Markov State Models

Theory, properties, estimation, and validation

$$P = \begin{pmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{pmatrix}$$

Motivation

experiment(s) / simulation(s)

questions

Properties of interest

predict

Example: CECR2

Protein related to Epigenetics

Raich et al. Proceedings of the National Academy of Sciences 118.4 (2021)

Markov state models

Metastability of states allow us to significantly simplify the dynamics of our system of interest

Markov state models

A Markov state model describes the dynamics of a system as <u>conditional transition probabilities</u>

Final state

1%	2%	1%
95%	0%	0%
0%	97%	2%
0%	2%	97%

What is meta-stability?

sets of configurations which are long-lived. Markov state models assume these states, and exchange between them is important.

What is meta-stability?

sets of configurations which are long-lived. Markov state models assume these states, and exchange between them is important.

Molecular simulations

 Molecular simulations are realizations of stochastic process on Ω and are Markovian w.r.t. this space.

 $p(\mathbf{x}, \mathbf{y}; \tau) d\mathbf{y} = \mathbb{P}[\mathbf{x}]$

$$\mathbf{x}(t+\tau) \in \mathbf{y} + d\mathbf{y} \mid \mathbf{x}(t) = \mathbf{x}]$$

- $\mathbf{x}, \mathbf{y} \in \Omega, \ \tau \in \mathbb{R}_{0+},$
- Transition probabilities are well defined

Molecular simulations

 Molecular simulations are realizations of stochastic process on Ω and are Markovian w.r.t. this space.

 $p(\mathbf{x}, \mathbf{y}; \tau) d\mathbf{y} = \mathbb{P}[\mathbf{x}]$

 $p(\mathbf{x}, A; \tau) = \mathbb{I}$

$$\mathbf{x}(t+\tau) \in \mathbf{y} + d\mathbf{y} \mid \mathbf{x}(t) = \mathbf{x}]$$

- $\mathbf{x}, \mathbf{y} \in \Omega, \ \tau \in \mathbb{R}_{0+},$
- Transition probabilities are well defined

$$\mathbb{P}[\mathbf{x}(t+\tau) \in A | \mathbf{x}(t) = \mathbf{x}]$$
$$\int_{\mathbf{y} \in A} d\mathbf{y} \ p(\mathbf{x}, \mathbf{y}; \tau).$$

Also applies for regions

Molecular simulations (2)

Ergodicity

No two or more segments of the space Ω are dynamically disconnected from each other.

For an infinitely long simulation we will have visited every state $\mathbf{x} \in \Omega$ infinitely many times.

and

Prinz et al. (2011) JCP 134, 174105

Molecular simulations (3)

Reversibility

Simulations fulfill the detailed-balance condition:

 $\mu(\mathbf{x}) p(\mathbf{x}, \mathbf{y};$

At equilibrium the probability of jumping from any x to any y is the same as jumping from y to x.

$$\tau) = \mu(\mathbf{y}) p(\mathbf{y}, \mathbf{x}; \tau)$$

 $\mu(\mathbf{x}) = Z(\beta)^{-1} \exp\left(-\beta H(\mathbf{x})\right)$

An illustration of the transition density

Figure courtesy of JH Prinz

Assumptions about the full dynamics

Markovian

 $\mathbb{P}(x_{t+\tau} \in A \mid x_{t_1}, \dots, x_t = x) = \mathbb{P}(x_{t+\tau} \in A \mid x_t = x)$

Factorization of the dynamics into conditional probabilities

Chapman-Kolmogorov property

$$p_{\tau_1+\tau_2}(x,A) = \int_{\Omega} p_{\tau_1}(x,y) p_{\tau_2}(y,$$

Direct combination of conditional probabilities with different lag-times

 $A) \,\mathrm{d}y$

Initial state		96%	1%	2%	1%	
	Second second s	5%	95%	0%	0%	
	< And	1%	0%	97%	2%	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1%	0%	2%	97%	

Einal atata

Assumptions about the full dynamics

Irreducibility

All states of the state space can be reached from any other state in a finite time. **Ensures unique stationary distribution.**

Ergodicity

No states are disconnected No cyclic dynamics. Ensures time and ensemble average properties are equal.

Reversibility

No net-probability flux at equilibrium. => no energy production/absorption => mass conservation. Not strictly necessary for Markov models

Ensemble view of dynamics

TIME au

A propagator is an operator which transports probability densities in time

$$\mathbf{p}_{t+\tau}(x) = [\mathbf{P}_{\tau} \mathbf{p}_t](x) = \int_{\Omega} \mathbf{d}_y \mathbf{p}_{\tau}(y, x) \mathbf{p}_t(y)$$

Figure courtesy of JH Prinz

Example dynamics

Propagator depends on lag time

Propagator depends on lag time

Propagator depends on lag time

So why is this?

Implied time-scales

Eigenvalues of the propagator

 $P_{\tau}\phi_i = \lambda_i \phi_i$

Chapman-Kolmogorov Implies exponential lag-time dependence

 $\lambda_i(k \cdot \tau) = \lambda_i^k(\tau)$

Figure courtesy of JH Prinz

Meta-stability

- fulfill this assumption
- time 'have decayed' or 'are not resolved'.

• We can approximate the propagator by a finite number of processes with non-zero Eigenvalues

• If we have a gap in the Eigenvalue spectrum, we can choose the lag-time in a manner such that we

• When we do this, processes faster than the lag-

What do you mean by processes?

