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Peptide Identification

Why can we identify peptides from tandem MS spectra?

Goal: identify sequence
Tandem MS

Sequence consists of the same 20 building blocks (amino acids)
CID: peptide breaks preferentially along the backbone
Peptide fragment ions correspond to prefixes and suffixes of the whole peptide
sequences
Complete ion series (ladders) reveal the sequence via mass differences of adjacent
fragment ions )
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Peptide Identification

* [ssues
e Spectra are incomplete —ions are missing
* Missing information makes it very hard to reconstruct full sequence
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e Database search

* Not all sequences occur in a proteome — only a fraction of sequence space is
used

* Try to find those sequences that match the ions present in the spectrum

Consensus spectrum: PeptideAtlas id 829036



Product ion generation

A peptide of length n can
potentially give rise to a,b,c
and x,y,z ions. This example
shows the fragments that can
be produced between amino
acidsR_and R, ,;

This nomenclature for
fragment ions was first
proposed by Roepstorff and
Fohlmanin 1984

(Roepstorff and Fohlman, Biological Mass Spectrometry,
Volume 11, Issue 11, page 601, November 1984)

Steen and Mann. Nature Reviews, Molecular Cell Biology, Vol. 5 2004



lon Series
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b/y ions in CID

CID fragmentation predominately produces b and y ions
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Note: y; ion is also called the sister fragment of the b, ; ion and vice versa

Steen and Mann. Nature Reviews, Molecular Cell Biology, Vol. 5 2004



lon Types - Example

For simplicity we will consider theoretical spectra for the artificial

(tryptic) peptide TESTPEPTIDEK
* For singly charged ion fragments, only one of the sister fragments

will be observed

mm singly charged
y ions

Intensiy




lon types in a tandem spectrum

* If the same peptide was multiply charged; the charges
are usually distributed across the product ions, the
tandem spectrum is assumed to contain both sister ions
and also doubly charged product ions

- mm singly charged
y ions

mm singly charged
b ions

mm doubly charged

- y ions

= mm doubly charged

- b ions

Intensty




lon types in a tandem spectrum

 Theoretically, one also observes a, ¢, x and z ions

= mm singly charged

y ions

- mm singly charged
b ions

mm doubly charged
y ions

mm doubly charged
b ions
singly charged
b, ¢, x and z ions

Intensty




lon types in a tandem spectrum

 Theoretically, one also observes a, ¢, x and z ions
* abc and xyz ions are called backbone ions.

This spectrum contains all theoretical backbone ions of charge 1-2
(theoretically generated for TESTPEPTIDEK)

= mm singly charged

y ions

- mm singly charged

- b ions

mm doubly charged
y ions

mm doubly charged
b ions
singly charged
b, ¢, x and z ions

Inte
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Neutral losses

* Besides backbone ions, we also observe the precursor ions and precursor
ions with neutral losses

* Neutral losses most frequently occur as water loss (H,0: -18.011 Da) on
S, T, D and E; as ammonia loss (NH5: - 17.027 Da) on R, K, N and Q and as

loss of phosphoric acid (H;P0,:-98 Da) on S, Tand Y

full

* Neutral losses are uncharged fragments, but result  ws

in an additional charged ion with mass,,, — Mass_ ., ai 1oss
: : , ;
* The problem of very intense ions, resulting ugt | oo ‘
from neutral losses of precursor ions, can be over- T
o . o, B m/.
come by triggering an additional fragmentation. selectnd |

ms3

\/
m/z

Hoffert J D et al. PNAS 2006;103:7159-7164



Internal fragments

* Internal fragments result from double backbone
fragmentation. Usually, these are formed by a
combination of b-type and y-type ions, and
consist of five residues or less

* Immonium ions are a special case of internal
fragments. They are composed of a single side
chain formed by a combination of a-type and y-

. R3
type fragmentation H2N+=(:3
H



Noise in tandem spectra

* |[n addition to the various types of ions, there is
also noise in tandem spectra

With noise
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Freitas and Xu, BMC Bioinformatics. 2010, 11:436



