
Markov State Models
Theory, properties, estimation, and validation

<latexit sha1_base64="eO7dXZiUN69G2dbQG5XsdRxMW10="></latexit>

P =

✓
0.95 0.05
0.05 0.95

◆

Slides courtesy of J.H. Prinz and S. Olsson



Motivation
System of interest Realization

Properties of interest Model
predict

estimationquestions

experiment(s) / simulation(s)



Motivation

„Find properties of a system of interest  
using a simple model parametrized from observations“ 
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Example: CECR2
Protein related to Epigenetics
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Markov state models
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Metastability of states allow us to significantly simplify 
the dynamics of our system of interest 
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A Markov state model describes the dynamics of a system as  
conditional transition probabilities



What is meta-stability?

sets of configurations which are long-lived. 
Markov state models assume these states, and exchange between them 

is important.
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Molecular simulations
• Molecular simulations are realizations of stochastic 

process on        and are Markovian w.r.t. this space. ⌦
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theoretical basis for the development of efficient adaptive dis-
cretization methods for MSMs.

Additionally, we provide a new estimator for transition
matrices for reversible dynamics, i.e., Markov models that
fulfill detailed balance, which is more efficient than the
reversible estimators presented previously.49, 51, 53 Detailed
balance is expected for molecular processes taking place in
thermal equilibrium54 and using this property in the estima-
tion of MSMs will generally enhance the model quality as
unphysical models are excluded. Finally, we take up the topic
of validating MSMs. Several past studies have attempted to
find robust tests for the “Markovianity” of the true dynamics
projected onto the discrete state space,40, 55 a concept which
has been proven problematic both formally and practically.
Here, we instead suggest a simple and robust direct test of
the error of the model in reproducing the observed dynamics.

II. ANALYSIS OF THE CONTINUOUS DYNAMICS

This section reviews the continuous dynamics of a molec-
ular system in thermal equilibrium, and introduces the dynam-
ical propagator, whose approximation is our primary concern.
While this section is important for understanding the subse-
quent formal theory of discretization (Sec. III), practitioners
wishing only to learn how to construct such models may
skip directly to the discussion of Markov model estimation
(Sec. IV).

A. Continuous dynamics

A variety of simulation models that all yield the same
stationary properties, but have different dynamical behaviors,
are available to study a given molecular model. The choice
of the dynamical model must therefore be guided by both a
desire to mimic the relevant physics for the system of interest
(such as whether the system is allowed to exchange energy
with an external heat bath during the course of dynamical
evolution), balanced with computational convenience (e.g.,
the use of a stochastic thermostat in place of explicitly
simulating a large external reservoir).56 Going into the details
of these models is beyond the scope of the present study, and
therefore we will simply state the minimal physical properties
that we expect the dynamical model to obey.

Consider a state space ! which contains all dynamical
variables needed to describe the instantaneous state of the
system. ! may be discrete or continuous, and we treat the
more general continuous case here. For molecular systems, !

usually contains both positions and velocities of the species
of interest and surrounding bath particles. x(t) ∈ ! will de-
note the dynamical process considered, which is continuous
in space, and may be either time-continuous (for theoreti-
cal investigations) or time-discrete (when considering time-
stepping schemes for computational purposes). For the rest
of the paper, we will assume that x(t) has the following
properties:

1. x(t) is a Markov process in the full state space !, i.e.,
the instantaneous change of the system (dx(t)/dt
in time-continuous dynamics and x(t + "t) in

time-discrete dynamics with time step "t), is cal-
culated based on x(t) alone and does not require the
previous history. As a result of Markovianity in !, the
transition probability density p(x, y; τ ) is well defined:

p(x, y; τ ) dy = P [x(t + τ ) ∈ y + dy | x(t) = x]

x, y ∈ !, τ ∈ R0+, (1)

i.e., the probability that a trajectory started at time
t from the point x ∈ ! will be in an infinitesimal
region dy around a point y ∈ ! at time t + τ . Such a
transition probability density for the diffusion process
in a one-dimensional potential is depicted in Fig. 1(b).
When p(x, y; τ ) is a smooth probability density the
stochastic transition probability to a set A ⊆ ! is also
well defined and formally given by integrating the
transition probability density over region A:

p(x, A; τ ) = P [x(t + τ ) ∈ A|x(t) = x]

=
∫

y∈A
dy p(x, y; τ ). (2)

2. x(t) is ergodic, i.e., the space ! does not have two or
more subsets that are dynamically disconnected, and
for t → ∞ each state x will be visited infinitely often.
The fraction of time that the system spends in any of
its states during an infinitely long trajectory is given
by its unique stationary density (invariant measure)
µ(x) : ! → R0+ that corresponds to the equilibrium
probability density for some associated thermodynamic
ensemble (e.g., NVT, NpT). For molecular dynamics
at constant temperature T , the dynamics above yield a
stationary density µ(x) that is a function of T , namely,
the Boltzmann distribution

µ(x) = Z (β)−1 exp (−βH (x)) , (3)

with Hamiltonian H (x) and β = 1/kB T where kB is
the Boltzmann constant and kB T is the thermal energy.
Z (β) =

∫
dx exp (−βH (x)) is the partition function.

By means of illustration, Fig. 1(a) shows the stationary
density µ(x) for a diffusion process on a potential with
high barriers.