Eigenfunctions of P_{τ}

 $t_i = -\tau / \log(\lambda_i)$

Estimation

Discretization of Ω

Figure courtesy of JH Prinz

Count matrix

C _{ij} (1)	A	B	C	D
A	9963	37	0	0
B	22	9974	4	0
C	0	2	9919	79
D	0	0	115	9885

 $n = \tau$

$$\delta(x_{n-\tau} = i, x_n = j)$$

Figure courtesy of JH Prinz

Maximum likelihood estimator

We can express the probability of the observed data - discrete trajectory - given a transition probability matrix of an MSM

 $\mathbb{P}(x_1,\ldots,x_t \mid F)$

The aim is then to find the *P* which maximizes this expression -That is, the *Maximum likelihood estimator*.

$$P) = \prod_{k=1}^{L} p_{x_{k-1},x_k}$$
$$= p_{x_0,x_1} \cdot \ldots \cdot p_{x_L-1,L}$$
$$= \prod_{ij} p_{ij}^{c_{ij}}$$
$$= p_{11}^{c_{11}} \cdot \ldots$$

Analytical solution for Nonreversible case

 We enforce the constraint that the transition probability matrix is row-stochastic:

• One can show the estimator is simply:

$$D_{ij} = 1, \quad \forall i$$

Prinz et al. (2011) JCP 134, 174105

Reversible estimator

- Enforces the detailed balance condition.
- No exact analytical solution:
 - Fixed-point iteration algorithm available.
 - Approximate solutions.
- Implemented in deeptime

- The less simulation data we have, the more will be.
- through **Bayesian inference**

ambiguous the solution of the likelihood problem

 Consequently, if we limit ourselves to the MLE, we are *ignorant* as to how **robust** our inferred MSM is.

One way to quantify the uncertainty of MSMs is

Likelihood from before

 $\mathbb{P}(x_i, \dots, x_t \mid P) = p(C \mid P) \propto \prod_{i,j=1}^n p_{ij}^{c_{ij}}$

Likelihood from before

 $\mathbb{P}(x_i,\ldots,x_t \mid P) =$

Introduction of prior information $n(P \mid C) \propto n(C \mid C)$

The prior can encode useful constraints: row-stochasticity, reversibility, fixed stationary distribution, sparsity etc

$$p(C \mid P) \propto \prod_{i,j=1}^{n} p_{ij}^{c_{ij}}$$

 $p(P \mid C) \propto p(C \mid P)p(P)$

Inference is done by MCMC sampling

Noé (2008) JCP 128, 244103 Trendelkamp-Schroer & Noé (2013) JCP 138, 164113

Alternative estimators

Transition(-based) Reweighting Analysis Method

- Allows taking into account simulation data from multiple thermodynamic ensembles.
- That means, we can use data from enhanced sampling simulations together with unbiased simulation data to generate models more efficiently.

Wu et al. PNAS 2016, 113(23), E3221–E3230

Implemented in PyEMMA

- Enables integration of external information into the estimation of Markov state models.
- Fx use of experimental constraints from biophysical experiments such as NMR.
- A notebook tutorial \bullet distributed with PyEMMA 2.5 and up.

Augmented Markov models

Olsson et al. PNAS 2017, 114(31), pp. 8265-8270. doi: 10.1073/pnas.1704803114

Implemented in Deeptime

Analysis of our estimate

$\mathbf{P_{ij}}(1)$	A	B	C	
A	0,9963	0,0037		
B	0,0022	0,9974	0,0004	
C		0,0002	0,9919	
D			0,0115	

Time-scales are always under-estimated

COUNT MATRIX	C _{ij} (100)	A	B	C	D	projected timescales	original timescales
	A	9533	477	40	0	∞	∞
	B	1644	8014	262	80	15,397	17,671
	C	0	40	9025	935	1211	1,610
	D	0	0	1366	8634	379	538

May improve estimates of predicted time-scales

Increasing the lag-time

Figure courtesy of JH Prinz

Projection/discretization error

 $t_i = -\tau / \log(\lambda_i)$

GOOD PROJECTION

Projection/discretization error

 $t_i = -\tau / \log(\lambda_i)$

BAD PROJECTION

Figure courtesy of JH Prinz

Known problems

- many cases <u>not Markovian</u>
- the full system not just the observation.

Observations (projections, discretizations) are in

• However, we are often interested in understanding

 Since we often have a lot of freedom to choose the projections and discretization, it is important to chose one which is as Markovian as possible.

Validation

Chapman-Kolmogorov test

Compare the evolution of the data with the model

General scheme for Markov state model generation

- Discretize a suitable projection of your data.
- Construct a transition matrix.
- scale gap)
- Perform Chapman-Kolmogorov test.

Estimate the number of meta-stable states (time-

Analysis

Useful predictions from a MSM

Common properties

- Relaxation time-scales
- Dominant processes
- Stationary distribution (thermodynamics)
- Meta-stable sets (more about this later)
- Correlation functions (spectroscopic observables)
- Mean first passage times
- Path probabilities

Summary

- Markov state models are derived coarse-grained models of the full original (Markovian) dynamics.
- MSMs may be parameterized (estimated/learned) from simulation data to compute properties of interest.
- MSMs are particularly useful if the projection/ discretization error can be minimized: then the predicted quantities match the original.

Questions?