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Outline

* Probability distributions
* Discrete probability distributions
* Continuous probability distribution

* p-values and false discovery rates
* Mixture modeling
* Expectation-Maximization algorithm



Random variables

* A random variable, usually written X, is a variable
whose possible values are numerical outcomes of
a random phenomenon. These values can be
interpreted as probabilities. There are two types
of random variables, discrete and continuous.

 Discrete random variables have a countable number
of outcomes, e.g., dice

e Continuous random variables have an infinite
continuum of possible values, e.g., blood pressure



Probability functions/distribution

A probability distribution is a function that
describes the probability of a random variable
taking certain values

A probability function maps the possible values of
x against their respective probabilities of
occurrence, p(x)

p(x) is a number from O to 1.0.
The area under a probability function is always 1.



Mean and variance

* |f we understand the underlying probability
distribution of a certain phenomenon, then we
can make informed decisions based on how we

expect x to behave on-average.

 The expected value is just the weighted average
or mean (i) of random variable x.

* Arandom variable X takes values x, with a probability p,, x,
with p,,... and x_, with p, , the expected value or mean is

then given by
= p = szpz

For example: see the average We/ght and isotope distribution
(lecture 2)



Mean and variance

e The variance is a measure that describes how far the
numbers are from the mean

* A random variable X has the expected value (mean)
u=E(X), then the variance is given by

Var [X] = E [(X — p)*] = B [X?] — (B[X])"

 The variance is often also denoted as 62, where is g is
defined as the standard deviation of the random variable

X
o =+/Var[X]
 How can you relate the concepts of accuracy and
precision to the measure of variance (see slides from last

week)?
 What about reproducibility




Discrete example: roll of a die

pP(x)
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Discrete example: roll of a die
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pP(x)
p(x=1)=1/6

p(x=2)=1/6
p(x=3)=1/6
p(x=4)=1/6
p(x=5)=1/6
p(x =6)=1/6

p(x <6)=1



Cumulative distribution function (CDF)

...also called probability density function...
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Cumulative distribution function
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Pxs<A)
Px<1)=1/6

P(x <2)=2/6
P(x = 3)=3/6
P(x =4)=4/6
P(x <5)=5/6
P(x = 6) = 6/6



Examples

1. What’s the probability that you roll a 3 or less?
Plx <3) =

2. What's the probability that you roll a 5 or higher?

Plx >5)=1-P(x <4) = -3 =



Important discrete distributions...

..for computational mass spectrometry..

 Binomial distribution

* E.g., isotope distribution of a single atom and one
additional isotope peak (lecture 2)

* Poisson distribution
* Peptide identification, peptide quantification



Bernoulli experiment

e Jakob Bernoulli

* A Bernoulli experiment is a random experiment

where the random variable can take only two
values

* SuUccess

* 1-success (no success)

Success probability p

of the Bernoulli experiment:
. =1
e Example: role a die P=%

S| O

* 6:suUccess

e 1.2,3,4,5: no success



Binomial distribution

* Independent Bernoulli experiments build the basis for
binomial distributions

* Trials with two possible outcomes (e.g., flipping a coin)
* nindependent (repeated) trials are performed

e p, the probability of success, is the same in every experiment

e N marblesinajar

e rblack and N-r white

* Whatis the probability
to have k black marbles,
if n are drawn with
replacement ?




Important notations

x: the number of successes that result from the
binomial experiment

n: the number of trials in the binomial experiment
p: the probability of success in an individual trial
g: the probability o failure (=(1-p)).

B(x;n,p): Binomial probability - the probability
than an n-trial binomial experiment results in
exactly x successes with a success probability is p.
(n) “n choose r” the number of different ways

r | to choose r things out of n.