3. x(t) is reversible, i.e., p(x, y; τ ) fulfills the condition of
detailed balance:

µ(x) p(x, y; τ ) = µ(y) p(y, x; τ ), (4)

i.e., in equilibrium, the fraction of systems transition-
ing from x to y per time is the same as the fraction
of systems transitioning from y to x. Note that this
“reversibility” is a more general concept than the
time-reversibility of the dynamical equations, e.g.,
encountered in Hamiltonian dynamics. For example,
Brownian dynamics on some potential are reversible
as they fulfill Eq. (4), but are not time-reversible in
the same sense as Hamiltonian dynamics are, due to
the stochasticity of individual realizations. Although
detailed balance is not essential for the construction of
Markov models, we will subsequently assume detailed
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theoretical basis for the development of efficient adaptive dis-
cretization methods for MSMs.

Additionally, we provide a new estimator for transition
matrices for reversible dynamics, i.e., Markov models that
fulfill detailed balance, which is more efficient than the
reversible estimators presented previously.49, 51, 53 Detailed
balance is expected for molecular processes taking place in
thermal equilibrium54 and using this property in the estima-
tion of MSMs will generally enhance the model quality as
unphysical models are excluded. Finally, we take up the topic
of validating MSMs. Several past studies have attempted to
find robust tests for the “Markovianity” of the true dynamics
projected onto the discrete state space,40, 55 a concept which
has been proven problematic both formally and practically.
Here, we instead suggest a simple and robust direct test of
the error of the model in reproducing the observed dynamics.

II. ANALYSIS OF THE CONTINUOUS DYNAMICS

This section reviews the continuous dynamics of a molec-
ular system in thermal equilibrium, and introduces the dynam-
ical propagator, whose approximation is our primary concern.
While this section is important for understanding the subse-
quent formal theory of discretization (Sec. III), practitioners
wishing only to learn how to construct such models may
skip directly to the discussion of Markov model estimation
(Sec. IV).

A. Continuous dynamics

A variety of simulation models that all yield the same
stationary properties, but have different dynamical behaviors,
are available to study a given molecular model. The choice
of the dynamical model must therefore be guided by both a
desire to mimic the relevant physics for the system of interest
(such as whether the system is allowed to exchange energy
with an external heat bath during the course of dynamical
evolution), balanced with computational convenience (e.g.,
the use of a stochastic thermostat in place of explicitly
simulating a large external reservoir).56 Going into the details
of these models is beyond the scope of the present study, and
therefore we will simply state the minimal physical properties
that we expect the dynamical model to obey.

Consider a state space ! which contains all dynamical
variables needed to describe the instantaneous state of the
system. ! may be discrete or continuous, and we treat the
more general continuous case here. For molecular systems, !

usually contains both positions and velocities of the species
of interest and surrounding bath particles. x(t) ∈ ! will de-
note the dynamical process considered, which is continuous
in space, and may be either time-continuous (for theoreti-
cal investigations) or time-discrete (when considering time-
stepping schemes for computational purposes). For the rest
of the paper, we will assume that x(t) has the following
properties:

1. x(t) is a Markov process in the full state space !, i.e.,
the instantaneous change of the system (dx(t)/dt
in time-continuous dynamics and x(t + "t) in

time-discrete dynamics with time step "t), is cal-
culated based on x(t) alone and does not require the
previous history. As a result of Markovianity in !, the
transition probability density p(x, y; τ ) is well defined:

p(x, y; τ ) dy = P [x(t + τ ) ∈ y + dy | x(t) = x]

x, y ∈ !, τ ∈ R0+, (1)

i.e., the probability that a trajectory started at time
t from the point x ∈ ! will be in an infinitesimal
region dy around a point y ∈ ! at time t + τ . Such a
transition probability density for the diffusion process
in a one-dimensional potential is depicted in Fig. 1(b).
When p(x, y; τ ) is a smooth probability density the
stochastic transition probability to a set A ⊆ ! is also
well defined and formally given by integrating the
transition probability density over region A:

p(x, A; τ ) = P [x(t + τ ) ∈ A|x(t) = x]

=
∫

y∈A
dy p(x, y; τ ). (2)

2. x(t) is ergodic, i.e., the space ! does not have two or
more subsets that are dynamically disconnected, and
for t → ∞ each state x will be visited infinitely often.
The fraction of time that the system spends in any of
its states during an infinitely long trajectory is given
by its unique stationary density (invariant measure)
µ(x) : ! → R0+ that corresponds to the equilibrium
probability density for some associated thermodynamic
ensemble (e.g., NVT, NpT). For molecular dynamics
at constant temperature T , the dynamics above yield a
stationary density µ(x) that is a function of T , namely,
the Boltzmann distribution

µ(x) = Z (β)−1 exp (−βH (x)) , (3)

with Hamiltonian H (x) and β = 1/kB T where kB is
the Boltzmann constant and kB T is the thermal energy.
Z (β) =

∫
dx exp (−βH (x)) is the partition function.

By means of illustration, Fig. 1(a) shows the stationary
density µ(x) for a diffusion process on a potential with
high barriers.

3. x(t) is reversible, i.e., p(x, y; τ ) fulfills the condition of
detailed balance:

µ(x) p(x, y; τ ) = µ(y) p(y, x; τ ), (4)

i.e., in equilibrium, the fraction of systems transition-
ing from x to y per time is the same as the fraction
of systems transitioning from y to x. Note that this
“reversibility” is a more general concept than the
time-reversibility of the dynamical equations, e.g.,
encountered in Hamiltonian dynamics. For example,
Brownian dynamics on some potential are reversible
as they fulfill Eq. (4), but are not time-reversible in
the same sense as Hamiltonian dynamics are, due to
the stochasticity of individual realizations. Although
detailed balance is not essential for the construction of
Markov models, we will subsequently assume detailed
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theoretical basis for the development of efficient adaptive dis-
cretization methods for MSMs.

