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MD/MC — challenge

Why MD/MC? - sample from the Boltzmann distribution

e _BU('X)
[ e BUG’

P(x) = B =kgT™1!

Goal = estimate macroscopic properties of system (not individual
trajectories)



MD/MC — challenge

Why MD/MC? - sample from the Boltzmann distribution

e _BU('X)
[ e BUG’

P(x) = B =kgT™1!

Problems:
1. Systems are high-dimensional

2. Rare events might not occur during simulation timescale



Rare events

Energy

22/02/2022



Contents

* Importance sampling

* Enhanced sampling methods
* Umbrella sampling
* Multi-temperature simulations

* Analysis methods
* Reweighting methods (WHAM, MBAR)
* Multi-ensemble Markov Models (d-TRAM, TRAM)



Importance sampling

Compute observable w.r.t. F(x)
, N
Er[0(x)] = fO(X)F(X) dx =~ Nz 0(x;)
i=1

Law of large numbers

-> Only holds when we can sample from F(x)!



Importance sampling

Problem: we have distribution F(x) that is “hard” to sample from

ldea:
* sample from an easier to sample distribution G (x)

e compute observables properties that belong to F(x) with the
samples drawn from G (x).

(Not really a sampling algorithm, more of a general technique)

Kahn, Herman, and Andy W. Marshall. "Methods of reducing sample size in Monte Carlo computations."
Journal of the Operations Research Society of America 1.5 (1953): 263-278.



Importance sampling

G(x)

< Sample by simulating this system...

F(x)

< ... and compute observables for this system
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Importance sampling

Er|0(x)] = JO(x)F(x)dx

G
= f 0(x) GESF(}C) dx
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Importance sampling

Er|0(x)] = jO(x)F(x)dx

F
=jO(x) GggG(x) dx



Importance sampling

Er|0(x)] = JO(x)F(x)dx

F
=jO(x)GggG(x) dx

\ F(x)

New observable: 0'(x) = 0(x) )

22/02/2022 11



Importance sampling

Er|0(x)] = jO(x)F(x)dx
—

F
=]0(x)6230(x) dx

\ F )

New observable: 0'(x) = 0(x) sy

New sampling distribution: G (x)

22/02/2022 12



Importance sampling

Er|0(x)] = jO(x)F(x)dx
—

F
=jO(x)%‘G(x) dx

\ F )

= E;[0'(x)] New observable: 0'(x) = O(x)@

New sampling distribution: G (x)

This is now an expectation value over G (x)!

22/02/2022 13



Importance sampling

EqlO'(x)] = EF[0(x)]

F
=]O(x)GggG(x) dx



Importance sampling

EqlO'(x)] = EF[0(x)]

F
=]O(x)GggG(x) dx

N
_ 1 F(.X'l)
> NZ O G



Importance sampling

EqlO'(x)] = EF[0(x)]

F
=jO(x)GggG(x) dx

x;~G(x)

N
_ 1 F(Xl)
> NZ aSTes



Importance sampling in MD

U®(x) Our distributions are now Boltzmann
distributions

. 00(x) = ie—BUo(x) — ¢~ BW()-F?)

U°(x) Easier to sample distribution:
biased potential U?(x)

\ Target (physical) distribution:

reference potential U°%(x)

22/02/2022 17



Importance sampling in MD

Our distributions are now Boltzmann distributions
Target distribution: determined by reference potential U (x)
Easier to sample distribution: biased potential U? (x)

Eo[0(x)] = fO(x)e‘ﬁ(Uo(x)‘Fo)dx

o —BUP(x) - FP) B U0 — FO)
— — X) —
j 0(x) ARG — D) e dx



Importance sampling in MD

Our distributions are now Boltzmann distributions
Target distribution: determined by reference potential U (x)
Easier to sample distribution: biased potential U? (x)

Eo[0(x)] = fO(x)e‘ﬁ(Uo(x)‘Fo)dx
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Importance sampling in MD

Our distributions are now Boltzmann distributions
Target distribution: determined by reference potential U (x)
Easier to sample distribution: biased potential U? (x)

Eo[0(x)] = fO(x)e‘ﬁ(Uo(x)‘Fo)dx

= f O(x) dx



Importance sampling in MD:
Boltzmann revveighting

Eqo[0(x)] = 2 0(x;) e~ BWU°(x) ~UP(x) - FO+ FP)

« U%(x): the unbiased or physical energy
* UY(x): the biased energy
* b(x) = UP(x) — U%(x): the bias energy

— Biased state defined by bias energy
UP(x) = U%x) + b(x)



How to use importance sampling?

* Choose a nice bias to more efficiently sample the space

- Enhanced sampling methods



The perfect bias?

A uniform distribution is very easy to
sample

SU%(x) =0

Bias energy:

b(x) =UP(x) —U%x) = -U%x)

22/02/2022
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The perfect bias?

Now in 3N dimensions...