Mini example

 Draw twice a single marble from a jar containing 10
black and 10 white marbles (with replacement)

« The probability of having k black marbles is:
n

B(k;n,p) = (k)pk(l —p)nk

0 0.25
0.5
2 0.25

 The mean of the prob. distributionis 4t =17 - D
“isn-(1—p)-p

e The variance o



Throwing a coin 10 times

0.20 025
l l

0.15
L

Probability
Probability

0.10
l
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l

0.00

T T _Number of heads_‘




Poisson approximation of the binomial
distribution

Lets P(x=k) denote the binomial distribution
and set p= A/n. Then it holds in the limit:
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Binomial approximation of the Poisson
distribution

, Aee=A
And we end with: lim P(X =k) = < )

This is the Poisson distribution function. The Poisson distribution
approximates a Bernoulli experiment with a high number of

repeats and low success probability. Therefore it is also called
Poisson law of small numbers.

e The mean of a Poisson distribution is)\
* The standard deviation is given by \/X



Binomial distributions
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Poisson distributions

Poisson distribution n=10000, lambda=2.5

Poisson distribution n=1000, lambda=4.5
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Continuous random variables

 The probability function that accompanies a
continuous random variable is a continuous
mathematical function that integrates to 1.

* The probabilities associated with continuous
functions are just areas under the curve
(integrals!).

Important continuous distribution:

Gaussian distribution



The Gaussian Distribution

* The probability function is given by

1 1
NG pso®) = e
mwo

2

N~

e Per definition we have

N(x,p,0%) >0 and ffooo N(z,p,0%)dx =1

* The probability function results in the well-known bell-
shape projection

N (z|p,0?)

A




Gaussian Mean and Variance

 The expectation value is calculated as follows,
E [x] :/ N (z, p,0°%) zdzx = p

e Furthermore,

E [562] = / N (w,u,aQ) w?dr = p? + o

— 00

e Resulting in the general variance of Gaussian
distributions

Var [z = E [2°] — E z]” = o2



Standard normal distribution

* The standard normal distribution corresponds to
the general form of the Gaussian distribution with
u=0 and o?=1

* An arbitrary normal distribution can be converted
to a standard normal distribution via Z-
transformation
Z(X)=X—H/J 1 2
resulting in Plx) = e 2

g () N




Gaussian distribution
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Error function

A Gaussian distribution can also be estimated with an error
distribution:

Given a real number » € R

The probability that a random variable X ~ N(u, o%)takes
values is given by

" 1 (z—p)2
e 202 dx

PIX <r) =/_:Of(:c)dx=/

oo V2TTO

adapted from Prof. Isabel Ribeiro http://users.isr.ist.utl.pt/~mir/#Teaching



Error function

The Gaussian error function -
is denoted as

0.08 -

With the Gaussian error
functionP {X <r}canbe |
expressed as

0.06 -

0.5 —erf(E£2)), forr < p X r

o

0.5 +erf(=~)), forr > pu

mxgm—{

This allows the evaluation of the probability that a
random variable Y lies in an interval around the mean

value u



Error function

The probability that a Gaussian random variable lies in the
interval [ — 20, u+ 20] is equal to 0.95452.

er f(2

e

P(IX — | < 20) = 2erf(2)



Applications

* Probabilities in proteomics

* Post-search-processing of peptide identification
results



Identification workflow
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Database settings
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Identification workflow
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Identification workflow

. Dalabase entry

Protein database

-

€.

Experimental 1~
protein data T~
Possible T~ =
modification, and mass
e N Preprocess DB data
type specification ~ . e
RS EEEEEEE R ~ o and identify relevant
Digestion enzyme N S o protein sequences
.................... < N
Max. number of I~ O« RN =
. ~ ~ ~ ~
missed cleavages ~o0 ~ . ~
.................... <~ -
Experimental MS data S o RN
.................... N ~ ~ ~
~ ~
Other search N ~ o ~
\ ~ ~ ~
parameters N ~ ~a S
\ A\
\
\ \ \ g
\ \ . \ In silico
\ N X digestion
\ X
\ . :
\\ Remove contaminants I
\ |
\ T
\ v !
\ Y
\ . . . .
\ | Experimental mass list Theoretical mass list
\
\ ! -
\ I -
X ' -
X
Compare | _ _ 4]  Listof matched

theoretical masses to
experimental masses

¥

masses

Calculate score
and statistical

significance

}

Presentation

<— Use statistics
to assess
significance of
IDs



Peptide spectrum matchings (PSMs)

e Search engines assign scores to each peptide sequence
that matches the theoretical spectrum

