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Breaking the law

• Markov modeling requires 
reversible sampling 

• sampling scales with the 
combinatorial number of states in 
a system 

• splitting large molecules a-priori 
into regions of interest keeps 
sampling constant

Can we do it?

sampling necessary for reversibly 
connecting n independent 3 state toy models
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The MSM transition matrix P propagates probability distributions: 

It is usually estimated from data by using discrete basis functions

3

Recap MSMs & VAMP

The variational approach to Markov processes (VAMP) states that for finding the 
optimal model, we need to maximize the VAMP-n score [1], for MSMs:

„The sum of eigenvalues“ (n=1)

[1] Wu H, Noé F (2019) Variational Approach for Learning Markov Processes from Time Series  Data. 
J Nonlinear Sci.
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Decomposition

• Two independent systems (blue, red)  
• embedded in a larger state 

space 
• live in orthogonal subspaces
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Decomposition

Defining two disjoint sub-regions A, B of phase space, the dynamics in those regions 
can be independent of each other. Then 
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Decomposition

The dynamics in joint (global) space can be computed from 
the Kronecker product
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Hempel, T.; del Razo, M. J.; Lee, C. T.; Taylor, B. C.; Amaro, R. E.; Noé, F. Independent Markov Decomposition: Toward Modeling Kinetics of Biomolecular Complexes. 
Proc Natl Acad Sci USA 2021, 118 (31), e2105230118. https://doi.org/10.1073/pnas.2105230118.

https://doi.org/10.1073/pnas.2105230118
https://doi.org/10.1073/pnas.2105230118
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Example of 4-gated ion channel

IMD can approximately reproduce conductance 
measurements with ~2 orders of magnitude less sampling as 
compared with a classical MSM.
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Scoring dependency

By simply applying Kronecker product properties of matrix norms, we find (for 
VAMP-2 score): 

Equivalent results apply to all VAMP-p scores. 

One can define the dependency score between two subsystems using the 
discrepancy

DRAFT

The general Markov model formulation yields a low rank
approximation of the operator P and propagates probability
densities between discrete states (4). Considering the example
from Fig. 2a, we write an Eq. 1 for each subspace A and B.
We assume the dynamics in each subspace has two metastable
states, each corresponding to a di�erent conformation. Using
the metastable sets as partition, the discretization yields an
MSM for each subspace,

fA(t + ·) = TAfA(t), fB(t + ·) = TBfB(t), [5]

where · is the lagtime; fA(t) and fB(t) are now discrete prob-
ability distributions, i.e. vectors containing the probabilities
of being in the di�erent metastable states; and TA and TB are
the corresponding transition probability matrices with rows
summing to one. In Fig. 2b, we show the two metastable states
of each subsystem as well as the explicit transition matrix. As
the matrices TA and TB approximate the Perron-Frobenius
operators, following Eq. 3, the solution of the whole system is
given by

f(t + ·) = (TA ¢ TB) f0(t), [6]

where ¢ here is the Kronecker product (27), f(t) = fA ¢
fB is the vector containing the probabilities of being in the
combined metastable states (1, 2, 3 and 4 in Fig. 2c) and
f0 = f0A ¢ f0B corresponds to the initial condition. Figure 2c.
shows the resulting transition matrix in terms of the transition
matrices of the subsystems, as well as the four states of the
whole molecule originating from the tensor product. Figure
2d illustrates graphically the states and shows the transition
probabilities of the full system as products of the transition
probabilities of the subsystems A and B.

The power of this approach is clearly illustrated in Fig. 2.
If the dynamics in A and B are independent or almost indepen-
dent, we can estimate the sixteen transition probabilities that
parametrize the whole system using only the eight elements of
the transition matrices of the subspaces. Considering the rows
of the transition matrices must sum to one, we actually only
need to estimate four transition probabilities: p12, p21 q12 and
q21. These advantages become even more evident for larger
systems. For example, the number of parameters necessary to
describe two subsystems with n and m states would reduce
from (n ◊ m)2 to n

2 + m
2 ≠ (m + n).

Analogously to Eq. 4, we can again generalize this result to
an arbitrary number of subsystems. A more formal derivation
of the operator discretization is included in the SI Appendix
Subsection.