Additionally, we provide a new estimator for transition
matrices for reversible dynamics, i.e., Markov models that
fulfill detailed balance, which is more efficient than the
reversible estimators presented previously.49, 51, 53 Detailed
balance is expected for molecular processes taking place in
thermal equilibrium54 and using this property in the estima-
tion of MSMs will generally enhance the model quality as
unphysical models are excluded. Finally, we take up the topic
of validating MSMs. Several past studies have attempted to
find robust tests for the “Markovianity” of the true dynamics
projected onto the discrete state space,40, 55 a concept which
has been proven problematic both formally and practically.
Here, we instead suggest a simple and robust direct test of
the error of the model in reproducing the observed dynamics.

II. ANALYSIS OF THE CONTINUOUS DYNAMICS

This section reviews the continuous dynamics of a molec-
ular system in thermal equilibrium, and introduces the dynam-
ical propagator, whose approximation is our primary concern.
While this section is important for understanding the subse-
quent formal theory of discretization (Sec. III), practitioners
wishing only to learn how to construct such models may
skip directly to the discussion of Markov model estimation
(Sec. IV).

A. Continuous dynamics

A variety of simulation models that all yield the same
stationary properties, but have different dynamical behaviors,
are available to study a given molecular model. The choice
of the dynamical model must therefore be guided by both a
desire to mimic the relevant physics for the system of interest
(such as whether the system is allowed to exchange energy
with an external heat bath during the course of dynamical
evolution), balanced with computational convenience (e.g.,
the use of a stochastic thermostat in place of explicitly
simulating a large external reservoir).56 Going into the details
of these models is beyond the scope of the present study, and
therefore we will simply state the minimal physical properties
that we expect the dynamical model to obey.

Consider a state space ! which contains all dynamical
variables needed to describe the instantaneous state of the
system. ! may be discrete or continuous, and we treat the
more general continuous case here. For molecular systems, !

usually contains both positions and velocities of the species
of interest and surrounding bath particles. x(t) ∈ ! will de-
note the dynamical process considered, which is continuous
in space, and may be either time-continuous (for theoreti-
cal investigations) or time-discrete (when considering time-
stepping schemes for computational purposes). For the rest
of the paper, we will assume that x(t) has the following
properties:

1. x(t) is a Markov process in the full state space !, i.e.,
the instantaneous change of the system (dx(t)/dt
in time-continuous dynamics and x(t + "t) in

time-discrete dynamics with time step "t), is cal-
culated based on x(t) alone and does not require the
previous history. As a result of Markovianity in !, the
transition probability density p(x, y; τ ) is well defined:

p(x, y; τ ) dy = P [x(t + τ ) ∈ y + dy | x(t) = x]

x, y ∈ !, τ ∈ R0+, (1)

i.e., the probability that a trajectory started at time
t from the point x ∈ ! will be in an infinitesimal
region dy around a point y ∈ ! at time t + τ . Such a
transition probability density for the diffusion process
in a one-dimensional potential is depicted in Fig. 1(b).
When p(x, y; τ ) is a smooth probability density the
stochastic transition probability to a set A ⊆ ! is also
well defined and formally given by integrating the
transition probability density over region A:

p(x, A; τ ) = P [x(t + τ ) ∈ A|x(t) = x]

=
∫

y∈A
dy p(x, y; τ ). (2)

2. x(t) is ergodic, i.e., the space ! does not have two or
more subsets that are dynamically disconnected, and
for t → ∞ each state x will be visited infinitely often.
The fraction of time that the system spends in any of
its states during an infinitely long trajectory is given
by its unique stationary density (invariant measure)
µ(x) : ! → R0+ that corresponds to the equilibrium
probability density for some associated thermodynamic
ensemble (e.g., NVT, NpT). For molecular dynamics
at constant temperature T , the dynamics above yield a
stationary density µ(x) that is a function of T , namely,
the Boltzmann distribution

µ(x) = Z (β)−1 exp (−βH (x)) , (3)

with Hamiltonian H (x) and β = 1/kB T where kB is
the Boltzmann constant and kB T is the thermal energy.
Z (β) =

∫
dx exp (−βH (x)) is the partition function.

By means of illustration, Fig. 1(a) shows the stationary
density µ(x) for a diffusion process on a potential with
high barriers.

3. x(t) is reversible, i.e., p(x, y; τ ) fulfills the condition of
detailed balance:

µ(x) p(x, y; τ ) = µ(y) p(y, x; τ ), (4)

i.e., in equilibrium, the fraction of systems transition-
ing from x to y per time is the same as the fraction
of systems transitioning from y to x. Note that this
“reversibility” is a more general concept than the
time-reversibility of the dynamical equations, e.g.,
encountered in Hamiltonian dynamics. For example,
Brownian dynamics on some potential are reversible
as they fulfill Eq. (4), but are not time-reversible in
the same sense as Hamiltonian dynamics are, due to
the stochasticity of individual realizations. Although
detailed balance is not essential for the construction of
Markov models, we will subsequently assume detailed
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Ergodicity

No two or more segments of the space      are dynamically 
disconnected from each other.

⌦

and

For an infinitely long simulation we will have visited every 
state               infinitely many times.x 2 ⌦
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theoretical basis for the development of efficient adaptive dis-
cretization methods for MSMs.

Additionally, we provide a new estimator for transition
matrices for reversible dynamics, i.e., Markov models that
fulfill detailed balance, which is more efficient than the
reversible estimators presented previously.49, 51, 53 Detailed
balance is expected for molecular processes taking place in
thermal equilibrium54 and using this property in the estima-
tion of MSMs will generally enhance the model quality as
unphysical models are excluded. Finally, we take up the topic
of validating MSMs. Several past studies have attempted to
find robust tests for the “Markovianity” of the true dynamics
projected onto the discrete state space,40, 55 a concept which
has been proven problematic both formally and practically.
Here, we instead suggest a simple and robust direct test of
the error of the model in reproducing the observed dynamics.