* Most common search engines:
* Sequest, Mascot, OMSSA, XITandem

* These peptide spectrum matchings are called PSMs

* All peptide candidates are ranked according to their PSM
score

e Usually the top hit is reported

 However not all top scoring peptide identifications are
correct (e.g., if the correct sequence is not in the DB,
there might still be a PSM which is wrong)



Frequency

Total PSMs

+ + « + + |Incorrect PSMs

. = « = Correct PSMs

Score
B' B A

FPR=B/(B'+B) FDR=B/A= (5 PEP)/A PEP=b/a
=1

Brosch and Choudhary, Methods in Molecular Biology, 2010, Volume 604, 43-5



Problems with judging PSMs

e Heuristic score cut-offs are used

* Low score thresholds will accept more PSMs, but
at the cost of more false positives (FP)

* High score thresholds reduce the error rate, but
decrease identification rates as well

* The main problem is that the actual error remains
unknown

* If heuristic methods are used, the results between
two different approaches can vary by as much as
50 % (using the very same data set)



From PSMs to meaningful values

* p-values
* False discovery rates and g-values
* Posterior error probabilities



p-values

Widely used statistical significance measure

p-values in the database search context:=
The probability of observing an incorrect PSM with a given score
or better

Hence, a low p-value indicates a low probability that the
observed PSM is incorrect

The p-value can be derived from the false positive rate (FPR), the
fraction of incorrect PSMs above a certain score threshold over
all PSMs

Problems associated with p-value calculations
 The FPR is usually unknown
* p-values should be corrected for multiple hypothesis testing
Note: There are also scoring algorithms that directly calculate p-values based on the theoretical and

experimental spectrum comparison, but this works only for very simple scoring schemes and for rather small
datasets



p-values in statistical testing

e p-values are used to judge the significance of a test for the
null-hypothesis

* Null-hypothesis:= corresponds to the default position, e.g.,
random chance peptide identification or mean values of two
independent measurements are not different

e Alternative-hypothesis:=the opposite positions, e.g., non
random peptide identification

e Usually, the null hypothesis can not be formally proven, but
statistical testing can accept or reject the null-hypothesis

* The null-hypothesis is rejected if the p-value is less then a
significance level a (e.g., 0.05 or 0.01)



p-value example
Given 10% PSMs with p-value cut-off of 0.05

We t
simp

hen expect 0.05X104=500 incorrect PSMs
y by chance

Neec

s to be corrected for multiple hypothesis testing

(10 tests are performed)

Bonferroni correction would lead to p—value/#
tests =0.05/104 =0.000005...new p-value cut-off

Very

stringent!

Another way to account for multiple hypothesis testing:

False

discovery rates



False discovery rates (FDRs)

* Another approach to control for multiple
hypothesis

* FDR:= expected proportion of incorrect
predictions amongst a selected set of predictions

* For our MS problem this can be interpreted as a
fraction of incorrect PSMs within a selected set of
PSMs above a certain score threshold



False discovery rates (FDRs)

« The FDR of the entire list
is calculated as

LCEVEEGDKEDVDK 3 T
YTAQVDAEEKEDVK S, T FDR_ _EP
IVADKDYSVTANSK S, T FP+TP
TGIEIIKK S, T . Here.: 3/13:. 10 PSM are
DLGEEHFK s, T considered identified at a
FDR of 23 %
TASSDTSEELNSQDSPK ¢ F
GAGGENEPPAAAPEPR s, T
IKDPDAAKPEDWDDR Sg T
VDEVGGEALGR S, T
SEEQLKEEGIEYK S10 F
LHVDPENFK 5 T
FSTVAGESGSADTVRDPR S+ T
AEEDEILNR S5 F



g-values

LCEVEEGDKEDVDK
YTAQVDAEEKEDVK
IVADKDYSVTANSK
TGIEIIKK
DLGEEHFK
TASSDTSEELNSQDSPK
GAGGENEPPAAAPEPR
IKDPDAAKPEDWDDR
VDEVGGEALGR
SEEQLKEEGIEYK
LHVDPENFK
FSTVAGESGSADTVRDPR
AEEDEILNR