Summary ion types

* Due to different fragmentation efficacies and
different response factors, fragment ions will have
different intensities

* These intensities can be predicted using machine
learning techniques and appropriate fragmentation
models, however, most search engines do not
include intensity information, but only the masses

* |n general, a simple peptide search engine should
consider b and y type ions, doubly charged b and y

type (b%*, y?*) ions and optionally b™V"3 y"NF3 and b
H20 |-H20 '



Identification workflow
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Peptide identification

A

LC-MS/MS experiment
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QINSC5|HOME3_HUMAN Homer protein homolog 3 -
Homo sapiens (Human)
MSTAREQPIFSTRAHVFQIDPATKRNWIPAGKHALTVSYFYDA
TRNVYRIISIGGAKAIINSTVTPNMTFTKTSQKFGQWDSRANTV
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Experimental spectra

Theoretical spectra
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Compare Score hits
1 QRESTATDILQK 18.77
2 EIEEDSLEGLKK 14.78
3 GIEDDLMDLIKK 12.63

Theoretical fragment m/z
values from suitable peptides



Peptide identification

1. From the database, extract all sequences that fit the
precursor mass of the MS2 spectrum with a given error

tolerance

2. For each of these candidates a theoretical spectrum is
generated

3. All theoretical spectra are alighed / compared to the
experimental spectrum

4. The alighnments are scored and the candidates are ranked
according to the score

5. The top ranked candidate is assumed to be the correct PSM
(Peptide Spectrum Matching)



1. Extract all candidates (search space)

100% A

Intensity

| “ ‘ | ‘ ‘ X
e Given: Experimental spectrum S
* Task: Identify the correct sequence for S from a given protein database

m/z

1. Define the search space for S for a given mass tolerance d:

e m,_,._is the mass of the precursor ion of spectrum S

prec
* From the database, extract all peptide sequences with mass m_,,, given that

|mp'rec — mcand‘ S d
This set of candidates is defined as the search space for spectrum S and denoted as

Qg



2. Generate theoretical spectra

e 15t option: extract all masses from the MS2
spectrum

« 2"d option: try to model fragment ion intensities




3. Comparison to experimental spectra

100% A\

Intensity

spectrum $

m/z

Theoretical spectrum T, generated from a sequence p; € {)g

A

m/z



3. Comparison to experimental spectra

>

Intensity

Compare theoretical spectra forall p; © Qs to the experimental spectrum S

// \

m/z

p1€QS pzéﬂs pnGQS



4. Scoring of peptide candidates

There are numerous tools for the comparison of
theoretical and experimental candidate peptides

The main difference of search engines is the
implementation of the scoring schemes (resulting in
differences in runtime and performance)

However, conceptually all search engine algorithms are
based on fragment ion comparison

In the following, we will discuss

Discussed

in detail

* XITandem, Craig,R. and Beavis,R.C. (2003) Rapid Commun.
Mass Spectrom., 17, 2310-2316

Drafted * Sequest Engetal., J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
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XITandem

 Craig,R. and Beavis,R.C. (2003) Rapid Commun. Mass
Spectrom., 17, 2310-2316.

 http://www.thegpm.org/tandem/instructions.html



Find overlapping masses

To find overlapping masses, a maximal fragment mass tolerance window needs to be set (for ion traps this is

usually 0.5 Da)
100% A

Intensity

Experimental spectrum S

l“‘l H ,

Exemplified theoretical spectrum 1" € Qr




XITandem’s dot product

100% A

Intensity

H|| | | X

Reduce the experimental spectrum to only those peaks that match
peaks in the theoretical spectrum

Calculate dot product (dp) (using ion intensities and the number of

matching ions
g ) Intensities from experimental
\L spectrum
I; ... fragment ion intensities
— n
dp = Xi—oli P;
? Predicted or not in theoretical spectrum

PZE{Oal}



Survival function and e-value

* Let x represent the dot product score for the experimental
spectrum S and the theoretical spectrum T € ().

* p(x) is calculated from the frequency histograms
(counts of PSMs per score bin).