 Sample a uniform distribution 3N-d space?
* Many samples will be from high-energy states
* Samples with p = 0 do not contribute to expectation values

* Generally, we are interested in some transition
e Passing through a membrane
* Protein-ligand binding
* Protein (un)folding

- reaction coordinate



The perfect bias?

Now in 3N dimensions...
* How to sample a uniform distribution 3N-d space?
* Many samples will be from high-energy states

* Generally, we are interested in some transition
* Passing through a membrane = coordinate on axis perpendicular to membrane
* Protein-ligand binding = distance between protein and ligand, MSEs
* Protein (un)folding = it’s complicated

- reaction coordinate

22/02/2022 25



Umbrella sampling

* Enforce uniform(-ish) sampling along the reaction coordinate
» Define K biased states: UX(x) = U%(x) + b*(x)

* Usually, b*(x) = %(x — xX)? > ‘umbrellas’

* Bias potentials enforce sampling around their bias center xé‘

Torrie, Glenn M., and John P. Valleau. "Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella
sampling." Journal of Computational Physics 23.2 (1977): 187-199.



Umbrella sampling

* Enforce uniform(-ish) sampling along the reaction coordinate
» Define K biased states: UX(x) = U%(x) + b*(x)

e Usually, b*(x) = %(x — xX)? > ‘umbrellas’

* Bias potentials enforce sampling around their bias center x{,‘

10 5y

22/02/2022 Bias potentials b* (x) Uk(x) = U%(x) + b*(x) Pk (x) o« e~ BU =D ()

27



Umbrella sampling

In higher dimensions: umbrella’s are spaced along the reaction coordinate

Choose reaction coordinate Free energy along reaction Umbrella’s force system in

along transition region coordinate orthorgonal regions along

reaction coordinate
22/02/2022 28



Parallel tempering

* |dea: high temperatures ‘flatten’ the Boltzmann distribution
* Higher-energy states become more accessible at higher temperatures

ok (x) o o —BFU°(x)

* Bias potentials determined by temperatures

bk = (8% — pO)U°(x)



Parallel tempering

* |dea: high temperatures ‘flatten’ the Boltzmann distribution
* Higher-energy states become more accessible at higher temperatures

10 ; : _
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uf(x) = p*U(x)
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Replica exchange

e Swap conformations between states with different temperatures

k . . . . .
P B B D >
l . . . . .
D B> B D >

Swendsen, Robert H., and Jian-Sheng Wang. "Replica Monte Carlo simulation of spin-glasses." Physical review letters 57.21 (1986):
2607.

22/02/2022 31



Replica exchange

e Swap conformations between states with different temperatures

ﬂ k :® :®

22/02/2022 32

Pex = min(L exp[—(ﬁk _ :81) (U(xk) — U(xl)])




Replica exchange

e Swap conformations between states with different temperatures

ﬁk :@ :®

* High-energy states become accessible at lower temperatures

22/02/2022 33

Pex = min(L exp[—(ﬁk _ :81) (U(xk) — U(xl)])




Analyzing data

Enhanced sampling:

—> Data from different thermodynamic states
—>How to recombine?



Analyzing data

Boltzmann reweighting:

o —BOU° (x)+ BOF?

o[0(x)] = Z 0 (x;) o—BXUK(x)+ FKFF



Analyzing data

Boltzmann reweighting:

EolO(x)] = z 0(x;) e=B°U° () + BEUR() + BOFO— BFFE

1=



Analyzing data

Boltzmann reweighting:

[O(X) z O(XL) e_:BOUO(x) + ,BkUk(x) + BYFO— ,Bka

1=

- Dimension-less bias energy: b*(x) = f*U*(x) — B°U°(x)

22/02/2022
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Analyzing data

Boltzmann reweighting:
Eo[0(x)] ~ Zom b () + pOFO~

- Dimension-less bias energy: b*(x) = f*U*(x) — B°U°(x)

22/02/2022
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Analyzing data

Boltzmann reweighting:

Eo[0(x)] ~ Nz 0(x;) et G+ BOF0= prr"

- Dimension-less bias energy: b*(x) = f*U*(x) — B°U°(x)
- Dimension-less Free energy f* = B*F¥

22/02/2022
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Analyzing data

Boltzmann reweighting:

Eo[0()] ~ NZ 0(xp) e 00+~

- Dimension-less bias energy: b*(x) = fPU? (x) — B°U°(x)
- Dimension-less Free energy f* = B*F¥

22/02/2022
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Analyzing data

Boltzmann reweighting:

Eo[0(x)] ~ NZ 0(x;) et )+ 101"

- Dimension-less bias energy: b*(x) = fPU? (x) — B°U°(x)
- Dimension-less Free energy f* = B*F¥
- Free energy differences: f° := 0, f* = fk — f0

22/02/2022
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Analyzing data

Boltzmann reweighting:

Eo[0()] ~ NZ 0(xp) e+ 7°

- Dimension-less bias energy: b*(x) = fPU? (x) — B°U°(x)
- Dimension-less Free energy f* = B*F¥
- Free energy differences: f° := 0, f* = fk — f0

22/02/2022

42



Analyzing data

Boltzmann reweighting:

E,[0(x)] = Nz 0(x;) e? @ - 1"

- Dimension-less bias energy: b*(x) = fPU? (x) — B°U°(x)
- Dimension-less Free energy f* = B*F¥
- Free energy differences: f° := 0, f* = fk — f0

©

22/02/2022
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Analyzing data

Boltzmann reweighting:

Eo[0()] ~ NZ 0(x;) e "

But | don’t know these ®

—>Need: method to estimate free energies from data from multiple
thermodynamic states



MBAR

Multistate Bennett Acceptance Ratio

* Method to combine data from multiple thermodynamic states to
estimate probability distribution at a reference state

Shirts, Michael R., and John D. Chodera. "Statistically optimal analysis of samples from multiple equilibrium states." The Journal of
ehemical physics 129.12 (2008): 124105.



MBAR

Have:
* S simulations performed at a biased state

Uk(x) = U%x) + b*(x), kel,..,S

« N¥i.i.d. samples per state, Y, N¥ = N



MBAR

Have:
e S simulations performed at a biased state

Uk(x) = U%x) + b*(x), kel,..,S
e N¥i.i.d. samples per state, ., N¥ = N

k corresponds to e.g.
e one umbrella (umbrella sampling)
* one temperature (parallel tempering)

22/02/2022
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MBAR

* Distribution over samples (point-wise) ()

p(x) II .[T zhs ;

22/02/2022 48



MBAR

* Distribution over samples (point-wise)
u(x)

t(x): the contribution of sample x to the
Boltzmann distribution

zxu(x) =1

p(x)




MBAR

* Biased distributions
The bias energy

ue(x) = exp[—b"(x) + f*] u(x)

* k €{1,..5} thermodynamic state/simulation index



MBAR

e Biased distributions
uc(x) = exp[—b"(x) + f*] u(x)

* k €{1,..5} thermodynamic state/simulation index

22/02/2022

The bias energy

Unbiased sample weight

51



MBAR

* Biased distributions
The bias energy

‘uk(x) — exp[—bk(x) + fk] ‘u(x) Unbiased sample weight

fk — _,Bk lOng

* k €{1,...5} thermodynamic state/simulation index The dimension-less free energy of
state k
- Ensures normalization of u’(x)

- Unknown!

22/02/2022 52



MBAR

* Biased distributions
The bias energy

.uk(x) — eXp[—bk(x) + fk] M(X) Unbiased sample weight

fk — _ng lOng
* k €{1,..5} thermodynamic state/simulation index
The dimension-less free energy of

state k
« u*(x) are distributions over samples! > Ensures normalization of u* (x)
K - Unknown!
Zu (x) =1
X

e (or: u®(x) is the statistical sample weight in state k)

22/02/2022 53



MBAR

* Biased distributions
The bias energy

.uk(x) — eXp[—bk(x) + fk] M(X) Unbiased sample weight

fk — _ng lOng
* k €{1,..5} thermodynamic state/simulation index
The dimension-less free energy of

state k
« u*(x) are distributions over samples! > Ensures normalization of u* (x)
K - Unknown!
Zu (x) =1 n
X .Uk(x)

* (or: u*(x) is the statistical sample weight in state k) I 1 [I h
22/02/2022 | i - :

X




MBAR

e Biased distributions

uk(x) = exp[—b*(x) + f*] u(x)

22/02/2022

S
RO =1/ ) N exp[-b'() + £
=1
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MBAR

e Biased distributions

) = exp[—b* (x) + f¥]

11 Ntexp[—b'(x) + f!]

22/02/2022

S
RO =1/ ) N exp[-b'() + £
=1
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MBAR
How to find the f*?

* Likelihood of observing all samples:

S

= | || [#e

k=1 xexk




MBAR
How to find the f*?

* Likelihood of observing all samples:

S Nk

LGl _1 11w =] [

1 xexk



MBAR
How to find the f*?

* Likelihood of observing all samples:

S Nk

S
1 Sy _ k(v — exp[—b*(x}) + f¥]
Lx|f,....f°) = 1:1 [ pe(x) = QBZleNl exp[—bl(x;i) + 1

k=1 xexk

Find f* that maximize the likelihood of observing all data!

—> = convex optimization problem ©



MBAR
How to find the f*?

* Likelihood of observing all samples:

1 0y - K e eXp[_bk(xvli) + /"]
Lx|f*...f°)= l:l xlEX[kM (x) = Bngﬂ]vl exp[—b!(xK) + 1]

¥ = Optimization parameters.

22/02/2022 60



MBAR

How to find the f*?

* Likelihood of observing all samples:

S S Nk

Ll =] ] ] e = H H Zf_exp[;xik[(—xfl)(:ﬁ;? /1

k=1 xexk =1
¥ = Optimization parameters.

