixed point is re-approached (Fig. 7). In ecological
terms, the prey species undergoes a single outbreak in population numbers,
which is triggered by a small perturbation. In contrast, in the oscillatory
regime, the systems shows robust relaxation oscillations and perturbations
have nearly no influence on the dynamics. This is shown in (Fig. 6) where
the prey undergoes recurrent population outbreaks.

Model model (7) has originally been introduced to model insect pest out-
breaks of the spruce budworm Choristoneura fumiferana [25]. This forest
defoliator lives in the spruce and fir forests of north US and Canada. The
budworm population can be either in small numbers (rest state) which are
under predatory control by birds. Around approximately every 40 years it
comes to an outbreak in the budworm numbers (excited state). Then the
insects develop to a pest that can defoliate the trees with enormous environ-
mental and economic damage.

The requirements to describe population outbreaks with a predator-prey
model (5) are the following: (i) sigmoidal (type-III) functional response; (ii)
top-down control, i.e., the pest population is the prey species of the model;
(iii) time scale separation, where the changing rate of the prey is much faster,
than that of the predator. As emphasized above, if these three conditions
are met, model (7) shows all the generic properties that are well known
also from other excitable systems [26]. In particular, under the influence of
stochastic fluctuations the model will exhibit noise induced transitions [26]
such as coherence resonance [27].

2.4 Three-trophic foodchains and chaos

Many population cycles have the unusual property that their period length
remains remarkably constant while their abundance levels are highly erratic.
Fig. 8a demonstrates these features for one of the most celebrated time series
in Ecology - the Canadian hare-lynx cycle. In [28,29] is was shown that such
more complex oscillations can be achieved in simple predator-prey models by
including more trophic levels. To describe the main dynamics of the lynx the
following ecological foodweb model was presented

u̇ = a (u− u⋆) − k1 f1(u, v)
v̇ = −b (v − v⋆) + k1 f1(u, v) − k2 f2(v, w)
ẇ = −c (w − w⋆) + k2 f2(v, w).

(8)

The model describes a three level vertical food-chain, where the resource or
vegetation u is consumed by herbivores v, which in turn are prey on by top
predators w. The parameters a, b and c represent the respective growth rates
of each species in the absence of interspecific interactions (k1 = k2 = 0).
The functions fi(x, y) describe interactions between species with strength ki.
Predator-prey and consumer-resource interactions are incorporated into the
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Fig. 8. (a) Ten year cycle in the Canadian lynx in the Mackenzie river area [2]. (b)
Chaotic oscillations of the top predator w in the foodweb model (8). For simulation
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κ2 = 0, w⋆ = 0.006. (c) Time series in the Rössler system (9) with a = 0.2, b = 1,
c = 0.2 and γ = 5.7.

equations via either the Lotka-Volterra term fi(x, y) = xy, or the Holling type
II term fi(x, y) = xy/(1 + κix). We also assume the existence of a (stable
or unstable) fixed point (u∗, v∗, w∗) in the absence of species interactions,
and expand the system linearly around this steady state. Note, that here the
steady state (u∗, v∗, w∗) is not necessarily set at the origin. This, for example,
allows for the predator w to maintain a low equilibrium level w = w⋆ even
during times when its usual prey v is rare, a case which might arise when
there are alternative food sources available for the predator.
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Despite its minimal structure, the equations capture complex dynamics
including equilibrium and limit cycle behaviour, as well as large parameter
ranges for which there are well defined chaotic oscillations (Fig. 9). Fig. 8b
provides a time-series of a typical model run in the phase coherent chaotic
regime. Observe that the top predator w, and indeed all model populations,
oscillate with a nearly constant frequency although the maximum or peak
amplitude in each cycle is highly unpredictable. These twin features of Uni-
form Phase evolution and Chaotic Amplitudes (UPCA) endow the model
with a strong resemblance to the Canadian hare-lynx system. The time se-
ries of the foodweb model also resembles the UPCA found in the standard
phase coherent Rössler system [30] (see Fig. 8c):