« With f(x), the number of PSMs that are given the score x,
p(x) is calculated as  p(x) = f(x)/N with N being the
total number of PSMs

Example of a
frequency histogram

Frequency

Random variable
Fenyd and Beavis, Anal. Chem.2003, 75, 768-774



Survival function and e-value

0.4

x
S 02 -
valid PSM
0 ]
) 5 10 15
(n(x)

* The survival function, s(x), for a discrete stochastic score probability distribution, p(x) is

defined as
s(x) = P(X >z) = > p(x)
X>x

where P(X > x) is the probability to have a greater value than x by random matches in a

database.

Fenyd and Beavis, Anal. Chem.2003, 75, 768-774



Survival function and e-value

0.4
—
% 0.2 1
valid PSM
0 i | T
0] 5 10 15

(n(x)

With the survival function s(x), we can calculate the E-value e(x), indicating the number of
PSMs that are expected to have scores of x or better

e(x) = ns(x)
where n is the number of sequencesin ()g

Now, each PSM can be ranked accoring to e(x)

Feny6 and Beavis, Anal. Chem.2003, 75, 768-774



XITandem Hyperscore

100% A\

Intensity

« The hyperscore (HS) is calculated by multiplying with
factorials of the number of assighed b and y ions.

 The use of the factorials is based on the

hypergeometric distribution that is assumed for
matches of product ions

Feny6 and Beavis, Anal. Chem.2003, 75, 768-774



0.16 -
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Q .

0.08 - valid PSM
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If p(x) is now plotted as a function of their log(hyperscores), the valid PSM is much better
separated from the bulk of incorrect assignments

http://www.proteomesoftware.com/pdf_files/XTandem_edited.pdf



Distribution of “Incorrect” Hits

800
700
600
500 -
400 -
300 -

Second

Best — Best Hit ——

IEUREE § ARENE

0 10 20 30 40 50 60 70
Hyper Score

N

o

o
|

-

-

-
|

Log(# of Matches)

o
|

Adapted from Interpreting MS/MS Proteomics Results by Brian Searls



Estimate Likelihood (E-Value)
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Adapted from Interpreting MS/MS Proteomics Results by Brian Searls



Estimate Likelihood (E-Value)
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Estimate Likelihood (E-Value)
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Adapted from Interpreting MS/MS Proteomics Results by Brian Searls



OMSSA
e Geeretal. (2004) ) Proteome Res. 2004 Sep-Oct;3(5):958-64.

 http://pubchem.ncbi.nlm.nih.gov/omssa/



OMSSA scoring

* The OMSSA algorithm calculates e-values based on
how many product ions from theoretical candidates T
€ (). can randomly hit the tandem spectrum S

* |n brief, it considers random matches to a given m/z
value

 The distribution of these random matches allows to
assign probabilities for PSMs

* This distribution is constructed separately for
different charge states



OMSSA scoring

For a given spectrum, assume charge state 1+:

* Let s be the smallest measured product ion mass, and h be
the highest measured production ion mass

 Then, there can be hQ—_tS possible matches if the fragment
absolute mass tolerance is t [Da].

s+t h-t
\4 \ 4

s| ‘h
EEEEEEEEEEEEEREREEEE

A
s+2t
* Ifafragmention | is measured withm__. .= S+t, we can
assume for the real mass (m,,): m,., € {s, s+2t}



OMSSA scoring

 Furthermore, if m denotes

the measured precursor 0
mass, then there are W o
product ions, if k is the total -
number of calculated m/z 8°°j
values y >
* This number needs to be .
matched to e experimental -
product ions .
* The number of matches is o -
assumed to follow a Poisson 2 TETETR TR TR AT T A

number of matches

distribution

Geer et al., ] Proteome Res. 2004 Sep-Oct;3(5):958-64.
Sadygov and Yates, Anal. Chem. 2003 Aug; 75(15):3792-3798.