II. ANALYSIS OF THE CONTINUOUS DYNAMICS

This section reviews the continuous dynamics of a molec-
ular system in thermal equilibrium, and introduces the dynam-
ical propagator, whose approximation is our primary concern.
While this section is important for understanding the subse-
quent formal theory of discretization (Sec. III), practitioners
wishing only to learn how to construct such models may
skip directly to the discussion of Markov model estimation
(Sec. IV).

A. Continuous dynamics

A variety of simulation models that all yield the same
stationary properties, but have different dynamical behaviors,
are available to study a given molecular model. The choice
of the dynamical model must therefore be guided by both a
desire to mimic the relevant physics for the system of interest
(such as whether the system is allowed to exchange energy
with an external heat bath during the course of dynamical
evolution), balanced with computational convenience (e.g.,
the use of a stochastic thermostat in place of explicitly
simulating a large external reservoir).56 Going into the details
of these models is beyond the scope of the present study, and
therefore we will simply state the minimal physical properties
that we expect the dynamical model to obey.

Consider a state space ! which contains all dynamical
variables needed to describe the instantaneous state of the
system. ! may be discrete or continuous, and we treat the
more general continuous case here. For molecular systems, !

usually contains both positions and velocities of the species
of interest and surrounding bath particles. x(t) ∈ ! will de-
note the dynamical process considered, which is continuous
in space, and may be either time-continuous (for theoreti-
cal investigations) or time-discrete (when considering time-
stepping schemes for computational purposes). For the rest
of the paper, we will assume that x(t) has the following
properties:

1. x(t) is a Markov process in the full state space !, i.e.,
the instantaneous change of the system (dx(t)/dt
in time-continuous dynamics and x(t + "t) in

time-discrete dynamics with time step "t), is cal-
culated based on x(t) alone and does not require the
previous history. As a result of Markovianity in !, the
transition probability density p(x, y; τ ) is well defined:

p(x, y; τ ) dy = P [x(t + τ ) ∈ y + dy | x(t) = x]

x, y ∈ !, τ ∈ R0+, (1)

i.e., the probability that a trajectory started at time
t from the point x ∈ ! will be in an infinitesimal
region dy around a point y ∈ ! at time t + τ . Such a
transition probability density for the diffusion process
in a one-dimensional potential is depicted in Fig. 1(b).
When p(x, y; τ ) is a smooth probability density the
stochastic transition probability to a set A ⊆ ! is also
well defined and formally given by integrating the
transition probability density over region A:

p(x, A; τ ) = P [x(t + τ ) ∈ A|x(t) = x]

=
∫

y∈A
dy p(x, y; τ ). (2)

2. x(t) is ergodic, i.e., the space ! does not have two or
more subsets that are dynamically disconnected, and
for t → ∞ each state x will be visited infinitely often.
The fraction of time that the system spends in any of
its states during an infinitely long trajectory is given
by its unique stationary density (invariant measure)
µ(x) : ! → R0+ that corresponds to the equilibrium
probability density for some associated thermodynamic
ensemble (e.g., NVT, NpT). For molecular dynamics
at constant temperature T , the dynamics above yield a
stationary density µ(x) that is a function of T , namely,
the Boltzmann distribution

µ(x) = Z (β)−1 exp (−βH (x)) , (3)

with Hamiltonian H (x) and β = 1/kB T where kB is
the Boltzmann constant and kB T is the thermal energy.
Z (β) =

∫
dx exp (−βH (x)) is the partition function.

By means of illustration, Fig. 1(a) shows the stationary
density µ(x) for a diffusion process on a potential with
high barriers.

3. x(t) is reversible, i.e., p(x, y; τ ) fulfills the condition of
detailed balance:

µ(x) p(x, y; τ ) = µ(y) p(y, x; τ ), (4)

i.e., in equilibrium, the fraction of systems transition-
ing from x to y per time is the same as the fraction
of systems transitioning from y to x. Note that this
“reversibility” is a more general concept than the
time-reversibility of the dynamical equations, e.g.,
encountered in Hamiltonian dynamics. For example,
Brownian dynamics on some potential are reversible
as they fulfill Eq. (4), but are not time-reversible in
the same sense as Hamiltonian dynamics are, due to
the stochasticity of individual realizations. Although
detailed balance is not essential for the construction of
Markov models, we will subsequently assume detailed
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theoretical basis for the development of efficient adaptive dis-
cretization methods for MSMs.

Additionally, we provide a new estimator for transition
matrices for reversible dynamics, i.e., Markov models that
fulfill detailed balance, which is more efficient than the
reversible estimators presented previously.49, 51, 53 Detailed
balance is expected for molecular processes taking place in
thermal equilibrium54 and using this property in the estima-
tion of MSMs will generally enhance the model quality as
unphysical models are excluded. Finally, we take up the topic
of validating MSMs. Several past studies have attempted to
find robust tests for the “Markovianity” of the true dynamics
projected onto the discrete state space,40, 55 a concept which
has been proven problematic both formally and practically.
Here, we instead suggest a simple and robust direct test of
the error of the model in reproducing the observed dynamics.

II. ANALYSIS OF THE CONTINUOUS DYNAMICS

This section reviews the continuous dynamics of a molec-
ular system in thermal equilibrium, and introduces the dynam-
ical propagator, whose approximation is our primary concern.
While this section is important for understanding the subse-
quent formal theory of discretization (Sec. III), practitioners
wishing only to learn how to construct such models may
skip directly to the discussion of Markov model estimation
(Sec. IV).

