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Abstract. The term “Java” is used to denote two different concepts: the language
itself and the related execution environment, the Java Virtual Machine (JVM),
which executesbyte codeinstructions. Several research projects deal with byte
code-generating compilers or the implementation of new features via byte code
transformations. Examples are code optimization, the implementation of param-
eterized types for Java, or the adaptation of run-time behavior through load-time
transformations. Many programmers are doing this by implementing their own
specialized byte code manipulation tools, which are, however, restricted in the
range of their reusability. Therefore, we have developed a general purpose frame-
work for the static analysis and dynamic creation or transformation of byte code.
In this paper we present its main features and possible application areas.

1 Introduction

Many research projects deal with extensions of the Java language [13] or improvements
of its run-time behavior. Implementing new features in the Java execution environment
(Java Virtual Machine, JVM) is relatively easy compared to other languages, because
Java is an interpreted language with a small and easy-to-understand set of instructions
(thebyte code).

The JAVA CLASS API which we present in this paper is a framework for the static
analysis and dynamic creation or transformation of Java class files.1 It enables develop-
ers to deal with byte code on a high level of abstraction without handling all the internal
details of the Java class file format. There are many possible application areas ranging
from class browsers, profilers, byte code-optimizers, and compilers, to sophisticated
run-time analysis tools and extensions to the Java language [1,21,3]. Other possibilities
include the static analysis of byte code [22], automated delegation [8], or implementing
concepts of “Aspect-Oriented Programming” [16]. We think that the most interesting
application area for JAVA CLASS is meta-level programming, i.e. load-time reflection
[18], which will be discussed in detail in section3.1.

Our approach provides a truly object-oriented view upon Java byte code. For exam-
ple, code is modeled as a list of instructions objects. Within such a list one may add or
delete instructions, change the control flow, or search for certain patterns of code using
regular expressions.

We assume the reader to have some basic knowledge about the JVM and Java class
files. A more detailed introduction to the API and the Virtual Machine can be found in
1 The JAVA CLASS distribution, including several code examples and javadoc manuals, is avail-

able athttp://www.inf.fu-berlin.de/˜dahm/JavaClass/index.html .
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[9]. The paper is structured as follows: We first give a brief overview of related work
and present some aspects and technical details of the framework in section2. We then
discuss concepts of byte code engineering and possible application areas in section3
and conclude with section4.

1.1 Related work

The JOIE [7] toolkit can be used to augment class loaders with dynamic behavior. Sim-
ilarly, “Binary Component Adaptation” [15] allows classes to be adapted and evolved
on-the-fly. Han Lee’s “Byte-code Instrumenting Tool” [17] allows the user to insert
calls to analysis methods anywhere in the byte code. The Jasmin assembler [20] can be
used to compile pseudo-assembler code. Kawa, a Java-based Scheme system, contains
thegnu.bytecode package [5] to generate byte code. The metaXa Virtual Machine
[12] allows to dynamicallyreify meta level events, e.g. instance field access.

In contrast to these projects, JAVA CLASS is intended to be a general purpose tool for
“byte code engineering”. It gives the developer full control on a high level of abstraction
and is not restricted to any particular application area.

2 The JavaClass framework

The JAVA CLASS framework consists of a “static” and a “generic” part. The former is
not intended for byte code modifications. It may be used, e.g., to analyze Java classes
without having the source files at hand. The latter supplies an abstraction level for creat-
ing or transforming class files dynamically. It makes the static constraints of Java class
files, like hard-coded byte code addresses, mutable. Using the term “generic” here may
be a bit misleading, we should perhaps rather speak of a “generating” API. UML di-
agrams – unfortunately too large for this paper – describing the class hierarchy of the
framework can be found in [9].

2.1 Static API

All of the binary components and data structures declared in the JVM specification
[19] are mapped to classes, where the top-level class is calledJavaClass , giving the
whole API its name. Instances of this class basically consist of aconstant pool, fields,
methods, symbolic references to the super class and to the implemented interfaces of
the class. At run-time, these objects can be used asmeta objectsdescribing the contents
of a class. This possibility will be discussed in detail in section3.1.

The constant pool serves as a central repository of the class and contains, e.g., en-
tries describing the type signature of methods and fields. It also contains String, Inte-
ger, and other constants. Indexes to the constant pool may be contained in byte code
instructions as well as in other components of a class file and in constant pool entries
themselves.