OMSSA — model for charge state 1

* Assuming an underlying Poisson distribution allows to determine
the mean for the singly charged case

= (;th) (—k(}fﬁs)) e = 21

e This is the mean value for the Poisson distribution P(x,u)

P(z,p) = Lrer

X is the number of matches and u is separately calculated for the
different charge states (u, denotes charge state 1)

e After the modeling of the distribution for charge state 1, a

combined distribution for charge states +1 and +2 can be derived
as follows



OMSSA — model for charge state +1 and +2

If +1 and +2 product ions are present, then the spectrum can be splitin
two ranges (A: containing only +1 ions (m/z > ) and B: containing +1
and +2 ions (m/z < ;))

Each region is modeled with a separate Poisson distribution
* Region A:

k(h— 2 h— e (h—m

Corresponds to the calculation of 4, s = E ? Corresponds to the portion of e, that lies in A

* Region B:

g = (mQt ) (’f(%— s) 4 k(%ﬂ—é‘)) 278 _ 6the (5 —5)

m h—s —  m h—s

* From elementary probability distribution,

Iy = fia + pup = 2tke (h+m—3s)

m h—s




OMSSA - improve performace

* OMSSA includes a small trick to make the algorithm more efficient
and more sensitive

 For candidate selection:

1. Require that at least one of the m/zin T (theoretical spectrum) matches
one of top n (n=3 by default) values in S (experimental spectrum).

2. This selection modulates the probability distribution.
We take q=§ as the probability that a measured m/z value matches a

theoretical one. Then the new distribution P’ is:

P'(@,1n) = (1= (1= q)*)P(w,
with the normalization factor Q

Q=) (1-(1—-q")P(z,p)



Sequest

100% A Experimental spectrum S
misns |||\| ] ,
Exemplified theoretical spectrum T € Qg
1A

Eng et al., J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.



Sequest — Cross correlation

100 % Experimental spectrum S

| ll\ I‘I H X

* Sum all the peaks that overlap between theoretical and experimental
spectrum

e This score is called Cross-correlation

1 A




Sequest — Autocorrelation

| \|l||l\| |||\| |H X




Sequest— X___ score

corr

* By shifting the spectra, the assumption is that the peaks should not
overlap. The spectra are displaced by x Da

* The peaks that overlap upon spectra shifting are used to calculate
the autocorrelation

Displacement x =0,

correlation count d h
* Sequest reports x 103 / enotes the cross
correlation

X s SCOres 40- ﬂ
Xcorrr _ Crosscorr
Average(Autocorr)—r5<e<rs 4o, Displacement x !=0,
) . denotes the auto-
or displacment 20- -
correlation
x [Da] € {-75,75} 0.
20 -10 0 10 20

Displacement x in Da
Grenzel et al, Proteomics. 2003(3):1597-1610.



Sequest — AC_score

* X_, scores can be calculated for every theoretical spectrum in the
search space s for an experimental spectrum S

* Additionally to the X_,,. score, Sequest also calculates the AC_ score
for the top scoring PSM (best X_

* This score measures how good the best score is in relation to the
second best

orr)

AO . Xcrossl_Xcrossz
n Xcrossl




Other Search Engines

 Mascot from Matrix Science ( )
* Mascot is one of the most popular search engines
* Commercial software
e Algorithmic details have never been published
* Mascot calculats p-values for all candidates in the search space and ranks the output

according to these p-values
* Phenyx
 Commercial software
* Colinge et al., Proteomics. Vol. 3, No. 8, August 2003, pp. 1454-1463.

* |nsPecT

* Very fast open-source search engine
* Designed for the identification of posttranslational modification

 Tanner et al., J Proteome Res. 2005 Jul-Aug;4(4):1287-95.
 Myrimatch

* Open source
 Tabb et al., J Proteome Res. 6(2) 654-61. 2007 Feb



Search Settings

OpenMS offers TOPP tools for
the most common search
engines

.ini files allow to adjust the
parameters

This is an example for X!
Tandem settings for analyzing
LTQ-Orbitrap data

@) bsp_ini.ini * - INIFileEditor ]

File

=0l x|

parameter

SE!