A. Continuous dynamics

A variety of simulation models that all yield the same
stationary properties, but have different dynamical behaviors,
are available to study a given molecular model. The choice
of the dynamical model must therefore be guided by both a
desire to mimic the relevant physics for the system of interest
(such as whether the system is allowed to exchange energy
with an external heat bath during the course of dynamical
evolution), balanced with computational convenience (e.g.,
the use of a stochastic thermostat in place of explicitly
simulating a large external reservoir).56 Going into the details
of these models is beyond the scope of the present study, and
therefore we will simply state the minimal physical properties
that we expect the dynamical model to obey.

Consider a state space ! which contains all dynamical
variables needed to describe the instantaneous state of the
system. ! may be discrete or continuous, and we treat the
more general continuous case here. For molecular systems, !

usually contains both positions and velocities of the species
of interest and surrounding bath particles. x(t) ∈ ! will de-
note the dynamical process considered, which is continuous
in space, and may be either time-continuous (for theoreti-
cal investigations) or time-discrete (when considering time-
stepping schemes for computational purposes). For the rest
of the paper, we will assume that x(t) has the following
properties:

1. x(t) is a Markov process in the full state space !, i.e.,
the instantaneous change of the system (dx(t)/dt
in time-continuous dynamics and x(t + "t) in

time-discrete dynamics with time step "t), is cal-
culated based on x(t) alone and does not require the
previous history. As a result of Markovianity in !, the
transition probability density p(x, y; τ ) is well defined:

p(x, y; τ ) dy = P [x(t + τ ) ∈ y + dy | x(t) = x]

x, y ∈ !, τ ∈ R0+, (1)

i.e., the probability that a trajectory started at time
t from the point x ∈ ! will be in an infinitesimal
region dy around a point y ∈ ! at time t + τ . Such a
transition probability density for the diffusion process
in a one-dimensional potential is depicted in Fig. 1(b).
When p(x, y; τ ) is a smooth probability density the
stochastic transition probability to a set A ⊆ ! is also
well defined and formally given by integrating the
transition probability density over region A:

p(x, A; τ ) = P [x(t + τ ) ∈ A|x(t) = x]

=
∫

y∈A
dy p(x, y; τ ). (2)

2. x(t) is ergodic, i.e., the space ! does not have two or
more subsets that are dynamically disconnected, and
for t → ∞ each state x will be visited infinitely often.
The fraction of time that the system spends in any of
its states during an infinitely long trajectory is given
by its unique stationary density (invariant measure)
µ(x) : ! → R0+ that corresponds to the equilibrium
probability density for some associated thermodynamic
ensemble (e.g., NVT, NpT). For molecular dynamics
at constant temperature T , the dynamics above yield a
stationary density µ(x) that is a function of T , namely,
the Boltzmann distribution

µ(x) = Z (β)−1 exp (−βH (x)) , (3)

with Hamiltonian H (x) and β = 1/kB T where kB is
the Boltzmann constant and kB T is the thermal energy.
Z (β) =

∫
dx exp (−βH (x)) is the partition function.

By means of illustration, Fig. 1(a) shows the stationary
density µ(x) for a diffusion process on a potential with
high barriers.

3. x(t) is reversible, i.e., p(x, y; τ ) fulfills the condition of
detailed balance:

µ(x) p(x, y; τ ) = µ(y) p(y, x; τ ), (4)

i.e., in equilibrium, the fraction of systems transition-
ing from x to y per time is the same as the fraction
of systems transitioning from y to x. Note that this
“reversibility” is a more general concept than the
time-reversibility of the dynamical equations, e.g.,
encountered in Hamiltonian dynamics. For example,
Brownian dynamics on some potential are reversible
as they fulfill Eq. (4), but are not time-reversible in
the same sense as Hamiltonian dynamics are, due to
the stochasticity of individual realizations. Although
detailed balance is not essential for the construction of
Markov models, we will subsequently assume detailed

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

At equilibrium the probability of jumping from any x 
to any y is the same as jumping from y to x.



An illustration of the 
transition density
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ENSEMBLE PERSPECTIVE

INTRODUCTION

USE A PROBABILITY FUNCTION THAT CAN DESCRIBE THE 
DISTRIBUTION OF AN ENSEMBLE OF CONFIGURATIONS WITHIN  
STATE SPACE !

13

p : x 2 W 7! p(x) 2 R+
0 ,

Z

W
dx p(x) = 1

SINGLE ENSEMBLE DENSITY

Min

Max

Single Ensemble Density

Figure courtesy of JH Prinz



Assumptions about the full 
dynamics

In
iti

al
 s

ta
te

Final state

97%0% 2%1%

97%0% 2%1%

0%95% 0%5%

2%1% 1%96%

Markovian
P(xt+⌧ 2 A | xt1 , . . . , xt = x) = P(xt+⌧ 2 A | xt = x)

p⌧1+⌧2(x,A) =

Z

⌦
p⌧1(x, y)p⌧2(y,A) dy

Factorization of the dynamics 
 into conditional probabilities

Chapman-Kolmogorov property

Direct combination of conditional probabilities with different lag-times



Assumptions about the full 
dynamics

Irreducibility
All states of the state space can be reached from any other state in a finite time.  
Ensures unique stationary distribution.

Ergodicity
No states are disconnected  
No cyclic dynamics. 
Ensures time and ensemble average properties are equal.

Reversibility
No net-probability flux at equilibrium. => no energy production/absorption => mass conservation. 
Not strictly necessary for Markov models



Ensemble view of dynamics

Figure courtesy of JH Prinz
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THE PROPAGATOR

INTRODUCTION

DEFINE THE PROPAGATOR Pτ AS AN OPERATOR THAT TRANSPORTS 
PROBABILITY DISTRIBUTIONS IN TIME

17

pt+t(x) = [Pt pt](x) =
Z

W
dy pt(y, x)pt(y)

Min

Max

Pτ

TIME τ TIME t+τ

LAGTIME (TIMESTEP) τ

A propagator is an operator which transports
probability densities in time
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Example dynamics
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LAGTIME DEPENDENCE

TRANSFER OPERATOR APPROACH
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Propagator depends on lag 
time
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So why is this?



