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Overview

* Label-free quantification

* Definition of features
* Feature finding on centroided data
* Absolute quantification using label-free quantification

* SILAC quantification

* Problem
* Application of simple feature finding and linking

 MaxQuant algorithm
* Application examples
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Label-Free Quantification (LFQ)

* Quantification through the ion current in MS spectra
 Key advantage: no labeling needed — cheap, scales well
» Key disadvantage: normalization tricky — direct comparison

* Based on the notion of features and maps
* LC-MS data: 2D datasets of up to hundreds of GB per sample
* Raw data: unmodified detector signal

* Centroided data: peaks called on the MS level
* Features: the stuff that matters in maps




LC-MS Data (Map)

Quantification
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Feature Finding — Terms

Map:

Two-dimensional data set (RT, m/z) containing the MS signal
from one LC-MS run.

Feature:

The sum of all the MS signals caused by the same analyte in
a specific charge state.

Different charge states or adducts will result in distinct
features. Primarily characterized by RT, m/z, charge,
intensity.

Feature finding:
Finding the set of features explaining as much of the
signal in a map as possible.
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Raw Map

m/z

NOPPVIEW 20 x|

Feature

File View Image Windows Tools

eptideMix_ESI|_TOF_small. mzData ]

590

el

.....

.
.
.
-"‘
ant®

-----------

il
e

00000000
0000000

T

CYTITITIITIITIIY

560 570 580 590 6




Raw Map

m/z

NOPPVIEW 20 x|

Feature

File View Image Windows Tools

eptideMix_ESI|_TOF_small. mzData ]

590

el

.....

.
.
.
-"‘
ant®

-----------

il
e

00000000
0000000

T

CYTITITIITIITIIY

560 570 580 590 6




Raw Map - Feature Map
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LFQ — Analysis Strategy

1. Find features in all maps

12



LFQ — Analysis Strategy

1. Find features in all maps

2. Align maps
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LFQ — Analysis Strategy

1. Find features in all maps |

2. Align maps

3. Link corresponding features
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LFQ — Analysis Strategy
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LFQ — Analysis Strategy
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Feature Finding as Data Reduction

HPLC/MS> Raw Data| 1o0GB

Sig.-
Proc.
50 MB Mabs Data Reduction Filtered 1 GB
P Raw Data
Diff.
Anal.

Maps

Proteins

Annot. Differentially
50 MB |dentification Expressed 1 kB
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Feature Finding

* |dentify all peaks belonging to one peptide
* Key idea:

* |dentify suspicious regions

* Fit a two-dimensional model to that region
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Feature Attributes

Attributes
= Position (m/z, RT)
o ‘ = Intensity, volume
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Feature Model

Feature model = Isotope pattern X Elution profile
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Feature Model

* Physical processes leading to the shape of a feature:
 Chromatography

 Elution profiles are (ideally) shaped like a Gaussian
* Parameters: width, height, position

* Mass spectrometry

* Mass spectra of peptides are characterized by the isotope
pattern

* Modeled by a binomial distribution
* Both separation processes are independent

* Atwo-dimensional feature is then described by the
product of two one-dimensional models
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Averagine

* Since the isotope pattern changes with the composition
of the peptide, it is unknown which pattern should be

fitted!
* |dea
e We know the mass of the feature

 Assume an average composition of an amino acid

* Then we can estimate the composition

* The elemental composition of such an average amino
acid, also called ‘averagine’, can be derived statistically:

C4.94H7.76N 1.3601.4850.04
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Isotope Patterns

Based on averagine compositions one can compute the

isotope patterns for any given m/z

Heavier peptides have smaller monoisotopic peaks

In the limit, the distribution approaches a normal

/

\

distribution
m [Da] P P P P P
(k=0) | (k=1) | (k=2) | (k=3) | (k=4)
1000 | 0.55 | 0.30 | 0.10 | 0.02 | 0.00
2000 | 0.30 | 0.33 | 0.21 | 0.09 | 0.03
3000 | 0.17 | 0.28 | 0.25 | 0.15 | 0.08
4000 | 0.09 | 0.20 | 0.24 | 0.19 | 0.12

v
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Feature Model — m/z

* Isotope pattern is also modulated by the instrument resolution
 We can assume a Gaussian shape for each of the peaks of the isotope pattern