0.00
0.00
0.00
0.00
0.00

0.11
0.11
0.11

0.16
0.16

M4 4 m A4 -A4 A7 A4+ 4

The g-value can be
understood as the minimal
FDR level at which a PSM
can be accepted



Posterior error probabilities

Assuming a bimodal distribution; this can also
be considered as two distinct distributions

One distribution describing the incorrect

peptide assignments Iy

Total PSMs

One distributions describing the N L incorrect PSMs
) + = « = Correct PSMs
correct peptide assignments

The posterior error probability
denotes the probability that a
given peptide assignment score
lies in the first distribution

Frequency

>

| Score

The probability of being incorrect

FPR=B/(B'+B) FDR:B/A:('E\PEF")/A PEP=b/a
=1

PEPs can be inferred via mixture modeling and
the expectation-maximization algorithm



What is false?

* A general problem for any statistical assessment is
the missing knowledge on what is false and what
IS true

* All presented methods need to make assumptions
on false positive assignments

* Target-decoy database searches

* Mixture modeling and expectation-maximization
algorithm



Mixture model

A statistical law explains a phenomenon in terms of the
probability of occurrence of its underlying relationships.

A k-component mixture model is a weighted sum of laws, the
likelihood of a sample x being given by

flx) = Zﬂ-zfz(aj)

With the constraint that: «

Zﬂ-i =1
1=1

If the laws f; are probability distributions f is also a probability
distribution (a mixture of probability distributions)



Joint density

* Consider the joint function f(z,y) with,

f(xay) > 0 \V/CC,y and T,y € ]—O0,00[

Ut [T [T flay) de dy =1

* Then, f(x,y) iscalleda jointdensity function over x
and y



Marginal density

e Consider the joint density f(z,y) , with
Pla<z<bAc<y<d) :f;fcdf(a:,y) dx dy

* To calculate the probability for a <z <b we need to

look at
Pla<z <bA—oo<y<oo)= [ [ f(z,y) dz dy

 Furthermore, we define

e With this, we have
P(agxgb/\—oogygoo):fffx(a:) dx

* And fz(7) is called the marginal density function of the
random variable x



Conditional density

 The conditional density of a random variable y for known
occurrences of x ¢ X is defined as follows,

flyle =) = 425

* Where f(z,y) isthe joint distribution of xandy
and fz(z) is the marginal distribution of x

* The conditional mean is then given as

E(ylz =X) =3 cyyflylz = X)



Mixture model

Mixture modeling and Expectation-Maximization (EM) algorithm

EM slides are based on a lecture given by Jorg Rahnenfiihrer at TU Dortmund in 2007



The EM Algorithm

* Two-component mixture model

 Example: 20 data points

* Distribution apparently bi-modal

* Fit two Gaussians
Y1 ~ N(p1,01)

Yy ~ N(uz,02)
Y = (1-A)Y; + AY,
A e€{0,1}
PA=1)=mn

20 data points

A. Dempster et al., Maximum likelihood from
incomplete data via the EM algorithm (with
discussion), J. R. Statist. Soc. B. 39 (1977) 1-38.
Also Hastie, Tibshirani, Friedman, pages 238ff)
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The EM Algorithm

* Two-component mixture model
 Example: 20 data points

* Distribution apparently bi-modal
* Fit two Gaussians

Y1 ~ N(p1,01)