Input:
exp[—b'(xX)] - Bias coefficients

1X/02 /2622 61



MBAR - input

S Nk

LMBAR(f1' ---»fS) = |

k=1n=1

22/02/2022

exp[—b*(xK) + f¥]

=1 N'exp[—b(xn) + f1]

eXp[—bl (Xk)] Of samples taken at state k
Evaluated at the state [ Hamiltonian

62



MBAR - input

exp[—b*(xK) + f¥]
11 o Nlexp[—bl(xf) + f1]

LMBAR(f1' ---»fS) = |

eXp[—bl(xk)] Of samples taken during simulation k
Evaluated at the bias potential of simulation [

bias_matrices = [np.ndarray([[0.0, 0.43, 0.28, ...], [0.0, 1.28, 0.32, ...1, ...
np.ndarray([[0.0, 0.23, 0.86, ...], [0.5, 0.50, 1.02, ...]1, ...

\ 3D data structure
—> List of S nd-arrays
- k-th array has shape (N* x 5)

22/02/2022 63
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The bias matrices

k=2 exp[—bl(xk)]
k—1
— 1 k
] e




The bias matrices
k—2 exp[—bl(xk)]

Samples from simulation k

22/02/2022 : : : : : : : : : : : :




The bias matrices

Samples from simulation k

S thermodynamic states

A
T . 1 . s

N* Samples
N
n

22/02/2Q22

k+1

exp[—b'(xf)]

k+2

k+3




The bias matrices

Samples from simulation k

S thermodynamic states

A
T . 1 . s

N* Samples
N

22/02/2Q22

k+1

exp[—b'(xf)]

k+2

k+3




The bias matrices

Samples from simulation k

S thermodynamic states

A
T . . s

N* Samples
N

22/02/2Q22

k+1

exp[—b'(xf)]

k+2 k+3




MBAR in PyEMMA

* In .thermo package:
http://www.emma-project.org/latest/api/generated/thermo-

api/pyemma.thermo.mbar.html

22/02/2022
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http://www.emma-project.org/latest/api/generated/thermo-api/pyemma.thermo.mbar.html

What does this have to do with MSMs?

* MBAR assumes samples are drawn from a global equilibrium
—inefficient, samples need to be spaced far apart in time
—>slow degrees of freedom can introduce a systematic error

22/02/2022
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What does this have to do with MSMs?

* MBAR assumes samples are drawn from a global equilibrium
—inefficient, samples need to be spaced far apart in time
—>slow degrees of freedom can introduce a systematic error
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What does this have to do with MSMs?

* MBAR assumes samples are drawn from a global equilibrium
—inefficient, samples need to be spaced far apart in time
—>slow degrees of freedom can introduce a systematic error

22/02/2022
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What does this have to do with MSMs?

* MBAR assumes samples are drawn from a global equilibrium
—inefficient, samples need to be spaced far apart in time
—>slow degrees of freedom can introduce a systematic error

ldea: combine MIBAR with Markov state Models

22/02/2022




MEMM

* Each thermodynamic state is governed by a Markov state model
* All MSMs together form a Multi-Ensemble Markov Model (MEMM)

| p%m p%m
Pl_] — i ‘e 1-
Pm1 - Pmm
Pim  DPim S p
PE=|: - : ij
Y 2 2
pml pmm
3 p13m p13m
Pl] = ?Z) . 3:
Pmi1 - Pmm
Pim Dim
Pt=1|: -



MEMM

* Each thermodynamic state is governed by a Markov state model
* All MSMs together form a Multi-Ensemble Markov Model (MEMM)

| p%m p%m
Pl_] — i ‘e 1-
Pm1 - Pmm
Pim  DPim S p
PE=|: - ij
Y 2 2
pml pmm
p13m p13m i
p3 =1 : : | p
Y 3 3 | in
Pm1 «+ Pmm |
transition probability from to
4 4
Pim = Pim
Pt=1|: -



MEMM

* Each thermodynamic state is governed by a Markov state model
* All MSMs together form a Multi-Ensemble Markov Model (MEMM)

1 1
| Pim " DPim
Pi=1+ ™~ | Likelihood of MSM:
1 1 :
Pmi1 - Pmm
\\\\ — l]
Pim  DPim Sl L¥1sm H(Pu)
P2 =1 : : ij
Y 2 2
Pmi1 v Pmm !
p13m p13m i
p3 =1 : : | p
Y 3 3 | '
Pm1 Pmm | In
transition probability from to
4
P1im P1im
PE =\



MEMM

How are the individual MSMs in the MEMM coupled?



MEMM

How are the individual MSMs in the MEMM coupled?

* 7r; are the stationary distribution of Pi'j-



MEMM

How are the individual MSMs in the MEMM coupled?