Scoring the quality of a decomposition. Formally decompos-
ing the Perron-Frobenius operator P opens up the possibility
to quantify the coupling strength between subsystems. A mea-
sure of the coupling strength can, on the one hand, be used
to validate the assumption of independence a posteriori when
modeling a system by combining subsystem MSMs. Such a
measure can also be used as an objective function for finding
an optimal partition of a system with unknown dependency
structure.

It has been previously shown that the norms of estimated
dynamical operators obey a variational principle(28). To the
benefit of our approach, matrix norms follow simple rules when
applied to a Kronecker product (SI Appendix).

In practice, we will apply trace and Frobenius norms of the
transition matrix which resemble the VAMP-1 and VAMP-2

scores of the Koopman operator. In particular the VAMP-2
score is used in many practical applications such as VAMPnets
(29). For the sake of brevity, we only present equalities of the
Frobenius norm here and note that the trace norm equalities
are identical in form. If two subsystems A and B with transi-
tion matrices TA and TB are independent and can be written
as a Kronecker product, the Frobenius norm Î · Î2

F can also
be written as a product:

ÎT Î2
F = ÎTAÎ2

F · ÎTBÎ2
F . [7]

This poses a necessary but not a su�cient condition for inde-
pendence. Reiterating, this equation also holds for the trace
norm of the operators.

We note that unless the system is sampled from equilib-
rium data, it does not generally follow from this equation
that the VAMP-2 score of the estimated Koopman operator
decomposes.

Significant deviations from equality in Eq. 7 indicate that
the assumption of independence is invalid. As no converged
approximation for the joint operator of the full space might be
available, we suggest to validate independence between pairs
of subsystems (cf. Fig. 1 and Sec. Theory). We show that
our measure scales well with respect to limited sampling (SI
Appendix Subsection).

Further, the discrepancy between the expected result for
independent systems and actual estimates can be used as a
score of dependency. As explained above, evaluating it between
pairs of subsystems is most data e�cient. We thus define the
dependency d between two systems A and B

d(A, B) =
--ÎTA,BÎ2

F ≠ ÎTA||2F · ÎTBÎ2
F

-- [8]

as a score to find the optimal partition of a system with
unknown structure. In practice, computing TA,B involves a
new estimate of the transition probability matrix in the joint
space of both systems.

Results

Connecting decomposed MSMs to phenomenological MSMs.
In cardiac electrophysiology, Markov models have been used
to model phenomenological data from ion channels (24–26).
Ion channels are transmembrane proteins that respond to
physiological stimuli and selectively control the flow of ions
in excitable cells. Upon a change in membrane potential,
voltage-gated ion channels undergo conformational changes
which modulate ionic conductance. The symphony of ion
channels collectively facilitate the propagation of electrical
signals in excitable tissues, such as the heart and brain, and
are important drug targets (30, 31).

The plethora of both experimental measurements of ion
channel properties and the more recent emergence of ion chan-
nel structural information sets the stage for computational sim-
ulations to provide molecular details and subsequent mechanis-
tic insights (32). While it is possible to fit a phenomenological
MSM using data from electrophysiological experiments, atom-
istic modeling remains out of reach due to the long timescale of
channel opening. This is because single gate activation events
are rare, and all four gates need to activate concurrently. Re-
versible sampling will further be hampered by a combinatorial
number of pathways that lead to a fully open channel. We
propose that decomposed MSMs can help solve this problem
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Optimal partition toy model

Q: How to define subsystems in an 
unknown system? 
A: Optimize dependency score! 

Task for you.  
- You will compute the dependency 
score for all pairs of subsystems and 
assess which ones are strongly coupled. 
- You will model one of the independent 
systems that you find. 
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Syt-C2A: hand-selected subsystems

• Syt-C2A is a calcium switch in the 
neurotransmitter release 
machinery 

• 180 µs MD data (apo form)
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Hempel, T.; Plattner, N.; Noé, F., J. Chem. Theory Comput. 2020, 16 (4), 2584–2593.

Can we automatize this task with what we learnt? 



Tim Hempel: Independent Markov decomposition 11

Syt-C2A: IMD network analysis

• Prototypical analysis with 
Fruchterman-Reingold projection 

• We find clusters that correspond to 
structural features of protein
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Thanks for your attention

-> Notebook