Implied time-scales

JH PRINZ — PYEMMA MSM THEORY

EIGENVALUES OF THE PROPAGATOR 

CHAPMAN-KOLMOGOROV IMPLIES EXPONENTIAL LAGTIME DEPENDENCE

TIMESCALES

INTRODUCTION
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Eigenvalues of the propagator

Chapman-Kolmogorov Implies exponential lag-time dependence
P⌧�i = �i�i

�i(k · ⌧) = �k
i (⌧)



Meta-stability

• We can approximate the propagator by a finite 
number of processes with non-zero Eigenvalues 

• If we have a gap in the Eigenvalue spectrum, we 
can choose the lag-time in a manner such that we 
fulfill this assumption 

• When we do this, processes faster than the lag-
time ‘have decayed’ or ‘are not resolved’.



What do you mean by 
processes?

174105-4 Prinz et al. J. Chem. Phys. 134, 174105 (2011)

(a)

(c)

(b)

(d)

(e)

FIG. 1. (a) Potential energy function with four metastable states and corresponding stationary density µ(x). (b) Density plot of the transfer operator for a simple
diffusion-in-potential dynamics defined on the range ! = [1, 100] [see supplementary material (Ref. 65)], black and red indicates high transition probability,
white zero transition probability. Of particular interest is the nearly block-diagonal structure, where the transition density is large within blocks allowing rapid
transitions within metastable basins, and small or nearly zero for jumps between different metastable basins. (c) The four dominant eigenfunctions of the
transfer operator, ψ1, . . . , ψ4, which indicate the associated dynamical processes. The first eigenfunction is associated with the stationary process, the second to
a transition between A + B ↔ C + D, and the third and fourth eigenfunction to transitions between A ↔ B and C ↔ D, respectively. (d) The four dominant
eigenfunctions of the transfer operator weighted with the stationary density, φ1, . . . , φ4. (e) Eigenvalues of the transfer operator, the gap between the four
metastable processes (λi ≈ 1) and the fast processes is clearly visible.

balance as this allows much more profound analytical
statements to be made. The rationale is that we expect
detailed balance to be fulfilled in equilibrium molecular
dynamics based on a simple physical argument: for
dynamics that have no detailed balance, there exists a
set of states which form a loop in state space which is
traversed in one direction with higher probability than in
the other direction. This means that one could design a
machine which uses this preference of direction in order
to produce work. However, a system in equilibrium
is driven only by thermal energy, and conversion of
pure thermal energy into work contradicts the second

law of thermodynamics. Thus, equilibrium molecular
dynamics must be reversible and fulfill detailed balance.

The above conditions do not place overly burdensome restric-
tions on the choice of dynamical model used to describe equi-
librium dynamics. Most stochastic thermostats are consis-
tent with the above assumptions, e.g., Andersen57 (which can
be employed with either massive or per-particle collisions,
or coupled to only a subset of degrees of freedom), Hybrid
Monte Carlo,58 overdamped Langevin (also called Brownian
or Smoluchowski) dynamics,59, 60 and stepwise-thermalized
Hamiltonian dynamics.40 When simulating solvated systems,

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Eigenfunctions of P⌧
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EIGENVALUES OF THE PROPAGATOR 

CHAPMAN-KOLMOGOROV IMPLIES EXPONENTIAL LAGTIME DEPENDENCE
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Estimation



Discretization of              ⌦

JH PRINZ — PYEMMA MSM THEORY

•EXAMPLE OF A CONCRETE REALIZATION xt

DISCRETIZATION / PROJECTION

GENERATION
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Count matrix

JH PRINZ — PYEMMA MSM THEORY

GENERATE A MARKOV MODEL FROM DISCRETIZED TIMESERIES  
TO PARAMETRIZE THE SIMPLE 4-STATE MARKOV STATE MODEL

MSM TIMESCALES

GENERATION

Cij(1) A B C D

A 9963 37 0 0

B 22 9974 4 0

C 0 2 9919 79

D 0 0 115 9885

32

COUNT  
MATRIX

Figure courtesy of JH Prinz

Cij(τ) =
T

∑
n=τ

δ(xn−τ = i, xn = j)



Maximum likelihood estimator

JH PRINZ — PYEMMA MSM THEORY

GIVEN THE TRANSITION PROBABILITIES IN AN MSM WE CAN 
COMBINE THESE INTO A OBSERVATION PROBABILITY FOR A FULL 
DISCRETE TRAJECTORY 

NAIVE APPROACH IS TO JUST FIND THE (ONE) MSM THAT HAS THE 
HIGHEST LIKELIHOOD AMONG ALL POSSIBLE MSMS. 

MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

LIKELIHOOD

GENERATION

33

P(x1, . . . , xt | P ) =
LY

k=1

pxk�1,xk

= px0,x1 · . . . · pxL�1,L

=
Y

ij

p
cij
ij

= pc1111 · . . .

We can express the probability of the observed data - discrete trajectory -  
given a transition probability matrix of an MSM

The aim is then to find the P which maximizes this expression -  
That is, the Maximum likelihood estimator.



Analytical solution for Non-
reversible case

• We enforce the constraint that the transition 
probability matrix is row-stochastic: 

• One can show the estimator is simply:

JH PRINZ — PYEMMA MSM THEORY

ASSUME THAT THE PARAMETERS OF THE MSM HAVE CONSTRAINTS 

  

WE CAN FIND AN ANALYTIC EXPRESSION FOR THE MLE 

  

USING LAGRANGE MULTIPLIERS. 