ẋ = −b(y + z), ẏ = bx+ ay, ż = c+ z(x− γ). (9)



In order to study the oscillation frequency of the chaotic model it is im-
portant to develop a means for decomposing a chaotic signal into its phase
and amplitude components. This is non-trivial for chaotic systems where
there is often no unambiguous definition of phase. In our case, the motion
always shows phase coherent dynamics, so that a phase can be defined as
an angle in (x, y)-phase plane or via the Hilbert-transform [31]. Here, we use
an alternative method which is based on counting successive maxima, that
allows analysis even if the signal is “spiky”. In this scheme we estimate the
instantaneous phase φ(t) by counting successive maxima, e.g. we locate the
times tn of the n’th major local maxima of, say, the top predator population
w. We define that the phase increases by 2π between two successive maxima
and interpolate linearly in between for intermediate times [32]

φ(t) = 2π
t− tn

tn+1 − tn
+ 2πn, tn < t ≤ tn+1. (10)

Given the phase evolution, the rotation frequency is then given as the long
time average of phase velocity, ω = 〈φ̇ (t)〉. As indicated in Fig. 9c the fre-
quency of the foodweb model’s cycle is a monotonically increasing function
for almost the entire range of the control parameter b. In fact, the frequency
of the foodweb model is largely determined by the underlying Lotka-Volterra
cycle in the (u, v) plane, whose intrinsic frequency equals ω0 =

√
ab. Fig. 9c

shows that this simple formula gives an excellent estimation for the mean
frequency of the chaotic three variable system.

3 Spatially coupled systems

3.1 Coupled Foodwebs

The population models which were presented in the previous sections de-
scribe a single isolated “patch” or community. We now add spatial structure
by analysing a set of patch models which are interconnected by diffusive mi-
gration of strength ǫ to form what might constitute a “metacommunity”.
This leads us in general to consider a system of N coupled oscillators

ẋi = F(xi, χi) + ǫC
∑

j∈Ni

(xj − xi), i = 1 · · ·N. (11)

In the absence of coupling each autonomous oscillator, xi ∈ Rn, follows its
own local (predator-prey) dynamics ẋi = F(xi, χi) which we assume to be
either a limit cycle or phase coherent chaos. The oscillators are coupled by
local dispersal with strength ǫ over a predefined set Ni of next neighbours
and using the diagonal coupling matrix C = diag(c1, c2 . . . , cn).

It is a natural assumption, that local communities in habitats at different
geographic locations should vary in their local growth conditions. Therefore,
quenched disorder is imposed onto the system by assigning to each local model
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Fig. 10. Standard deviation of frequencies σ(ǫ) in a population of 500 coupled
oscillators; (a) Rössler system (9) with a = 0.15, c = 0.4, γ = 8.5, and (b) foodweb
model (8) with a = 1, u⋆ = 1.5, v⋆ = 0, w⋆ = 0.01, k1 = 0.1, k2 = 0.6, c = 10
and κ1,2 = 0. Oscillators have been coupled in the y variable, C = diag(0, 1, 0),
with strength ǫ to either next neighbours in a ring with periodic boundaries (solid
line), with global coupling (dashed line), or using approximation (12) (dotted line).
Parameters bi were taken as uniformly distributed random numbers in the range
0.97 ± 0.025.

i an independent set of control parameters χi = (ai, bi..) (usually taken to
be the growth rates), which affect the natural frequency ωi = ω(χi) at each
patch. For example, in the previously studied predator-prey models the nat-
ural frequency ωi of each uncoupled community is, to a good approximation,
proportional to the square root of the prey’s growth rate

√
bi. This natural

disorder in local growth rates leads to a frequency mismatch between the
oscillators.