Yy ~ N(p2,02)
Y = (1-A)Y; + AY:
A e{0,1}
PA=1)=mn

This is a generative
representation

Let ¢,(x)=N(u,0%), 0=(u,0°)
Then the density of Y is

gy (v)=(1-m)¢, (y)+79, (»)

Fit with max-likelihood

Parameters
6 =(7,6,,0,) = (m, 1,07, u,,02)

Log-likelihood function based on
N training cases

1(6;Z) = 2 log[(1-7)¢, (,) + 7, (¥,)]



The EM Algorithm

* Direct optimization is difficult for the sum under the log
* Thus, let us assume that we know the A, for all training inputs

* Jointdensity is ¢(A,y)=[(1-2)¢, (¥)] [A, ()]

* The log-likelihood for the complete data is

(4(8:8,) = Y[(1-A)logg, () +A,logg, (¥,)]

 Max-likelihood estimates are the sample mean and standard
deviation of the respective subclasses of the training data for A,= 0,1



The EM Algorithm

@® Since the A are actually unknown we proceed iteratively

® Step 1 (Expectation): Substitute for each A, its expected value

(responsibility of model 2 for observation i) as derived from the
present model.

}/1(0) = E(Az |‘99Z) =PI’(AZ =1|05Z)

This is done by computing the relative densities of the training
points under each model.

@® Step 2 (Maximization): Compute new max-likelihood parameters



The EM Algorithm

* The EM algorithm for two-component Gaussian mixtures
1. Take initial guesses 7, (1,,0;, ii,, 5.for the parameters
2. Expectation Step: Compute the responsibilities

A fw)é (yi) .
Y, = 2 i=1,...,

(1- 7%)%1 (y,)+ 7%%2 ) ,

3. Maximization Step: Compute the weighted means and variances

N ~ N A A
~o_ EH(I_%‘)J’:’ A2 _ Ezel(l_yi)(yi _1“1)2

" Sra-7) ” Yra-p)

ﬂ _ Eil};z‘yi 52 = L);i(yi_ﬂl)z

2 N A 9 2 N A 9
Dl Dl

#=S"7/N

4. Iterate 2 and 3 until convergence



The EM Algorithm

e How to choose the start values?

* For i, and f,choose two of the
y; at random. Set both &,and &,

to the overall sample variance.
Set 7 =0.5

* Global maxima of the log-likeli-
hood function

lul =yi9 fOI' aIlYZE(l,K 9n)

* Makes the log-likelihood function
infinite

e Not a useful maximum

Observed Data Log-likelihood

44 43 42 41 40 -39

Thus, we are looking for local
maxima, for which 4,0, >0

There can be many such maxima

0,,0, >0

Thus start with many random

: L A2 A2
start solutions withO; ,0, > 0.5
and pick the outcome with the

largest log-likelihood value

Iteration

1

0.485

5

0.493

10

0.523

15

0.544

20

0.546

T T T
5 10 15
Iteration

T
20



The EM Algorithm

* Final estimates

a, =462, 67 =0.87 2
a,=1.06, &, =0.77 o |
7 =0.546 .
— Gaussian mixture density /\/\
Responsibility for left class o Tiwrw w v v T
(Posterior error probabilities) 0 5 4 6



Sources

 Eidhammer et al., Computational Methods for Mass Spectrometry
Proteomics. Wiley. 2007.

e Kristin L. Sainani, Stanford University

www.stanford.edu/~kcobb/hrp259/lecture4.ppt
www.stanford.edu/~kcobb/hrp259/lecture5.ppt

* Christopher M. Bishop, Pattern Recognition and Machine Learning. 2006
* Brosch and Choudhary, Scoring and Validation of Tandem MS Peptide

Identification Methods. Methods in Molecular Biology, 2010, Volume
604, 43-5

* Elias et al., Comparative evaluation of mass spectrometry platforms used

in large-scale proteomics investigations. Nature Methods, Vol.2, No.9,
2005

e http://www.colorado.edu/economics/morey/6818/jointdensity.pdf



Materials

* Learning Units 3A and 3B

62