ANALYTIC SOLUTION

GENERATION

34

X

j

pij = 1, 8i

PMLE = argmax
P
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pxk�1,xk

p̂ij =

PL
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=
ĈijP
j Ĉij
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Reversible estimator

• Enforces the detailed balance condition.


• No exact analytical solution:


• Fixed-point iteration algorithm available.


• Approximate solutions.


• Implemented in deeptime



Bayesian inference of MSMs

• The less simulation data we have, the more 
ambiguous the solution of the likelihood problem 
will be. 

• Consequently, if we limit ourselves to the MLE, we 
are ignorant as to how robust our inferred MSM is. 

• One way to quantify the uncertainty of MSMs is 
through Bayesian inference



Bayesian inference of MSMs

P(xi, . . . , xt | P ) = p(C | P ) /
nY

i,j=1

p
cij
ij

Likelihood from before



Bayesian inference of MSMs

P(xi, . . . , xt | P ) = p(C | P ) /
nY

i,j=1

p
cij
ij

Likelihood from before

Introduction of prior information

p(P | C) / p(C | P )p(P )

The prior can encode useful constraints: row-stochasticity,
reversibility, fixed stationary distribution, sparsity etc



Bayesian inference of MSMs
Inference is done by MCMC sampling

Noé (2008) JCP 128, 244103 
Trendelkamp-Schroer & Noé (2013) JCP 138, 164113 



Alternative estimators



Transition(-based) 
Reweighting Analysis Method

Wu et al. PNAS 2016, 113(23), E3221–E3230

• Allows taking into account 
simulation data from multiple 
thermodynamic ensembles. 

• That means, we can use 
data from enhanced 
sampling simulations 
together with unbiased 
simulation data to 
generate models more 
efficiently.

• More about this wednesday.
Implemented in PyEMMA



Augmented Markov models

Olsson et al. PNAS 2017, 114(31), pp. 8265-8270. doi: 10.1073/pnas.1704803114 

• Enables integration of 
external information into 
the estimation of Markov 
state models. 

• Fx use of experimental 
constraints from 
biophysical experiments 
such as NMR. 

• A notebook tutorial 
distributed with PyEMMA 
2.5 and up.

Implemented in PyEMMA

Simulation ensemble Experimental ensemble

Equilibrium distribution Equilibrium distribution

Observed transitions Measured expectation

True expectationTransition matrix

Simulation

max Likelihood

Biased ensemble – Full observability True ensemble – Partial observability

Lagrange multipliers

Biased ensemble – Full observability 
Statistical error

True ensemble – Partial observability 
Statistical error

Maximum Entropy

Measurement

max Likelihood

pij
⇡ ⇡̂

�k m̂k

cij ok

Implemented in Deeptime



Analysis of our estimate

JH PRINZ — PYEMMA MSM THEORY

GENERATE A MARKOV MODEL FROM DISCRETIZED TIMESERIES  
TO PARAMETRIZE THE SIMPLE 4-STATE MARKOV STATE MODEL

MSM TIMESCALES

GENERATION

Pij(1) A B C D

A 0,9963 0,0037

B 0,0022 0,9974 0,0004

C 0,0002 0,9919 0,0079

D 0,0115 0,9885

∞
2,746

165

51

projected 
timescales

∞
17,671

1,610

538

original 
timescales

35

The timescales of projected models are always underestimated !
Djurdjevac, N., Sarich, M. & Schütte, C. Estimating the eigenvalue error of Markov State 
Models. Multiscale Model. Sim. 

TRANSITION  
MATRIX

Time-scales are always under-estimated
Figure courtesy of JH Prinz



Increasing the lag-time

JH PRINZ — PYEMMA MSM THEORY

INCREASING THE LAGTIME (USE EVERY N-TH STEP) WHEN COUNTING 
WILL IMPROVE THE ESTIMATION OF THE RATES 

 

LAGTIME DEPENDENCE

GENERATION

Cij(100) A B C D

A 9533 477 40 0

B 1644 8014 262 80

C 0 40 9025 935

D 0 0 1366 8634

37

COUNT  
MATRIX
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timescales

Ĉij =
L/⌧

l � ⌧

LX

n=⌧

�(xn�⌧ = i, xn = j)May improve estimates of predicted time-scales
Figure courtesy of JH Prinz



Projection/discretization error

JH PRINZ — PYEMMA MSM THEORY

GOOD PROJECTION

EXAMPLE EIGENVALUES / IMPLIED TIMESCALES

PROJECTED MARKOV MODELS
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Figure courtesy of JH Prinz



Projection/discretization error

Figure courtesy of JH Prinz
JH PRINZ — PYEMMA MSM THEORY

BAD PROJECTION

EXAMPLE EIGENVALUES / IMPLIED TIMESCALES

PROJECTED MARKOV MODELS

39

Experiment Coarse HGoodL Coarse HBadL PCCA Arbitrary

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4844
14 443

162 467489

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4915
14 793

162 748261

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

3812
13 385

157 933506

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4960
14 827

162 7621

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4943
14 478

159 378484

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

Experiment Coarse HGoodL Coarse HBadL PCCA Arbitrary

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4844
14 443

162 467489

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4915
14 793

162 748261

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

3812
13 385

157 933506

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4960
14 827

162 7621

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4943
14 478

159 378484

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

Experiment Coarse HGoodL Coarse HBadL PCCA Arbitrary

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x
y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4844
14 443

162 467489

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4915
14 793

162 748261

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

3812
13 385

157 933506

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4960
14 827

162 7621

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4943
14 478

159 378484

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

Experiment Coarse HGoodL Coarse HBadL PCCA Arbitrary

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

y
1

y
2

y
3

1 A 25 B 50 C 75 D 100

State x

y
4

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4844
14 443

162 467489

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4915
14 793

162 748261

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

3812
13 385

157 933506

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4960
14 827

162 7621

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

Pr
es
en
ce
g i
HtL

4943
14 478

159 378484

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Lagtime t

R
el
.E
rr
or

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

1 10 100 1000 104 105
1

10

100

1000

104

Lagtime t

IT
S
t iHt
L

metastable region



Known problems

• Observations (projections, discretizations) are in 
many cases not Markovian 

• However, we are often interested in understanding 
the full system not just the observation. 