Analyzing classes.Information within the class file components can be accessed via
an intuitive set/get interface. Compilers may use the framework to analyze binary class
files, e.g. in order to check whether they contain certain fields or methods. Using the
provided class repository, implementing a simple class viewer is quite easy:

JavaClass clazz = Repository.lookupClass("java.lang.String");

System.out.println(clazz); // Print class contents
Method[] methods = clazz.getMethods();

for(int i=0; i < methods.length; i++) {
System.out.println(methods[i]); // Print method signature

Code code = methods[i].getCode(); // Print byte code of
if(code != null) // non-abstract,

System.out.println(code); // non-native methods
}

JAVA CLASS supports theVisitor design pattern [10], i.e. it allows developers to
write their own visitors to traverse and analyze the contents of a class file. Included
in the distribution, e.g., is a classJasminVisitor that converts class files into the
Jasmin assembler language [20].

2.2 Generic API

This part of the API makes it possible to modify byte code components dynamically.
The generic constant pool, for example, implemented by the classConstantPool-
Gen, offers methods for adding different types of constants. Accordingly,ClassGen
offers routines to add or delete methods, fields, and class attributes.

Representation of types.We abstract from the concrete details of type signature syn-
tax of the JVM [19] by introducing theType class, which is used, for example, to define
the types of methods. Concrete sub-classes areBasicType , ObjectType andAr-
rayType . There are also some predefined constants for common types. For example,
the type signature of themain method is represented by:

Type ret_type = Type.VOID;
Type[] arg_types = new Type[] {new ArrayType(Type.STRING, 1)};

Generic fields and methods.Fields are represented byFieldGen objects. If they
have the access rightsstatic final , i.e. are constants, they may optionally have an
initializing value.

MethodGen objects contain routines to add local variables, thrown exceptions, and
exception handlers. Because exception handlers and local variables contain references
to byte code addresses, they also take the role of aninstruction targeterin our terminol-
ogy. Instruction targeters contain a methodupdateTarget() to redirect such refer-
ences. The code of methods is represented byinstruction liststhat contain instruction
objects. References to byte code addresses are implemented by handles to instruction
objects. This is explained in more detail in the following sections.



Instruction objects. Modeling instructions as objects may look somewhat odd at first
sight, but in fact enables programmers to obtain a high-level view upon control flow
without handling details like concrete byte code addresses. Instruction objects basically
consist of a tag, i.e. an opcode and their length in bytes. The instruction set of the Java
Virtual Machine distinguishes its operand types using different instructions to operate
on values of specific type. For exampleiload loads an integer value onto the stack,
while fload loads a float value.

Our approach enables us to group instructions via sub-classing. For example, there
arebranch instructionslike goto andif icmpeq , which compares two integers for
equality. They additionally contain an address (offset) within the byte code as the branch
target. Obviously, this makes them candidates for playing an instruction targeter role,
too.

For debugging purposes it may even make sense to “invent” your own instructions.
In a sophisticated code generator, e.g., it may be very difficult to track back in which
method particular code has actually been created. One could think of a specializednop
(No operation) instruction (which may be inserted anywhere without effect) that con-
tains additional debugging information. One could also think of new byte code instruc-
tions operating on complex numbers that are replaced by normal byte code upon load-
time or are recognized by a new JVM.

We will not list all byte code instructions here, since these are explained in detail
in the JVM specification [19]. The opcode names are mostly self-explaining, so under-
standing the following code examples should be fairly intuitive.

2.3 Instruction lists

An instruction listis implemented by a list ofinstruction handlesencapsulating instruc-
tion objects. References to instructions in the list are thus not implemented by direct
pointers to instructions but by pointers to instruction handles. This makes appending,
inserting and deleting areas of code very simple. Since we use symbolic references,
computation of concrete byte code offsets does not need to occur until finalization, i.e.
until the user has finished the process of generating or transforming code. Instruction
handles can be used as some kind of symbolic addresses, for example in order to define
the scope of an exception handler:

InstructionHandle start, end, handler;
... // Define start and end of handled area, and handler code
ObjectType ot = new ObjectType("java.io.IOException");
mg.addExceptionHandler(start, end, handler, ot);

We will use the terms instruction and instruction handle synonymously for the rest
of the paper.

Appending instructions. Instructions can be appended before or after any given handle
within a list. The default is to append the instruction to the end of the list. All append
methods return a new instruction handle which may then be used as the target of a
branch instruction, e.g..



InstructionList il = new InstructionList();
GOTO g = new GOTO(null); // Target of branch not known yet
il.append(g); // Append it to the end of the list
...
g.setTarget(il.append(new NOP())); // Set branch target

Deleting instructions. Deletion of instructions is also very straightforward: all instruc-
tion handles and the contained instructions within a given range are removed from the
instruction list and disposed. Thedelete() method may throw aTargetLostEx-
ception when there are instruction targeters still referencing one of the deleted in-
structions. The user is forced to handle such exceptions and redirect those references
where the necessary informations are stored in the exception object.

try {
il.delete(start, end);

} catch(TargetLostException e) { ... }

2.4 Instruction factories

When producing byte code, some patterns typically occur very frequently, for instance
the compilation of arithmetic or comparison expressions. One certainly does not want to
copy the code that translates such expressions to every place they may appear. Instead,
we supply instructionfactories[10] andcompound instructions. Instances of the latter
may be appended just like normal instructions.