* 7r; are the stationary distribution of Pi'j-

* Distributions are all related to a reference distribution through
Boltzmann reweighting:

. N
af = MR 262 kel - b0

l



MEMM

How are the individual MSMs in the MEMM coupled?

* 7r; are the stationary distribution of Pi'j-

* Distributions are all related to a reference distribution through
Boltzmann reweighting:

. N
af = MR 262 kel - b0

l

* Detailed balance: n{‘pf‘j = ﬂ]kpfi



TRAM
Transition-based Reweighting Analysis Method

Combines discrete MEMM with continuous MBAR

* MEMM: transition probabilities (discrete)
* MBAR: sample weights u(x) (continuous)



TRAM

Combines discrete MEMM with continuous MBAR

* Continuous global reference distribution: u(x)

u(x)




TRAM

Combines discrete MEMM with continuous MBAR

u(x)

Lo

X

* Markov states are governed by a local equilibrium (LEQ) distribution

 Continuous global reference distribution: u(x) jﬂ

- ,u,f‘(x) is the local equilibrium (LEQ) distribution of Markov state i in
thermodynamic state k



TRAM

k [ we)
l, — I] .II xahz ;
~

ur () | s ()

I
(7] |
=] |
a @ :
o o , I
x X XK X xX |

X

il ]

> ,ull‘(x) is the local equilibrium (LEQ) distribution of Markov state i in
thermodynamic state k

22/02/2022



TRAM

* LEQ distributions are all related to u(x) through Boltzmann
reweighting:

— [f* = b* ()] p(x) x €1
i (x) = {eXp 0 RS otherwise



TRAM

* LEQ distributions are all related to u(x) through Boltzmann
reweighting:

— [f* = b* ()] p(x) x €1
i (x) = {eXp 0 RS otherwise

. Detailed balance
k. k _ k. k
ni pij — nj pji



TRAM

* LEQ distributions are all related to u(x) through Boltzmann
reweighting:

4 () = {exp[fi" ~ b*@)] u(0) x €1

0 otherwise

e Detailed balance
Zi'pls = Z['p¥;



TRAM

* LEQ distributions are all related to u(x) through Boltzmann
reweighting:

— [f* = b* ()] p(x) x €1
i (x) = {eXp 0 RS otherwise

e Detailed balance

k k
—fkk _ —fF Kk
e ‘tp;; =¢e JPj



TRAM

e LEQ distributions are all related to through Boltzmann
reweighting:
k k ;
() = [explff = b* )] x €1
y 0 otherwise

e Detailed balance

k k
—f* k — —fi .k
e ‘i pl] =e ’J p]l

TRAM: estimate f{-‘ (and pg- and )



TRAM - likelihood

* Discrete transition probabilities (MEMM) x continuous sample

.
>

weights (LEQ)

Discrete state N . .
sequence
A 4

Continuous configurations @ @ @
within state

éy ,iHao, et al. "Multiensemble Markov models of molecular thermodynamics and kinetics." Proceedings of the National Academyé)J
ciences 113.23 (2016): E3221-E3230.

Thermodynamic state k




TRAM - likelihood

* Discrete transition probabilities (MEMM) x continuous sample
weights (LEQ)

Modeled by MSM of therm. state k

7w Y
Discrete state N Y > > >
sequence L J

Continuous configurations @ @ @
within state

Wu, FHag, et al. "Multiensemble Markov models of molecular thermodynamics and kinetics.” Proceedings of the National Academy of
Sciences 113.23 (2016): E3221-E3230.

Thermodynamic state k

A 4




TRAM - likelihood

* Discrete transition probabilities (MEMM) x continuous sample

weights (LEQ)

-

Discrete state

.
>

=1

o

sequence

Continuous configurations @
within state

4

g J

uf (x)

A 4

\ 4

Thermodynamic state k

Modeled by LEQ distribution of
Markov state i in therm. state k

\g ,iHao, et al. "Multiensemble Markov models of molecular thermodynamics and kinetics." Proceedings of the National Academyé)z‘f
o

lences 113.23 (2016): E3221-E3230.



TRAM Likelihood

 Combines discrete transition probabilities (MEMM) with continuous
sample weights (LEQ)

Likelihood of observing transitions: Likelihood of observing all samples within
the states:
M M
_ kck
Liism = H(Pij)cj X LIEEQ = 1_[ 1_[ ui (x)
Lj=1 =1 xexk

Lraaw = | 1(1 (Chk ) [ ] ]sw

1 l] l 1x€Xk



TRAM Likelihood

Maximize likelihood

Lram =l1<] v )(ﬂ [ [ exprs - p¥eon m))

—1xXk




TRAM Likelihood

Maximize likelihood

o [Jo nnexp

Under constraints:

e Detailed balance

k k
k —fi .k
pl] =e J pji

qu(x) =1
W

* Normalized probabilities

— b ()] u(x)