The question arises as to whether or how these local communities might
mutually synchronize after coupling. In general, synchronization arises as an
interplay of the interaction and the frequency mismatch between the oscil-
lators. Thereby, in general, all frequencies Ωi = Ωi(ǫ) will be detuned from
the natural frequency, i.e. ωi = Ωi(0). Here, we denote the observed oscil-
lator frequency in the presence of coupling with a capital Ωi(ǫi) in contrast
to the natural frequency ωi of the uncoupled oscillator, i.e. ωi = Ωi(0). It
is convenient to measure the amount of synchronization with the standard
deviation of all oscillator frequencies, σ(ǫ). Phase synchronization refers to
the fact that with sufficient coupling strength ǫ > ǫc all oscillators rotate
with the same frequency and implies σ(ǫ) = 0.

It is long known that phase synchronization arises naturally in two inter-
acting limit cycle systems [32], but it is also possible in two coupled phase
coherent chaotic oscillators by maintaining chaotic amplitudes [31]. To study
the synchronization in the disordered systems (11) we compare the transi-
tion to synchronization in ensembles of two phase coherent chaotic oscillators,
namely the Rössler system (9) and the chaotic predator-prey model (8). Both
systems have a free parameter bi which is taken for each oscillator from the
same statistical distribution. Despite the fact that both models have a very
similar attractor topology, we find fundamental differences in their response
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Fig. 11. (a) Time series of lynx numbers in six different regions in Canada (after [2])
provide an excellent example of phase synchronization in an ecological data set.
(b) Time series of predators wi in a 20 × 20 lattice with next neighbor coupling
(ǫ = 0.035) and periodic boundary conditions. Plotted are the simulation results
for seven patches along the lattice diagonal.

to the interaction (see Fig. 10). In the ensemble of Rössler systems we ob-
serve the usual onset of synchronization where the frequency disorder σ(ǫ) is
a monotonically decreasing function of coupling strength. In contrast, the en-
semble of foodweb models (8) shows a totally different behaviour. Here, with
increasing coupling strength σ(ǫ) is first amplified and synchronization sets in
only for much larger coupling with a maximal decoherence for intermediate
values of ǫ. This counterintuitive increase of disorder with coupling strength
has been denoted as anomalous phase synchronization and has been demon-
strated to arise naturally in a large class of oscillator types and coupling
topologies [33–35].

It is possible to describe the frequency disorder in the regime of weak
global coupling by noting that in the absence of coupling the oscillators are
rotating independently of each other. With the onset of weak coupling one
can safely assume that the oscillators (11) remain independent. Thus, for



ǫ ≪ 1 and in the thermodynamic limit the ensemble average is constant in
time, 〈xj〉 = ξ, and we can approximate the interacting system as a system
of N uncoupled oscillators with modified dynamics (see Fig. 10)

ẋi = F(xi, χi) − ǫC(xi − ξ). (12)

Consequently, for ǫ ≪ 1 the frequency detuning of each oscillator i depends
only on its own parameters, Ωi = Ω(χi, ǫ) ≈ ω(χi) + ǫ κ(χi) + O(ǫ2), where
κ(χi) describes the frequency response of each oscillator to the onset of in-
teraction. The crucial fact is that the effective functions ω(χi) and κ(χi),
in general, are not functionally independent, with the consequence that the
frequency disorder σ(ǫ) is determined by the covariance between the values
of ωi and κi over the ensemble, which finally can give rise to anomalous
synchronization [33, 34].

As shown in Fig. 10 in a spatial lattice of patches, only small levels of lo-
cal migration are required to induce broad-scale phase synchronisation. The
result of the simulation in the phase synchronized regime is visualized in
Fig. 11, which demonstrates that all populations in the lattice are phaselock-
ing to the same collective rhythm. Similar to the synchronized oscillations
of the Canadian lynx, also in the lattice simulation despite the strong phase
locking the peak population abundances remain chaotic and largely uncorre-
lated (r < 0.2).

Note, that for spatially extended systems full synchronization leads only to
trivial spatial patterns, since phase and amplitude dynamics are then identical
across the entire lattice. In the region of phase synchronization, however,
synchronized patch populations are typically separated by phase lags (as
seen in Fig. 11), which when summed up over the whole lattice can give
rise to complex spatio-temporal patterns. Most remarkably, in the coupled
foodchain model we find a coherent regular traveling wave structure where
population abundances remain chaotic, but unusual circular waves form and
spread in time across the landscape (see Fig. 12). The wave pattern repeats in
an endless cycle, with patches having chaotic amplitudes, making each cycle
different from the rest [28, 29].