For example, pushing constants onto the operand stack may be coded in different
ways. There are some “short-cut” instructions that can be used to make the produced
byte code more compact. The smallest instruction to push a single1 onto the stack is
iconst 1, other possibilities arebipush (can be used to push values between -128
and 127),sipush (between -32768 and 32767), orldc (load constant from constant
pool).

Instead of repeatedly selecting the most compact instruction in, say, a switch, one
can use the compoundPUSHinstruction whenever pushing a constant number or string.
It will produce the appropriate byte code instructions when added to an instruction list
and automatically insert entries into the constant pool if necessary.

InstructionList il = new InstructionList();
il.append(new PUSH(constant_pool, "Hello, world"));
il.append(new PUSH(constant_pool, 4711));

2.5 Representing exception handlers and local variables

In Figure 1 we present how the code of thereadInt() method is mapped to an
instruction list. The local variablesn ande both hold two references to instructions,
defining their scope. An exception handlers is displayed, too: it references the start and
the end of thetry block and also the handling code. Altogether, there are three kinds
of instruction targeters: local variables, exception handlers and branch instructions.



private static BufferedReader in =
new BufferedReader(new

InputStreamReader(System.in));

public static final int readInt() {
int n = 4711;

try {
n = Integer.parseInt(in.readLine());

} catch(IOException e) {
System.err.println(e);

}
...

return n;
} goto
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Fig. 1. Instruction list forreadInt() method

2.6 Code patterns

When transforming code, for instance during optimization or when inserting analysis
method calls, one typically searches for certain patterns of code on which to perform the
transformation. In order to handle such situations JAVA CLASS includes a novel feature:
One can search for given code patterns within an instruction list usingregular expres-
sions. In regular expressions, instructions may be represented by symbolic names, e.g.
‘IfInstruction’ or ‘ILOAD ’ . Meta symbols like+, * , and (..|..) have
their usual meanings. Currently we are using string literals to represent regular ex-
pressions, a future version of the API may introduce a more advanced data structure.
Additional constraints to the matching area of instructions, which can not be imple-
mented in terms of regular expressions, may be expressed viacode constraints. Section
2.8presents an example for the usage of this feature.

2.7 Example I: Compiling an if statement

The following example shows how a simple compiler would translate the Java statement

if(a == null)
a = b;

into byte code:

InstructionList il = new InstructionList();
IfInstruction i = new IFNONNULL(null);

il.append(new ALOAD(0)); // Load local variable 0(a) on stack
il.append(i); // Use negated condition
il.append(new ALOAD(1)); // Load local variable 0(b) on stack
il.append(new ASTORE(0)); // Store in a
// Define auxiliary target for the case a != null
i.setTarget(il.append(new NOP());



2.8 Example II: Peep hole optimizer

In Java, boolean values are mapped to 1 and 0. Thus, the simplest way to evaluate
boolean expressions likea == null during compilation is to push a 1 or a 0 onto
the operand stack. But this way, the subsequent combination of boolean expressions
(with &&, e.g) yields long chunks of code that push lots of 1s and 0s onto the stack.
Additionally, one has to add a lot ofnop operations as auxiliary branch targets.

Such code chunks can be optimized using apeep holealgorithm [2]: An IfIn-
struction , that either produces a 1 or a 0 on the stack and is followed by anifeq
instruction (branch if stack operand equals to 0) is replaced by the negatedIfIn-
struction with its branch target replaced by the target of theifeq instruction.
Figure2 illustrates the results of the algorithm: The left column shows the original Java
expression, the middle one the naive translation into byte code, and the right one shows
an optimized version.

if(a == null)
a = b;

1: aload_0
2: ifnull #5
3: iconst_0
4: goto #6
5: iconst_1
6: nop
7: ifeq #10
8: aload_1
9: astore_0

10: nop

1: aload_0
2: ifnonnull #5
3: aload_1
4: astore_0
5: nop

Fig. 2.Optimizing byte code

This algorithm can be implemented like this:

FindPattern f = new FindPattern(il);
f.search("‘IfInstruction’‘ICONST_0’‘GOTO’" +

"‘ICONST_1’‘NOP’‘IFEQ’", constraint);

InstructionHandle[] match = f.getMatch();
IfInstruction if_ = (IfInstruction)match[0].

getInstruction().negate(); // Negate instruction

match[0].setInstruction(if_); // Replace instruction
if_.setTarget(match[5].getTarget()); // Update branch target
try {

il.delete(match[1], match[5]); // Remove obsolete code
} catch(TargetLostException e) { ... } // Update targeters

Subsequent application of this algorithm removes all unnecessary stack operations
and branch instructions from the byte code. If any of the deleted instructions is still
referenced by an instruction targeter object, the reference needs to be updated in the
catch -clause.