B XTandemAdapter

choose a database

2

5

[Carbamidomethyl (C)]
[Oxidation (M),
Deamidated (Q),
Deamidated (N)]

2

150
[RK]I{P}
10

false
2

no_proaress false

i |

Disables progress logging to command line

[~ Show advanced parameters




Mass Tolerance Settings

* Mass tolerance settings:
* Easy to estimate when knowing the instrument, calibration runs
* Precursor tolerance determines search space

* should be stringent, but broad enough to have several entries per search space
(e.g., for E-value calculation)

e 5-10 ppm is commonly used for data acquired on well-calibrated Orbitrap
instruments
* Product (or fragment) tolerance determines the number of
theoretical fragment ions that can be matched to the experimental
spectrum

e again, should be stringent, but also provide enough flexibility for statistical
assessment (e.g., drawing the Poisson distribution in the OMSSA algorithm)

* 0.5 Dais commonly used for data recorded by ion traps (e.g. LTQ)



Charge States and Missed Cleavages

Charge state settings

* Frequently, the mass spectrometer is set to only fragment features
with charge > 1

* If you know your data is restricted to several charge states (e.g.,
for your mass spectrometric settings), you can save time by not
looking at these

Missed cleavages
 Sometimes, proteases don’t cleave perfectly

1 or2 missed cleavages should be allowed, but be careful since the
number of missed cleavages increases your search space sizes!



Modifications

 The modification settings mostly depend on the biochemical
assays used for sample preparation

Fixed modifications

* Carbamidomethylation of cysteins is used as fixed modification in most
experiments, since proteins are usually subjected to a DL-Dithiothreitol
(DTT) treatment to reduce disulfide bonds built by cysteins. To protect the
liberated —SH the samples are treated with lodoacetamide. This leads to a
stable modification of cysteins

'CHz'SH + I'CHz'CONHz -> 'CH2' S'CHz'CONHZ
Cys rest lodacetamide S-caramidomethylated Cys rest

* A fixed modification on amino acid X replaces the original amino acid X
during database search



Modifications

 The modification settings mostly depend on the biochemical
assays used for sample preparation

Variable modifications

* Variable modifications should be set if you know that a subset of the amino
acids are modified. Routinely oxidation of methionine should be set as
variable modifications. During the electrospray ionization Met residues
frequently react with the oxygen in the ionization source environment

e Note that variable modifications are

. . . CH, CH, CH,
considered as new amino acids and have % %:o o:%:o
significant influence on the search space > W > CH

. CH, CH, CH,
sizes -NH-Cl‘.H- Co- -NH-Cl‘H-CO- -NH-ClTH-CO-
Methionine I;f;}l(l)i{(;r(}iiene Igﬁ?;ilo:ine

http://ionsource.com/Card/MetOx/metox.1.gif



# identified spectra

9000

Variable Modifications

10000 10500

9500

8500

8000

1 2 3 4 5 6 7 8 9 10

# variable modifications

Intuitively...

 More variable modifications
should discover more peptides

* Large parts of the proteome are
modified

However...

e More ‘amino acids’: increase in
search space

* Loss in sensitivity

* Variable modifications need to
carefuly chosen
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Database Settings

 The database should contain all protein sequences that are
expected to be in the sample (e.g., all human proteins when
looking at proteomics data from human cell lines)

* From the database and the enzyme of ‘cutting rule’ settings, the
peptide candidates are calculated

* Besides the expected proteins, the database should also contain
common contaminants, such as trypsin (or other enzymes),
keratins or BSA (bovine serum albumin) that is usually used for
instrument calibration

* Databases can also be designed in a way to give an intuitive idea
on False discovery rates -> target/decoy databases



Target-Decoy Databases

 Take the original protein sequences (target sequences) and
reverse, pseudo-reverse, randomize or shuffle these sequences to
create decoy sequences

* Either the data is searched twice (first versus the target and then
versus the decoy database) or the data is searched once versus a
database containing both target and decoy sequences

 The assumption here is that if a decoy peptide is annotated to
spectra, the PSM scores can be used to estimate the number of

false identifications
Important:

* The decoy database design should provide equal numbers of decoy peptides

as there are target peptides per search space (with randomized sequences
this is hard to control)

* Ideally one should avoid large overlap between target and decoy peptides



Target-Decoy Databases

M Target
W Decoy

Design decoy sequences Separation of target and decoy results
Protein reversal
l
| LK.IHGFEDCAR.Q 20,
QR.ACDEFGHIK.L
| QR.IHGFEDCAK.L Q Standard search (10,559 MS/MS)
@
Pseudo reversal S
o
ke
Random
Residue Frequency
A 0.070
c 0.023
D 0.046 SEQUEST rank
E 0.070 70-
7 0.036
604 Precursor-shifted search
® 501
Markov 4 40
Residue Frequency &
A 0.047 2 301
c 0.003 Q. 204
[STEV}+ D 0.043 104
E 0.087
F 0020 Xy T2 T3 7475 "6 "7 7879

SEQUEST rank

Although different decoy database designs produce very similar results,
the most frequently used approaches are the reversed and pseudo-
reversed decoy databases

Elias and Gygi, Nature Methods. Vol. 4, No. 3, March 2007

10



Calculation of FDRs

* General equation for FDR calculation (see statistics lecture)

FP
FDR = FPYTP

There are two ways how FDRs are calculated based on target-decoy
search results:

o Kall et al. suggest (Kl etal., Proteome Res. 2008, 7, 29- 34)

__ Fdecoy
FDR = Htarget

d Zha ng et a | . Suggest (Zhang et al., J Proteome Res 2007;6(9):3549-3557)

. 24tdecoy
FDR = Htarget+#decoy

* OpenMS::TOPP::FalseDiscoveryRate uses the Kdéll metrics
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Comparison of search engines

* 18 protein mix

e The same dataset was searched
with three different search

engines
_ 28%
e |dentical search parameters

Mascot SEQUEST

38%

X! Tandem

Searle et al., Journal of Proteome Researuch. 2008, 7, 245-253



Multiple search engines
* Majority voting

* Reliability | sensitivity |



Multiple search engines
* Majority voting

* Reliability | sensitivity |
* All peptide IDs
* Reliability | sensitivity |

* Combine search engine scores:

1. Scores are inherently different
2. Different number of peptide candidates



Multiple search engines
* Majority voting

* Reliability | sensitivity |
* All peptide IDs
* Reliability | sensitivity |

* Combine search engine scores:

1. Scores are inherently different
2. Different number of peptide candidates

 Combination approches

e Scaffold Searle et al., J Proteome Res. 2008, 7, 245-253 245

* OpenMS::TOPP::ConsensuslID Nahnsen et al., J Proteome Res. 2011 Aug 5;10(8):3332-43.



Scaffold

Scaffold integrates search results from Sequest, Mascot and X!Tandem

Control Mixture Zoomed
o 90% i 590%
1. Use mixture models = -
to normalize e i o
. § om0 -l
different scores to s iz
probabilities - M + il
o0 1 90% ol 90%
- E ie .
| ntiicaton Peptide 1l 3 it g
Peptide 4 - 3
Identification ‘
For Each /' \‘ oo .+ 90%
Spectrum < oo
\A X!Tandem _ pos-t
Identification Peptide 5 % §::‘
2 =
Peptide o §$;
Peptide 6] X E

X! Tandem Discriminant Score X! Tandem Discriminant Score



Scaffold

2. Calculate agreement score for each
PSM across all search engines

D = PSM (Peptide spectrum matching)

Di . = PSM: spectrum i to peptidej Probability of correct assignment of
] e peptide j to spectrum i by search
p = probabilities for correct engine k’

assignment (from mixture model) l

[ p(+|Di,j,k,) <0.05 00
- 0.05 < p(+1D; ) <0.5 0.5
peptide j e k=k | 0.5 =< p(+|D1’]’/\/) 1_0 )

search engine k
spectrum i

IS
il
3¢

Conditional probability for A Conditional probability for being
assuming a correct assignment correct given a PSM D
&