Effect of the smoothing width on an averagine isotope pattern at mass 1350
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Feature Model — RT

e Elution profile is typically assumed to be a Gaussian
 There are some variants that also allow for asymmetric peaks

* This defines the shape of a feature in in the RT dimension
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Feature Finding — Algorithm

Most algorithms consists of four phases

1. Seeding. Choose peaks of high intensities, as those are usually in
features (“seeds”).

2. Extension. Conservatively add peaks around the seed, never mind
if you pick up a few peaks too many.

3. Modeling. Estimate parameters of a two-dimensional feature for
the region.

4. Refinement. Optimally fit a model to the collected peaks. Remove
peaks not agreeing with the model. Iterate until convergence.
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Algorithm: Seeding

e Start with the highest peaks in the map

* Pick only one seed per feature, thus exclude peaks of already
identified features for later seeding

 More advanced variants of the algorithm use Wavelet techniques
to detect the best seeds

* Problems

* Low-intensity features have intensities barely above the
surrounding noise

* Choose a threshold based on the average noise

* Dilemma:
 threshold too high, features will not get seeded

* Threshold too low, millions of noise peaks will be considered as seeds
HUGE run times
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Feature Finding — Overview

7 while [ charge > min & charge < max ] \\‘
. do ——— — i
: Determine seed list ] |
i S Vo i
. i while | seed nr<seeds.size() ] [
e | -
! Extend seed region ! |
o v o
Fit model to region L
o Y o
L Clip region to feature model

Resolve contradicting features

Sturm, OpenMS - A Framework for Computational
Mass Spectrometry, Dissertation, Tubingen, 2010 28



Algorithm: Extension

* Explore the peaks around the seed
 Add them to a set of relevant peaks
* Abort if the peaks are getting too small or too far away
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Algorithm: Refinement

* Remove peaks that are not consistent with the model

* Determine optimal model for the reduced set of peaks

* Iterate this until no further improvement can be achieved
 Remove all peaks of this feature from potential seeds
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Feature Finding

* |dentify all peaks belonging to one peptide
* Key idea:
 identify suspicious regions
* Fit a model to that region and identify peaks are explained by it
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Feature Finding

* Extension: collect all data points close to the seed

* Refinement: remove peaks that are not consistent with the model
* Fit an optimal model for the reduced set of peaks

* |terate this until no further improvement can be achieved
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Collecting Mass Traces

A mass trace is a series of
peaks along the RT
dimension with little
variation in the m/z
dimension

Mass traces are found with
a simple heuristic aborting
the search if the peak
intensity hits the local
noise level

Search for mass traces in
the correct m/z distance

Limit length of mass trace
to the length of the most
intense mass trace

RT

RT

intensity

X X
X X X
. |
v N T T
X X X m +1 +2
X X X
X X
X
m/z
upper boundary
X
A
X X
A
X X X
3 X X

Pa
X

lower boundary

m/z

Sturm, OpenMS - A Framework for Computational
Mass Spectrometry, Dissertation, Tuibingen, 2010
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Feature Deconvolution

* Features can overlap in various ways

* Mass traces can contain more than one chromatographic
peak (features not baseline-separated in RT dimension)

* Mass traces can be interleaved between features in the m/
z dimension

* Co-eluting features can be sharing mass traces
* Resolving these conflicts is done in a feature
deconvolution step by statistical testing:
* Test several hypotheses that could explain the features

 The most likely of all hypotheses will be identified through
comparison with the data
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Algorithm: Modeling

e Test all possible models for different charges states
(charge +2, charge +3, ...)

* Decide on the charge of the features based on the best
fit for these models
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Algorithm: Modeling/Refinement

* Estimate quality of fit for model m and data d; at
positions r;:

_ (Zim(r)di)?
> m(ri)2 3 d7

 Maximum Likelihood Estimator determines good starting

fit(m, d)

values for model parameters

* Further optimization of model parameters in
refinement phase (least-squares fit)
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Feature Assembly
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* Feature resolution is not always possible
unambiguously
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Feature Finding — Problems