As demonstrated in Fig. 13, these concentric target waves do not result
from the chaotic dynamics, but are present in a very similar form also in
disordered limit-cycle predator-prey models. This observation suggests that
the origin of the target waves may be found in the intrinsic heterogeneity of
the considered spatial models, which will be discussed in detail below.

3.2 Phase models

Target waves are one of the most prominent patterns in oscillatory media
and are usually associated with the presence of local impurities in the sys-
tem [36–38]. These pacemakers change the local oscillation frequency and are
able to enslave all other oscillators in the medium, which finally results in
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Fig. 12. Evolution of a chaotic target wave. Snapshots of predators vi (left col-
umn) and top predators wi (right column) in a 20 × 20-lattice (Fig. 11b) for three
consecutive time instances. Abundance levels are color coded.

regular ring waves [37, 39, 46]. However, the assumption of a discrete set of
localized pacemaker regions in an otherwise homogeneous medium is some-
what artificial. Especially biological systems are often under the constraint
of large heterogeneity. In such a disordered system no point can clearly be
distinguished as a pacemaker and it is not obvious whether such a system
can sustain highly regular target patterns and where they should originate.

The emergence of target patterns in heterogeneous oscillatory media was
first reported and explained in [40] and subsequently observed in [28]. In [41]
it was shown that the random nature of the medium itself plays a key role in
the formation of the patterns. As the disorder in a rather homogeneous syn-
chronized medium is increased one observes the formation of quasi regular
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Fig. 13. Spontaneous formation of quasi-regular concentric waves in a heterogenous
medium. Plotted are the simulation results in a 2-dimensional lattice (11) of 150x150
predator-prey oscillators (6) with periodic boundary conditions at 6 consecutive
time instances (from a to f) starting from homogeneous initial conditions. Plotted
is the density of the prey as grey level. Parameters: K = 3, k = 3.5, χ = 1,
KM = 1, b = 1, ǫ = 0.1, C = diag(1, 1). Growth rates ai are taken from a uniform
distribution in the range 5 ± 0.4.

target waves, which result from an intricate interplay between the hetero-
geneity and a symmetry breaking of the coupling function.

Consider a system of N coupled phase oscillators [37]

θ̇i = ωi + ǫ
∑

j∈Ni

Γ (θj − θi), i = 1, . . . , N. (13)

Here, θi represents the phase of oscillator i, which is coupled with strength ǫ to
a set of nearest neighbors Ni in a one- or two-dimensional lattice. The natural
frequencies ωi are fixed in time, uncorrelated and taken from a distribution
ρ(ω). A scaling of time and a transformation into a rotating reference frame
can always be applied so that ǫ = 1 and the ensemble mean frequency ω is
equal to zero. We refer to the variance σ2 = var(ωi) of the random frequencies
as the disorder of the medium.

The effects of coupling are represented by an interaction function Γ which,
in general, is a 2π-periodic function of the phase difference with Γ (0) = 0. For
weakly coupled, weakly nonlinear oscillators Γ has the universal form [37,42]

Γ (φ) = (sin(φ) + γ[1 − cos(φ)]) . (14)

The symmetry breaking parameter γ describes the nonisochronicity of the
oscillations [37].



It is well known that for sufficiently small disorder the oscillators eventu-
ally become entrained to a common locking frequency Ω [32,37,43]. Since the
oscillators are nonidentical, even in this synchronized state they are usually
separated by fixed phase differences. These can sum up over the whole lattice
to produce spatio-temporal patterns, which are characterized by a stationary
phase profile, θi − θ1. This is demonstrated in Fig. 14, where we have simu-
lated system (13) with interaction (14) in a two-dimensional lattice. Fig. 14,
left demonstrates the well known formation of a target wave from a central
pacemaker region of locally faster natural frequencies. However, in the right
panel of Fig. 14 it is shown that very similar waves can arise in a fully disor-
dered system. It is a counterintuitive observation that the isotropic medium
with random frequency distributions of no spatial correlation can generate
and sustain very regular wave patterns.