N
p(Al + ) p(+1D)

PEID, A = A P 1D) + pA—) p(=1D)




Scaffold Performance

We did not discuss
the naive max

~ max [ p(+| D, 4)]

8000 |naive max *

7,000 -

o
o
o
o

\

5,000 -

Mascot

4,000

3,000

2,000

Number of Identified Spectra

1,000 -

0 1 2 3 4 5 6 7 8
Percent Error Rate



ConsensusIiD

ConsensusID integrates search results from OMSSA, Mascot and X!Tandem

L i,

X!Tandem Mascot OMSSA
/ v \

Rank Peptide Score Peptide Rank Peptide Score

1 QRESTATDILQK 0.008 1 EIEEDSLEGLKK 14.78 1 AELASCVVGDLGAK 1.2
2 GIEDDLMDLIKK 12.63 2 ELM(Ox)SNGPGSIIGAK 1.2

3 ISCAEGALEALKK 10.2 3 ISCAEGALEALKK 4

4 QRESTATDILQK 10

1. Use mixture models to normalize different scores to probabilities

Nahnsen et al., ] Proteome Res. 2011 Aug 5;10(8):3332-43



ConsensusID — Mixture Modeling

Mascot XTandem

7
H B

L

OMSSA

L

Rank Peptide Score Peptide Score Rank Peptide Score
QRESTATDILQK 0.54 1 EIEEDSLEGLKK 0.96 1 AELASCVVGDLGAK 0.94
2 GIEDDLMDLIKK 0.98 2 ELM(Ox)SNGPGSIIGAK ~ 0.97
3 ISCAEGALEALKK 0.98 3 ISCAEGALEALKK 0.99
4 QRESTATDILQK 0.99

. Nahnsen et al., ] Proteome Res. 2011 Aug 5;10(8):3332-43



ConsensusID - Similarity Scoring

Peptide Rank Peptide Score
1 QRESTATDILQK 0.54 1 EIEEDSLEGLKK " o6
2 IGIEDDLMDLIKK 0.98

3 ISCAEGALEALKK 0.98

Nahnsen et al., ] Proteome Res. 2011 Aug 5;10(8):3332-43



ConsensusID - Similarity Scoring

Peptide
47%
1 QRESTATDILQK 0.54
42%
21 %

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

MZ [Th]

Rank
1

2

3

Peptide
EIEEDSLEGLKK

|GIEDDLMDLIKK

ISCAEGALEALKK

Score

0.96

0.98

0.98

Nahnsen et al., ] Proteome Res. 2011 Aug 5;10(8):3332-43




ConsensusID - Consensus Score

e Score for every sequence from any engine

Rank Peptide Score Rank Peptide Score Rank Peptide Score
1 QRESTATDILQK 0.54 1 EIEEDSLEGLKK 0.96 1 AELASCVVGDLGAK 0.94
2 GIEDDLMDLIKK 0.98 2 ELM(Ox)SNGPGSIIGAK  0.97
3 ISCAEGALEALKK 0.98 3 ISCAEGALEALKK 0.99
4 QRESTATDILQK 0.99
5 EIEEDSLEGLKK S35

e Combination of scores

s1(p1) + a s2(pi) + B s3(p;)
(1+ a+ 3)2

ConsensusID (p1)

0.5440.3-0.96+1-0.99

ConsensusID (QRESTATDILQK) = 1+03+1)2 = m

Nahnsen et al., ] Proteome Res. 2011 Aug 5;10(8):3332-43



ConsensusID Performance

LTQ-Orbitrap - high accuracy

10000
|

8000
|

Identified spectra
6000
|

4000

M ConsensusID

B OMSSA
X!Tandem

¥ Mascot

T T T T I T
0.00 0.02 0.04 0.06 0.08 0.10

2000
|

error rate

error rates = false discovery rates

Nahnsen et al., ] Proteome Res. 2011 Aug 5;10(8):3332-43
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Materials

* Online Materials
* Learning Unit 7A, B, C, D
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