Problems

Low-resolution instruments might not yield good
Isotope patterns

Peptides can overlap, in particular in complex samples

Fitting of such overlapping patterns can yield bogus
results

Low-intensity features are hard to distinguish from
noise peaks

Isotope labels can skew the distributions or can lead
to overlapping pairs
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Still Difficult: Low-Intensity Features

signal intensity
160
120 |
80

40

Problem:
The algorithm picked up the blue feature,
The red one was not found as it was too
close to the noise peaks (green)
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LEARNING UNIT 5B
MAP ALIGNMENT
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Pairwise Alignment
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The problem is to find the
affine transformation T that

minimizes the distance between T(S) and M.
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m/z

Pairwise Alignment
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Speeding Things Up
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Speeding Things Up
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Improve Matching
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Normalize intensities in M and S:
weight the vote of each transformation
by the intensity similarities of the
point matches (s;,m,) and (s,,m,).
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Linear Alignment

Podwojski et al. proposed an
alternative linear alignment
method and also extended
this to a nonlinear alignment

The linear alignment is similar
to the algorithm by Lange et
al.

It uses a different type of
cluster analysis to determine a
linear regression

In contrast to the Lange
algorithm, it generalizes nicely
to multiple map alignment

Preliminaries
combine all n LC/MS runs
build overlapping mass-windows across combined runs
1. Cluster Analysis
for cach mass-window do
use p peaks with highest intensities
calculate distance matrix of pairs of peaks (4, h)
diff(mass), if leﬁ(”'), <koA
diff(log, o (intensity)) < ko
diff(rt) >k V
diff(log, o (intensity)) > ko
hierarchical average linkage cluster analysis
cut cluster-tree at mass accuracy A,
if g, <thresholdi N nyjg < thresholds then
cluster is ‘well-behaved’

d‘)’,h e

. ¢]

3

delete duplicated ‘well-behaved’ clusters
for cach ‘well-behaved’ cluster do
rt = median(rt)
for cach peak ¢ do
dev; = rt; — 71
2. Regression
for cach run s do
take only peaks from ‘well-behaved” clusters
fit regression line a’évs,@- = as + bs x 1rt;
by minimizing > (dev; — d;évs’i)z
Correction
for cach run s do
for each peak ¢ do
Tteori = 1t — df""s.i

Podwojski et al., Bioinformatics (2009), 25:758-764.
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Nonlinear Alignment

* |dea
* Perform linear alignment (using pose clustering)
 Compute a more accurate local alignment using LOESS
regression

* LOESS regression (often also called LOWESS)

* Locally weighted polynomial regression
e Based on a pre-defined window size

e Points within this window contribute to the local
regression

* Perform local regression (linear or quadratic, cubic)
around the predicted coordinate
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LOESS Regression

* Weighting is often performed by
tricubic weighting function

_1s13)3 f
w(z):{ (1 —1]2[7) if|z] <1

0 otherwise ot

o
™

* Weighting function is applied to

coordinates scaled into the chosen oa|
window (-1 -0 - 1) 031
* Local regression (linear quadratic)
needs to be recomputed around 0

-1 -0.5 0 0.5 1

every point (computationally very

, tricubic function
expensive)

Cleveland, J. Am. Stat. Soc (1979), 74:829-836
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LOESS Regression

How Loess Works

[
‘& For0 < a<1
st . = : ¢ ) [a . n]
I ' nearest neighbours
¢ o . . ~ are considered
25-. ‘ 1 >\
(] Red posnom
il H “l I, . |, fitted polynomial
: A

http://demonstrations.wolfram.com/HowLoessWorks
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Nonlinear Alignment
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Alignment of two different datasets (top/bottom). Left: linear, right: nonlinear.
(around 30 k aligned peaks)
Podwojski et al., Bioinformatics (2009), 25:758-764.
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Nonlinear Alignment
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Podwojski et al., Bioinformatics (2009), 25:758-764.
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Feature Linking

 Map alignment does not yet create a direct correspondence (bijection)
between the features!

e Feature linking pairs up features
* across maps for label-free quantification

* within maps for arbitrary labeling strategies (e.g., SILAC: link pairs 6 Da
apart)

* A user-specified mass tolerance and retention time tolerance are
required as input

* Labeled feature linking also requires the specification of the label
distance (mass difference)

* The result are consensus features containing the original features as well

* Correctness of linked features can also be verified through identifications
(if present)
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OpenMS/TOPP

* OpenMS implements the Lange et al. algorithm

 TOPP contains tools for map alignment and for
feature linking
 MapAlignerPoseClustering

* Implements the pose clustering algorithm and computes the
corresponding transformation

e FeatureLinkerUnlabeledQT

* Uses QT clustering to compute the best assignment of
features across several maps

* Result is a consensus map
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Consensus Features
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Consensus Features
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Quality Control

 MapStatistics
* Produces some descriptive statistics of a map for QC
* Did feature finding and map alignment work properly?