• Since we often have a lot of freedom to choose the 
projections and discretization, it is important to 
chose one which is as Markovian as possible. 



Validation



Chapman-Kolmogorov test

JH PRINZ — PYEMMA MSM THEORY

CHAPMAN-KOLMOGOROV TEST

GENERATION

42

COMPARE THE EVOLUTION IN THE MODEL WITH THE DATA 

➡ Variance in the data is estimated from statistics (1/C)
➡ Variance in the model from Bayesian inference

174105-18 Prinz et al. J. Chem. Phys. 134, 174105 (2011)

the transition matrix posterior is only asymptotically
valid, but easily breaks down when few counts have
been observed and permits unphysical values (e.g.,
Ti j outside the range [0,1]). Moreover, the property of
interest is approximated linearly which can introduce a
significant error when this property is nonlinear.

2. Markov chain Monte Carlo sampling of transition
matrices:45, 51, 89 Here, a set of transition matrices is
drawn from the posterior distribution. The property of
interest is then calculated for each transition matrix,
and the uncertainties are directly estimated from this
set. This approach requires that the true distribution
is sampled often enough such that well-converged
estimates of standard deviations or confidence intervals
can be made. The advantage of the approach is that no
assumptions are made concerning the functional form
of the distribution or the property being computed.
Furthermore, this approach can be straightforwardly
applied to any function or property of transition ma-
trices, including complex properties such as transition
path distributions22 without deriving the expressions
necessary for the linear error perturbation analysis. Its
disadvantage is that sampling may become slow for large
matrices.

F. Validation: Chapman–Kolmogorov test

We have above formulated conditions for choosing a dis-
cretization and a lag time τ that minimize the discretization
error of a MSM. However, in practice it is essential to con-
duct a test whether lag time and discretization have been cho-
sen such that the Markov model obtained is at least consistent
with the data used to parameterize it within statistical error. In
Sec. III D, the discretization error was measured as difference
between Markov model propagation and true propagation in
the continuous space. In practice it is easier to measure the
propagation error on the discrete space directly. In particular,
we are interested in checking whether the approximation,

[T̂(τ )]k ≈ T̂(kτ ), (60)

holds within statistical uncertainty. Here, T̂(τ ) is the transi-
tion matrix estimated from the data at lag time τ (the Markov
model), and T̂(kτ ) is the transition matrix estimated from
the same data at longer lag times kτ . Note that when the
nonreversible maximum likelihood estimator, Eq. (53), is
used, this approximation is trivially exact for k = 1 since
the Markov model was parameterized at lag time τ . For all
k " t2/τ , the approximation should always be good, as
Markov models correctly model the stationary distribution,
even for bad choices of τ and discretization (see Sec. III D).
Thus, this test is only sensitive in ranges of k greater one and
smaller than the global relaxation time of the system.

There are various ways how a test of Eq. (60) could be
implemented. An implementation of this test should consider
the following points:

1. For large transition matrices, individual elements of
T̂(kτ ) or [T̂(τ )]k can be very uncertain, and comparing
n × n elements may be cumbersome. Therefore, we sug-
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FIG. 11. Chapman–Kolmogorov test for diffusion in a two-well potential
using a trajectory of length 106 steps. Tested are Markov models that use lag
times τ = 100, 500, 2000 and (a) two-state discretization (split at x = 50),
(b) six-state discretization (split at x = 40, 45, 50, 55, 60).

gest to compare the probability of being in a given set
of states, A, when starting from a well-defined starting
distribution. This simplifies the test to few observables
and allows to check the kinetics of states that are of spe-
cial interest, such as folded/unfolded states or metastable
states.

2. The test should be done for all times kτ for which trajec-
tory data are available. Tests that compare Markov mod-
els that differ only one lag step (τ and 2τ ) are likely
to be unreliable as small approximation errors at short
times may amplify at long times.

3. The quality of the approximation (60) should be judged
within the statistical uncertainties induced by the data.

Here we present an implementation that takes these prop-
erties into account. Let π be the stationary probability of the
Markov model T̂(τ ). The corresponding stationary distribu-
tion restricted to a set A is then given by

w A
i =






πi∑
j∈A π j

i ∈ A

0 i /∈ A
. (61)
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General scheme for Markov state model generation

• Discretize a suitable projection of your data. 

• Construct a transition matrix. 

• Estimate the number of meta-stable states (time-
scale gap) 

•  Perform Chapman-Kolmogorov test.



Analysis
Useful predictions from a MSM



Common properties
• Relaxation time-scales 

• Dominant processes 

• Stationary distribution (thermodynamics) 

• Meta-stable sets (more about this later) 

• Correlation functions (spectroscopic observables) 

• Mean first passage times 

• Path probabilities



Summary
• Markov state models are derived coarse-grained 

models of the full original (Markovian) dynamics . 
• MSMs may be parameterized (estimated/learned) 

from simulation data to compute properties of 
interest.

• MSMs are particularly useful if the projection/
discretization error can be minimized: then the 
predicted quantities match the original.



Questions?