TRAM Likelihood

S

M

k

Lrram = 1_[ n(pfcj)cu
ij=1

k=1
Input:

c{‘j —> transition counts
b*(x) = reduced bias energies

22/02/2022

ﬁ [ [ exprr - pFcoruco

=1 xeXik
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TRAM Likelihood

S M

M
Lrram = l_[ (Plk])cs 1—[ 1—[ exp[fl-k — b ()] p(x)
=1

Input:

c{‘j —> transition counts
b*(x) = reduced bias energies

Unbiased distribution

RG) =1/ ) Rl exp[|=b'Col+ fie]

Need full 3D bias matrix
22/02/2022
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TRAM Likelihood

S M M
k
_ KN\Cii k
Loaaw = | [{ | [@90 )| | || [ exeti - ot uco
k=1 \ij=1 i=1 yexk
! xeX; Samples from simulation k
Input: _

K . S thermodynamic states
c;j = transition counts AL
b*(x) = reduced bias energies /1 I

/‘
i

Unbiased distribution

RG) =1/ ) Rl exp[|=b'Col+ fie]

Need full 3D bias matrix

N* Samples
A
n

22/02/2022
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TRAM - input

dtrajs= [np.ndarray([0, 1, 2, 3, 2, 3, ...]),
np.ndarray([3, 4, 2, 3, 4, 4, ...]1), ...
bias_matrices = [np.ndarray([[0.0, 0.43, 0.28,

np.ndarray([[0.0, 0.23, 0.86,

K List of S ndarrays
k-th ndarray has shape (N* x S)

] List of S arrays, Array k of length N¥

...1, [0.0, 1.28, 0.32, ...1, ...
...1, [0.5, 0.50, 1.02, ... ],...

—_
N
. AY )
.
.
—

The n-th coordinate in the trajectory

exp[—bl (x,’,f)] Of samples taken during simulation k

22/02/2022

Evaluated at the bias potential of simulation [
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Advantages of using TRAM

e Better estimation of free energies along the unbiased (orthogonal)
degrees of freedom.

* System does not need to be equilibrated to global equilibrium

e Smaller de-correlation time (simulation time until one gets a new
uncorrelated frame) = more efficient usage of the data.



Advantages of using TRAM

Detailed balance = enhanced sampling of kinetics

State 1

22/02/2022

k k
k —fi ..k
lpl] = € ]pji

T, is a rare event

T54 can be simulated

Detailed balance:
k k
e~ /2 pX = e T2 Pf

_k _k
If we know e™/2, PX, and e™/2, we don't
have to simulate P,
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TRAM

* In PyEMMA:

http://www.emma-project.org/latest/api/generated/thermo-
api/pyemma.thermo.tram.html

* (New) in Deeptime:

https://deeptime-
ml.github.io/latest/api/generated/deeptime.markov.msm.TRAM.html
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TRAM — a simple notebook example



Further reading

 Shirts, Michael R., and John D. Chodera. "Statistically optimal
analysis of samples from multiple equilibrium states." The
Journal of chemical physics 129.12 (2008): 124105.

* Wu, Hao, et al. "Multiensemble Markov models of molecular
thermodynamics and kinetics." Proceedings of the National
Academy of Sciences 113.23 (2016): E3221-E3230.
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WHAM/MBAR/dTRAM/TRAM

TRAM

Discretize
________________ >

e e e e

Q
+—
©

(]

S

| -

)

O

()
()]

Decorrelate

|
|
|
|
|
|
|
|
\4

2
T
>
<

Discretize
VEI - — — — — — — — — — — — — — = = >

Arrows represent operations on the data
22/02/2022
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WHAM
Weighted Histogram Analysis Method

* Method to combine data from multiple thermodynamic states to
estimate probability distribution at a reference state

* Discrete (hence: histogram)

Ferrenberg, Alan M., and Robert H. Swendsen. "Optimized monte carlo data analysis." Computers in Physics 3.5 (1989): 101-104



Weighted Histogram Analysis Method

Have:
* S simulations performed at a biased state

Uk(x) = U°(x) + b*(x),ke1,..,S
« N¥i.i.d. samples per state, Y, N¥ = N
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Weighted Histogram Analysis Method

Have:
e S simulations performed at a biased state

Uk(x) = U%x) + b*(x),ke1,..,S
« N¥i.i.d. samples per state, Y, N = N

e Samples are discretized w.r.t. the reaction
coordinate

Umbrella sampling: umbrella’s spaced along the
reaction coordinate
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Weighted Histogram Analysis Method

* S simulations
e Samples are discretized into B bins

e Each bin defined by bias coefficient

ck = exp[—b*(x;)]

Notation:
e k: therm state (superscript)

» i:conformational state/bin (subscript o8



Weighted Histogram Analysis Method

* S simulations
e Samples are discretized into B bins

e Each bin defined by bias coefficient \
| AN

ck = exp[—b*(x;)]

k k _k
""Ci_l’ Cl ) Cl+1’ nan

Notation:
e k: therm state (superscript)

» iy conformational state/bin (subscript) .