* Do all maps we aligned have roughly the same amount of features?

* Check instrument calibration and stability of chromatography
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Map Normalization

* For label-free quantification a normalization of features across
maps is often helpful

e Strategy 1: internal standards

* Spiked in peptides/proteins are used for normalizing maps
* This is easily done in a statistics package or Excel after the analysis

e Strategy 2: background normalization

* For a sufficiently complex background only a small number of features/
peptides will be differential

* The background can be used to normalize maps with respect to each other
(keeping the ration of unregulated background features at 1:1)

* ldea: ‘robust regression’
* Look at all the ratios
* Remove outliers
* Determine the normalization factor from the rest
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intensity

Effect of Normalization

e Label-free quantification in a complex (platelet) background
measured with a spiked in peptide
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Feature Finding in KNIME

* TOPP tool FeatureFinder
(FeatureFinderCentroided in OpenMS 1.11)

 Reads a centroided LC-MS map — so if data is available
as raw data, it needs to be converted to centroided
data using a peak picker

* Label-free workflows can get rather complicated and

usually require identification steps as well (which we
will discuss later in the lecture)

Input Files FeatureFinderCentroided
MapAlignerPoseClustering
Output Files

In szLfor';liipLoopStan/» ﬁnd ¥PLMDE"/ FeatureLinkerUnlabeled
features Compute Node s
Ls"‘:?
=9

map alignment

link similar features
into consensus feature
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SILAC
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SILAC Analysis

* In principle, SILAC pairs are regular features
* Note that isotopic labels shift the averagine model

* A standard analysis workflow could thus look like:
* Feature finding
* Linking of pairs with the proper distance (4/6/8/10 Da,
depending on the experiment)
e Specialized SILAC analysis tools can make use of the
additional information contained in pairs
* Exact mass differences

* Presence of a second pair can increase confidence in the
detection

* Inclusion of this knowledge generally improves
sensitivity of the feature/pair detection
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MaxQuant

* Peak detection
* |dentify chromatograpic peaks
* De-lsotoping

* Construct features from the matching
chromatographic peaks

* Pair detection
 |dentify SILAC pairs among the de-isotoped peaks

* Ratio estimation
* Determine the ratio of the SILAC pair

Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

73

72

MaxQuant uses the notion of 3D peaks to describe the mass traces
on the raw data (three dimensions: RT, m/z, intensity)

3D peaks can be defined as all the signal caused by one isotopic
mass of an analyte — they correspond to mass traces in centroided
feature finding

Features are then defined as several of these 3D peaks

3D peak eluting over
1.5 min, m/z around
918 Da in 2D and 3D

representation

L] 1

Ll I Ll
918.02
m/z Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

Counts/s

3D peaks are detected by detecting peaks within individual mass
spectra first

For high-resolution MS instruments (e.g., Orbitrap), peak detection
is achieved by looking for local maxima

2D peaks are then determined as the range from the maximum
until either zero or a local minimum has been reached

Counts/s
()

m/z m/z
Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

Counts/s

If there are more than three data points to the peak, then the
center of the peak (centroid) is determined as by a Gaussian fit to
these three peaks

Special treatment for peaks consisting of only one or two peaks

Intensity of the peak is approximated by the sum of the intensities
of all raw data points of the peak

| &
1/
)

Counts/s

ml/z

Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

e 2D peaks of adjacent scans are assembled into a 3D pealk, if their
centroid positions differ by less than 7 ppm

e 2D peaks may be missing in up to one scan (e.g., in case a 2D peak

detection did not work well), 3D peak consists of the maximum
number of 2D peaks that can be joined in this way

* Intensities of 2D peaks are smoothed and the 3D feature is split if
there are local minima in the intensity

 The 3D peak mass the intensity-weighted average of its 2D peaks’
masses

t

Counts/s

m/z Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

Two 3D peaks with identical masses, but

t different RT (~80.6 and ~81.0 min)
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m/z

Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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De-Isotoping

* 3D peaks are aggregated to features
* To this end, a compatibility graph is constructed
* 3D peaks are represented by nodes

 An edge is added between two nodes, if
* Their masses match the distance within an isotope profile
* Their elution profiles overlap (normalized inner product
[cosine] of the two 3D peaks is greater than 0.6)
* Connected components of this graph are potential
features, but can still contain 3D peaks from multiple
features (overlapping features)
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De-Isotoping

The mass criterion for an edge between the nodes representing two
3D peaks is fulfilled if the following holds:

AM| (AS
< =

Am —

& &

) + (5Am1)2 + (5Am2)2

Where m is the mass difference between the peaks and /AAM is the

mass difference between the monoisotopic and the *3C satellite for

an averagine of mass 1,500 Da (1.00286864 Da), z the charge.
Am, and Am, are the bootstrapped standard deviations of the two

exact peak masses and

A S =2 m(13C) — 2 m(*2C) — m(34S) — m(32S) = 0.0109135 Da
Is the maximum mass shift caused by the incorporation of one
sulphur atom.
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De-Isotoping

 Connected components of this graph correspond to
sets of overlapping features and individual (noise) 3D
peaks

 They are resolved by iteratively removing the largest
set of 3D peaks that are consistent

* Consistency is defined by

* Mutual consistency of all pairs of peaks with respect to
their mass distances (similar to the above definition for an
edge, but also between more distant peaks)

* Correlation of 0.6 or better between all elution profiles

e Correlation of 0.6 or better of the 3D peak distances with
the isotope distribution of an averagine at mass 1,500 Da
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Pair Detection and Ratio Estimation

e SILAC pairs are found through their distances by
searching for pairs in the correct distance (for up
to three labeled K or R in all possible
combinations)

* Intensities of the two features have to have a
correlation of 0.5 or better

* For each pair, the intensity ratios are determined
as the slope of a regression line through the
itensities of corresponding 3D peaks in the light
and heavy feature
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Result

SILAC pairs
identified in a
large-scale study of
human Hela cells.
Over 5,000 SILAC
pairs were found in

! one run.
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M=2782.4038,z=5
Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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MaxQuant

* MaxQuant implements the SILAC pair detection
algorithm sketched here

e Later versions of MaxQuant can also be applied to
label-free quantification

 MaxQuant is unfortunately restricted to a specific
vendor format (ThermoFischer RAW format) and
platform (Windows)

* The output consists of a text file, that can then be
parsed and analyzed statistically with other tools

81



MaxQuant

e Differential quantification of
protein ratios of HelA cells after 2 i
h of EGF stimulation
* 99.3% of all proteins have aratioof £ | T
1.0 (+/- 50%) and are thus not = KARI29 ogson
significantly regulated
.C1orf52 NR4A1.
* Transcription factor JunB and fe6 | o ®*JUNB
orphan nuclear receptor NR4A1

- e 0.1 10
are both significantly upregulated Protein ratio

‘christmas tree plot’:

pair intensity as a function of the

found through other methods and pair ratio (double logarithmic plot)

described in literature as well reveals the distribution of ratios,
accuracy, LOD, LOQ, LOL

Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Original Papers

e Label-free feature finding (OpenMS feature finder)

* Clemens Gropl, Eva Lange, Knut Reinert, Oliver Kohlbacher, Marc Sturm,
Christian G. Huber, Bettina M. Mayr, Christoph L. Klein: Algorithms for the

Automated Absolute Quantification of Diagnostic Markers in Complex
Proteomics Samples. ComplLife 2005: 151-162.

Online: http://www.springerlink.com/content/811k5vjtxqwbflce/

e Sturm, Marc: OpenMS — A framework for computational mass spectrometry,
Dissertation, Tubingen (2010)

Online: http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-51146
* Website: http://openms.de
e SILAC feature finding (MaxQuant)

* Cox, J. and Mann, M. (2008) MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein
guantification. Nat Biotechnol 26, 1367-72.

(algorithm: see Supplementary Material at http://www.nature.com/nbt/journal/
v26/n12/extref/nbt.1511-S1.pdf)

*  Website: http://maxquant.org
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Materials

* Online Materials
* Learning Unit 5[A,B,C],
* Learning Unit 1C
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