(a) (b)

(c) (d)

Fig. 14. Simulation results in a 2-dimensional lattice of 150x150 phase oscillators
(13,14) with nearest neighbor coupling, periodic boundary conditions, ǫ = 1, γ = 1
starting from homogeneous initial conditions. Left column: results with a central
pacemaker region of local frequencies ωi = 0.3, while the rest of the system is homo-
geneous with ωi = 0.1. Right: heterogenous system, where the random frequencies
are taken from a uniform distribution of variance σ2 with σ = 0.3. Top row: the
corresponding natural frequencies ωi are indicated in grey levels. Bottom row: sine
of the simulated phases θi as grey level.



In the synchronized state all oscillators rotate with the constant locking
frequency θ̇i = Ω, so that system (13) becomes a set of N equations, which
have to be solved self consistently for the phases θi andΩ under some imposed
boundary conditions. To determine Ω suppose first that the coupling function
Γ is fully antisymmetric Γ (−φ) = −Γ (φ), e.g. γ = 0 in Eq.(14). In this case,
by summing up all equations in (13) we obtain Ω = ω = 0 in the rotating
frame. Thus, nontrivial locking frequencies Ω 6= 0 only arise if Γ (φ) has a
symmetric part ΓS(φ) = 1

2 (Γ (φ) + Γ (−φ)),

Ω =
1

N

∑

i,j∈Ni

ΓS(θj − θi). (15)

For any coupling function Γ given a realization of the natural frequencies
ωi we ask for the resulting phase profile θi. Note, that the inverse problem
is easy to solve: for any regular phase profile θi we can calculate Ω from
Eq. (15), which after inserting into Eq.(13) yields the frequencies ωi.

Insights into the pattern formation can be gained from a one-dimensional
chain of phase oscillators [40, 44]

Ω = ωi + [Γ (φi) + Γ (−φi−1)] . (16)

Here we use φi = θi+1 − θi for the phase differences between neighboring
oscillators, i = 1 . . .N −1. Further, we assume open boundary conditions
φ0 = φN = 0. The self consistency problem is trivial for an antisymmet-
ric Γ where Ω = 0. In this case the Γ (φi) simply describe a random walk

Γ (φi) = −∑i
j=1 ωj . Thus, for small |φi| the phase profile θi is essentially

given by a double summation, i.e. a smoothening, over the disorder ωi (see
Fig.15a,b). Note, that synchronization can only be achieved as long as the
random walk stays within the range of Γ . Thus, with increasing system size
N synchronization becomes more and more unlikely.

The emergence of target waves is connected to a breaking of the coupling
symmetry. To explore this we study a unidirectional coupling with respect to
φ

Γ (φ) = f(φ)Θ(φ), for |φ| ≪ 1, (17)

with the Heaviside function Θ(φ) and f(φ > 0) > 0. Here, the phase of
oscillator i is only influenced from neighboring oscillators which are ahead of
i. If the solution are small phase differences we are not concerned about the
periodicity of Γ (φ) as the coupling is only required to be unidirectional close
to zero. For open boundaries φ0 = φN = 0 the solution to (16,17) is given by

φi =

{
f−1 (Ω − ωi) , i < m

−f−1 (Ω − ωi+1) , i ≥ m.
(18)

Here, the index m is the location of the oscillator with the largest natural
frequency, which also sets the synchronization frequency

Ω = ωm = maxi(ωi). (19)