Weighted Histogram Analysis Method

e S simulations
e Samples are discretized into B bins

e Each bin defined by bias coefficient

NN

ck = exp[—b*(x;)]

k k _k
""Ci_l’ Cl ) Cl+1’ nan

Store counts for bin i in simulation k:

Nk = zn{‘

l
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Weighted Histogram Analysis Method

Probability of bin i in simulation k -

A Unbiased distribution
nlt = Zkckn;
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Weighted Histogram Analysis Method

Probability of bin i in simulation k

A Unbiased distribution
nlt = Zkckn;

Bias coefficients cl-k = exp[—b*(x;)]
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Weighted Histogram Analysis Method

Probability of bin i in simulation k

A Unbiased distribution
nlt = 7%ckn,

Bias coefficients cX = exp[—b*(x;)]

Normalizing constant of ensemble k
B

(2971 =) clm,

=1
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Weighted Histogram Analysis Method

Probability of bin i in simulation k

A Unbiased distribution
nlt = 7%ckn,

Bias coefficients cX = exp[—b*(x;)]

Normalizing constant of ensemble k
B

= Boltzmann reweighting! AL«
(2971 = ) cm

=1
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Weighted Histogram Analysis Method

Probability of bin i in simulation k

A Unbiased distribution
nlt = 7%ckn,

Bias coefficients cX = exp[—b*(x;)]

Normalizing constant of ensemble k

Likelihood of observing ; B

(2971 =) clm,
S B
Loy = | [ [
k=1 i=1

=1

22/02/2022
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Weighted Histogram Analysis Method

Probability of bin i in simulation k

5 Unbiased distribution
nl = 7%ckn,

kel : Bi fficients ¢ = —b¥(x;
Likelihood of observing ias coefficients ¢’ = exp[—b"(x,)]

Normalizing constant of ensemble k
B

S B A
Loy =| ] for @yt = ) b
k=1 i=1

=1
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Weighted Histogram Analysis Method

Probability of bin i in simulation k

5 Unbiased distribution
nl = 7%ckn,

kel : Bi fficients ¢ = —b¥(x;
Likelihood of observing ias coefficients ¢’ = exp[—b"(x,)]

Normalizing constant of ensemble k
B

S B A
Loy =| ] for @yt = ) b
k=1 i=1

=1

S B y
:1 [1 l( Bcl-n;-{ ) Solve for 7z; !
k=1 i =165 T
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Weighted Histogram Analysis Method

S B "
C; TT;
o= e7)

;> Optimization parameters.

Input:
cf = Bias coefficients ¢ = exp[—b*(x;)]
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WHAM - Iinput

1: Histogram containing all counts 2: Histogram containing bias energies
B conformational states (bins) B conformational states (bins)
A j\
S . B 1 ; B

" "
S K 5 K
thermo- » = n; thermo- < == Ci
dynamic dynamic
states : states

NI N

22/02/2022 ¢ = exp —b¥*(x;)=> Bias coeficcient in state k at the centerof bin i



WHAM: do it yourself

* pyEMMA.thermo package contains a WHAM solver

http://emma-project.org/latest/api/generated/thermo-api/pyemma.thermo.wham.html

pyemma . thermo.wham(ttrajs, dtrajs, bias, maxiter=100000, maxerr=1e-15, save_convergence_info=0,
dt_traj="1 step')

Weighted histogram analysis method

Parameters: « ttrajs (numpy.ndarray(T) of int, or list of numpy.ndarray(T_i) of int) - A single
discrete trajectory or a list of discrete trajectories. The integers are
indexes in O,...,num_therm_states-1 enumerating the thermodynamic
states the trajectory is in at any time.

- dtrajs (numpy.ndarray(T) of int, or list of numpy.ndarray(T_i) of int) - A single
discrete trajectory or a list of discrete trajectories. The integers are
indexes in O,...,num_conf_states-1 enumerating the num_conf_states
Markov states or the bins the trajectory is in at any time.

« bias (humpy.ndarray(shape=(num_therm_states, num_conf_states)) object) -
bias_energies_full[j, i] is the bias energy in units of kT for each discrete

state i at thermodynamic state j.
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WHAM: do it yourself

* pyEMMA.thermo package contains a WHAM solver

http://emma-project.org/latest/api/generated/thermo-api/pyemma.thermo.wham.html

pyemma . thermo.wham(ttrajs, dtrajs, bias, maxiter=100000, maxerr=1e-15, save_convergence_info=0,

dt_traj="1 step')

Weighted histogram analysis method

Parameters:

22/02/2022

« ttrajs (numpy.ndarray(T) of int, or list of numpy.ndarray(T_i) of int) - A single

discrete trajectory or a list of discrete trajectories. The integers are
indexes in O,...,num_therm_states-1 enumerating the thermodynamic
states the trajectory is in at any time.

dtrajs (numpy.ndarray(T) of int, or list of numpy.ndarray(T_i) of int) - A single
discrete trajectory or a list of discrete trajectories. The integers are
indexes in O,...,num_conf_states-1 enumerating the num_conf_states
Markov states or the bins the trajectory is in at any time.

bias (numpy.ndarray(shape=(num_therm_states, num_conf_states)) object) -
bias_energies_full[j, i] is the bias energy in units of kT for each discrete
state i at thermodynamic state j.

