

KNIME Summit 2018

OpenMS / SeqAn Workshop

René Rahn, Julianus Pfeuffer, Julian Uszkoreit, Alexander Fillbrunn

Against a Whole-Genome?Shotgun

Philip Green

Genome Res. 1997 7: 410-417

Access the most recent version at doi:10.1101/gr.7.5.410

However, it is clear upon reflection that unmapped genomic reads are an extremely inefficient way to obtain biological information and are virtually useless for most purposes. McKinsey Global Institute:

Disruptive technologies: Advances that will transform life, business, and the global economy (2013)

ECONOMIC IMPACT of NGS

In the applications we assessed, we estimate that next-generation genomics have a potential economic impact of \$700 billion to \$1.6 trillion per year by 2025.....

Agriculture

Cancer

Metagenomics

Hereditary Diseases

Taken from:

~ 13 years ago...

Data volume and cost:
In 2000 the 3 billion base pairs of
the human genome were
sequenced for about 3 billion US\$
Dollar

100 million bp per day

Sequencing today...

Illumina HiSeq

400 billion bps per day

Within roughly ten years sequencing has become about 10 million times cheaper Pangenomics analyses possible

Sequencing earth?

Published online 23 August 2011 | Nature | doi:10.1038/news.2011.498 Corrected online: 24 August 2011

News

Number of species on Earth tagged at 8.7 million

Most precise estimate yet suggests more than 80% of species still undiscovered.

Lee Sweetlove

10⁷ species x 10⁸ genome size => earth genome has 10¹⁵ bps

10⁴ Hiseqs can each sequence 10¹¹ bps per day => earth genome at 10x in 10 days

Software libraries bridge gap

SeqAn

SOFTWARE OPEN ACCESS

RECOMB 2017, Hongkong

Constant time bidirectional indices

EPR-Dictionaries: A Practical and Fast Data Structure for Constant Time Searches in Unidirectional and Bidirectional FM Indices

Christopher Pockrandt^{1,2(⊠)}, Marcel Ehrhardt¹, and Knut Reinert¹

Department of Computer Science and Mathematics, Freie Universität Berlin, Berlin, Germany

christopher.pockrandt@fu-berlin.de

² International Max Planck Research

School for Computational Biology and Scientific Computation, Berlin, Germany http://reinert-lab.de

Bioinformatics 2018 (accepted)

Accelerated Pairwise Alignment

Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading

René Rahn ^{1,*}, Stefan Budach ², Pascal Costanza ³, Marcel Ehrhardt ¹, Jonny Hancox ⁴ and Knut Reinert ^{1,2,*}

¹Department of Mathematics and Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany

²Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany

³imec, Belgium and

⁴Intel Corporation (UK) Limited, United Kingdom

^{*}Tel: +49 (0)30 838-72974; Fax: +49 (0)30 838-472974; Email: rene.rahn@fu-berlin.de

SeqAn Workflows

Variant Calling with prior Error Correction

SeqAn Workflows

Metagenomics Workflow - GASiC*

^{*} Lindner MS and Renard BY. Metagenomic abundance estimation and diagnostic testing on species level, Nucl. Acids Res. 2013, 41(1): e10, doi:10.1093/nar/gks803

SeqAn Workflows

Metagenomics Workflow - SLIMM*

Taxonomic Profiling (Who and how much?)

 Taxonomic profiling is a process of generating qualitative and quantitative information about a composition of a given microbial community.

Taxonomic Profiling (major challenges)

 Shared (homologous) regions of genome sequences across multiple microorganisms

Range of variation in the abundance of individual groups

How existing methods try to resolve this ...

- Prepare non overlapping reference catalog (MetaPhlAn, GOTTCHA, mOTUs)
 - Unable to detect low abundance organisms.
- Assign shared reads to their LCA
 - Most of the information goes down to the upper levels.

SLIMM - Method

Collect information about genomes from mapping results

scape using

es at a given rank

Precision, Recall and F1-Score

Method

- → SLIMM
- kraken
- GOTTCHA
- + mOTUs

Hands On

ftp://ftp.mi.fu-berlin.de/pub/SeqAn/knime_summit/2018/

Thank you for your attention!