The phase differences (18) are positive to the left of the fastest oscillator,
i < m, and negative to the right i ≥ m. As a consequence, the phase profile
has a tent shape with a mean slope that is given by averaging (18) with respect
to the frequency distribution (Fig.15 c,d). We call this solution type a quasi-
regular concentric wave. This example illustrates, that the asymmetry of the
coupling function increases the influence of faster oscillators and effectively
creates pacemakers with the potential to entrain the whole system. Note, that
the solution (18,19) is not possible without disorder, i.e. for σ = 0. Further, in
contrast to the antisymmetric coupling, here synchronization can be achieved
for chains of arbitrary length.
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Fig. 15. Phase differences φi (left) and phase profile θi − θ1 (b,d) in units of 2π
for a chain of 500 phase oscillators (16) with uniformly distributed frequencies
ωi ∈ [−0.1, 0.1] and open boundaries. (a,b) antisymmetric coupling (14) with γ = 0.
(c,d) unidirectional coupling (17) with Γ (φ) = φ Θ(φ). (e) System (14) with γ = 2.
(f) Transfer map TΩ(φi) (20) for Eqs. (14) with γ = 2 (solid line) and fixed points
φ∗ (filled circles).



In general, the coupling function Γ will interpolate between the two ex-
tremes of fully antisymmetry and unidirectional coupling in the vicinity of
zero, e.g. Eq. (14) with γ 6= 0. As shown in Fig.2e this also gives rise to quasi
regular concentric waves, very similar to the exactly solvable system Fig.2c.
To further investigate the origin of these patterns note that for any given Ω
system (16) implicitly defines two transfer maps, TΩ : {φi−1, ωi} 7→ φi and
T−1

Ω : {φi, ωi} 7→ φi−1, which describe the evolution of the phase differences
into the right or the left direction of the chain, respectively. The random
frequencies ωi can be seen as noise acting on the map (see Fig.2f)

φi = TΩ(φi−1, ωi) = Γ−1 [Ω − ωi − Γ (−φi−1)] . (20)

It is easy to see that the breaking of symmetry leads to a pair of fixed points,
φ∗ and −φ∗, in the noisy maps

φ∗ = TΩ(φ∗, ω) = Γ−1
S

(
Ω
2

)
. (21)

The transfer map can be linearized at the fixed points so that TΩ(φ∗+ζ, ω) ≈
φ∗ + aζ − bω with a = Γ ′(−φ∗)

Γ ′(φ∗) and b = 1
Γ ′(φ∗) . While one fixed point, φ∗ in

the case (14) with γ > 0, is linearly stable (|a| ≤ 1) the other fixed point is
necessarily unstable. These stability properties are inverted for T−1

Ω . Thus,
when iterating to the right of the chain the φi are concentrated around φ∗ and
around −φ∗ when iterating to the left. As a consequence, the general solution
of the selfconsistency problem (16) is build up from two branches around the
two fixed points ±φ∗, superimposed by autocorrelated fluctuations ζi (see
Fig.15)

φi = ±φ∗ + ζi. (22)

After summation this leads to the quasi regular tent shape of the phase profile
θi. In first approximation the ζi describe a linear autoregressive stochastic
process

ζi = aζi−1 − bωi. (23)

We want to stress that the fluctuations ζi are an essential ingredient of the
solution. Although the emerging concentric waves seem to be regular the
underlying heterogeneity of the system does not permit analytical traveling
wave solutions θi(t) = Ωt− k|i−m|.

The general solution (22) allows for very different phase profiles (see
Fig. 15). The regularity of the wave pattern depends on the relative influence
of the mean slope φ∗ compared to the fluctuations ζi and can be measured
by the quality factor Qφ = φ∗2/var(|φi|) and the autocorrelation r of the
φi. As demonstrated in Fig.16, for sufficiently large systems, both Qφ and
r only depend on the product γσ (see below). For γσ → 0 we find r → 1,
and the solution is essentially a random walk (see Fig.2a,b). With increasing
values of γσ the correlations r are reduced and eventually become negative.



Furthermore Qφ increases with the product γσ, and for γ > 1 can rise dras-
tically (see Fig. 16c). Thus, with increasing disorder of the system we obtain
more regular patterns until synchronization is lost.