Thermodynamic state indices

Bin indices

Bias energies
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WHAM - Iinput

dtrajs= [np.ndarray ([0, 1, 2, 3, 2, 3, ...]),
np.ndarray([3, 4, 2, 3, 4, 4, 1), ]

ttrajs= [np.ndarray([0, 0, 0, 1, 0, 0, ...]),
np.ndarray([1, 1, 1, 0, 1, 1, ...], ...]

S0
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WHAM - Iinput

dtrajs= [np.ndarray ([0, 1, 2, 3, 2, 3, ...]),
np.ndarray([3, 4, 2, 3, 4, 4, 1), ]

ttrajs= [np.ndarray([0, 0, 0, 1, 0, 0, ...]),
np.ndarray([1, 1, 1, 0, 1, 1, ...], ...]

S0
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WHAM - Iinput

dtrajs= [np.ndarray ([0, 1, 2, 3, 2, 3, ...]),
np.ndarray([3, 4, 2, 3, 4, 4, 1), ]

ttrajs= [np.ndarray([0, 0, 0, 1, 0, O, ...]),
np.ndarray([1, 1, 1, 0, 1, 1, ...], ...]

S0
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MBAR

* A.k.a. binless WHAM/UWHAM
* Derived from WHAM by taking the limit of bin widths 2 0

cf - Bias coefficients ¢/ = exp[—b*(x;)]

S B K n;
K _ Ci TT;
Lwuam (ni ‘ﬂi) = B ko
A " " i

22/02/2022

u(x)

LI

126




MBAR

* A.k.a. binless WHAM/UWHAM
* Derived from WHAM by taking the limit of bin widths 2 0 [ u

CZ‘ —> Bias coefficients cl-k = exp[—b"(x;)]
| I .II g IIE g
X
s B\
k C; T
L () =
WHAM L i B K
k=1 i=1 j=1 Cj T[i These become the bias energy for the sample coordinate

(= new bin center!): eXp[—bk(xrlf)]
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MBAR

* A.k.a. binless WHAM/UWHAM
* Derived from WHAM by taking the limit of bin widths 2 0 1(x)

CZ‘ —> Bias coefficients cl-k = exp[—b"(x;)]
[ I [I g IIE g
X
s (5] o\
K Ci Tt
WHAM L i B K
k=1li=1 j=1 Cj 7Ti These become the bias energy for the sample coordinate

(= new bin center!): exp[—bk(xrif)]

This becomes a product over all samples
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MBAR

* A.k.a. binless WHAM/UWHAM
* Derived from WHAM by taking the limit of bin widths 2 0 [ u

CZ‘ —> Bias coefficients cl-k = exp[—b"(x;)]
[ I [I g IIE g
X
S B
K Cik TT;
WHAM L i B k
k=1li=1 j=1 C] [ / These become the bias energy for the sample coordinate

(= new bin center!): exp| bk(x)

This becomes a product over all samples
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MBAR

* A.k.a. binless WHAM/UWHAM

* Derived from WHAM by taking the limit of bin widths =2 0 [ u
cf = Bias coefficients ¢ = exp[—b"(x;)]
[ I [T ; IIE ;
X
S B ke nﬁ‘ Bin counts become...?
T K _ Ci Tt
WHAM(ni ‘ﬂi) = Bk
k=1li=1 j=1 Cj TLi | These become the bias energy for the sample coordinate

(= new bin center!): exp[—bk(xrif)]

This becomes a product over all samples

We reweight not 7; , but with respect to a distribution u(x) over all samples
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MBAR

* A.k.a. binless WHAM/UWHAM

* Derived from WHAM by taking the limit of bin widths 2 0 [ u
R II .[I iﬁﬁ ;
Lypar(f*, . f°) = 1—[ Hexp —bR(xk) + F* u(xk) X

(It’s convex w.r.t. the f¥)

S
pG) =1/ ) N'expl=b'Co) + £
l=1

Shirts, Michael R., and John D. Chodera. "Statistically optimal analysis of samples from multiple equilibrium states."
The Journal of chemical physics 129.12 (2008): 124105
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TRAM - input

dtrajs= [np.ndarray ([0, 1
np.ndarray([3, 4
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TRAM - input

dtrajs= [np.ndarray ([0, 1, 2, 3, 2, 3, ...]),
np.ndarray([3, 4, 2, 3, 4, 4, 1), ]

ttrajs= [np.ndarray([0, 0, 0, 1, 0, O, ...]),
np.ndarray([1, 1, 1, 0, 1, 1, ...], ...]

S0
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