A straightforward integration of system (13) can be problematic due to
the long transients. Another approach, which also applies for two dimensional
lattices, relies on the Cole-Hopf transformation of system (13). Assume that
the φi are small so that it is possible to approximate the coupling function
(14) around zero by Γ (φ) = 1

γ

(
eγφ − 1

)
+O(φ3). After the Cole-Hopf trans-

formation θi = 1
γ ln qi the synchronized lattice (13) is reduced to a linear

system [37,38, 40]

q̇i = Eqi = γσηi · qi +
∑

j∈Ni

(qj − qi) (24)

where the random frequencies ηi = ωi/σ are of zero mean and variance one
and E = γΩ is some eigenvalue. System (24) is known as the tight binding
model for a particle in a random potential on a lattice [45]. The eigenvector
qmax corresponding to the largest eigenvalue Emax will, in the re-transformed
system of angles, outgrow the contribution of all other eigenvectors to the
time dependent solution linearly in time. If the largest eigenvalue is non
degenerate, the unique synchronized solution is

θi(t) − θ1(t) = 1
γ log

(
qmax

i

qmax
1

)
. (25)

Eq. (25) is well defined since the components of qmax do not change sign.
Anderson localization theory [45] predicts exponentially decaying localized
states for one and two dimensional lattices with some localization length l,
which after applying the reverse Cole-Hopf transformation yields the observed
tent-shape phase profile with wavelength λ ∼ γl . Concentric waves emerge
when λ becomes smaller than the system size.

For extremal values of γσ the system (24) has well defined scaling prop-

erties Emax ∼ (γσ)
α

and l ∼ (γσ)
−β

[45]. Perturbation theory yields α = 2
for γσ ≪ 1 and α = 1 for γσ ≫ 1. For the exponent β we find β . 1 in the
one dimensional system, while 1 ≤ β ≤ 2 in the two dimensional lattice. This
implies for the synchronization frequency Ω and the wavelength λ

Ω ∼ γα−1σα, λ ∼ γ1−βσ−β . (26)

Here, γ does not influence the wavelength as much as σ but while an increase
of γ in one dimension leads also to an increasing wavelength the effect in two
dimensions is the opposite.

In one dimension the scaling with γσ holds as long as Eq. (24) can approxi-
mate the transfer map reasonably. The approximation breaks down when the
correlation r of the phase differences becomes negative. In this regime the
quality factor Qφ strongly depends on both γσ and γ. The noise term bωi in
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Fig. 16. Characterization of wave patterns by the locking frequency γΩ (a), the
wave length λ/γ (b), the quality factor Qφ (c) and the cross correlation r between
neighboring phase differences (d). Numerical solutions are obtained by integrating
system (13,14) for one dimensional (circles) and two dimensional lattices (squares)
in the synchronization regime. In one dimension the integrations were carried out
with chains of length 500 and averaged over 50 simulation runs for γ = 2 (red
circles) and γ = 6 (blue circles). In the two dimensional system each point (green
squares) represents one single simulation in a 100x100 lattice with γ = 2. The results
using the eigenvector method (24) are shown as (black +). Each point represents an
average of 500 simulations with N = 256. Further, indicated in (a) (b) are straight
lines with a given exponent α and β (dashed lines). The wavelength was obtained
for one dimension as λ = 2π/φ∗ and in the two dimensional system from a Fourier
analysis of the phase profile. The plateaus in the wavelength plot are discretization
effects.

(23) can become small with increasing γ. This regime, which is not described
by the Anderson approximation, can produce very regular concentric waves
near the border of desynchronization. Our observables (Fig. 3) only depend
on the system size for N . 100.

The constructive role of noise has often been studied [47]. It has been
shown that in excitable systems spatial noise can enhance the pattern forma-
tion and for example is able to promote traveling waves [48]. In heterogeneous
oscillatory media the emergence of target patterns was reported in [40]. Here,
we have analysed the origin of these structures and, in particular, we have
shown that fluctuations are essential for the observed dynamics. Whereas lo-
cal coupling tends to synchronize the oscillators, the imposed disorder tends



to desynchronize the array. The tension between these two opposing forces
can give rise to quasi regular target patterns.

This work was supported by the German Volkswagen Stiftung and DFG
(SFB 555).
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