Code constraints. The above appliedcode constraintobject ensures that the matched
code really can be transformed, i.e. it checks the targets of the branch instructions:

CodeConstraint constraint = new CodeConstraint() {
public boolean checkCode(InstructionHandle[] m) {

IfInstruction if_ = (IfInstruction)m[0].getInstruction();
GOTO g = (GOTO)m[2].getInstruction();
return (if_.getTarget() == m[3]) &&

(g.getTarget() == m[4]);
}

};

3 Concepts of Byte Code Engineering

Byte code engineering techniques can be used in many application areas. We think
that the most interesting application area is the user-transparent adaptation of existing
code at run-time. For example, a profiling tool can dynamically insert calls to analysis
methods without affecting the semantics of the original code. There are also cases where
one has to adapt classes for a certain environment when the source code is not available.

3.1 Load-time Reflection

The termsreflectionor meta-level programmingare generally used to denote systems
that have the ability to reason about themselves, where certain aspects of the system are
reifiedasmeta objects[6]. On the one hand, separating meta-level from base-level code
can separate concerns, e.g., security or persistence aspects can be addressed in the meta-
program, thus enhancing base-level code reusability. On the other hand, reflection can
provide more flexibility and better adaptability to changing environments. One promi-
nent application area for reflection are programming tools like browsers, debuggers,
and prototyping environments.

Java itself provides an API for structuralrun-timereflection [14], which can be used
to retrieve type information about objects, to dynamically invoke methods, or to access
fields of a given object. Barat [4], in contrast, is an approach forcompile-timereflection.

Using class loaders and JAVA CLASS, one can add an additional level of reflection
with Smalltalk-like features [11] to Java:load-timereflection. Class loaders are respon-
sible for loading class files from the file system or other resources and passing the byte
code to the Virtual Machine [18]. CustomClassLoader objects may be used to re-
place the standard procedure of loading a class. A given runtime system can then access
JAVA CLASS meta-level objects created at load-time and adapt them to its needs, or even
create themad hocwithout a source file. This is an elegant way of extending the Java
Virtual Machine without actually modifying it.

Similar to metaXa [12], for example, it is possible to reify events like method calls,
instance creations or field accesses, but without the need to change the Virtual Machine.
The reification of such an event can be implemented by simply enclosing or replacing
the actual byte code instruction with invocations of runtime system methods.



A possible scenario is described in figure3: During run-time the Virtual Machine
requests a custom class loader to load a given class. Before the JVM actually sees
the byte code, the class loader makes a “side-step” to create the requested class or to
perform some transformation to an existing class. To make sure that the modified byte
code is still valid and does not violate any of the JVM’s rules it is checked by the verifier
before the JVM finally executes it.

Java class file Class loader Byte code verifier Interpreter/JIT

Byte code transformations

JavaClass

Fig. 3.Class loaders

3.2 Example III: “Reloading” classes

From the viewpoint of a run-time system it is sometimes desirable to reload a given
class, i.e. to drop the old byte code and load a new implementation. This is not possible
with the JVM, of course, but we can simulate the effect using byte code transformations.
We illustrate this with the following simple example:

public class ReloadMe {
public ReloadMe() { ... }
public String foo(int bar) { ... }

}

We then implement a class loader that globally replaces all instance creations of this
class with calls to an object factory. I.e., all statements likeo = new ReloadMe();
becomeo = Factory.createReloadMe(); (on the byte code level). The fac-
tory is initialized with the class object ofReloadMe and uses it as a template for object
creation (if the constructor takes arguments we have to useConstructor objects of
the Java Reflection API as templates).

public class Factory {
Class reload_me = ReloadMe.class;
...
public static ReloadMe createReloadMe() {

return (ReloadMe)reload_me.newInstance();
}

}

When the run-time system decides to load a new implementation ofReloadMe
it simply replaces the template class of the factory with a new class that extends the



original one. This new class is generated using the JAVA CLASS API and passed to the
class loader:

JavaClass clazz = generateNew("ReloadMe");
Factory.reload_me = class_loader.load(clazz.getBytes());

Going even further we can reimplement the behavior of single methods, too, if we
insert ahookat the start of every method whose behavior we want to adapt. The hook
is inactive when it has anull value. Otherwise it redirects all incoming calls, i.e. we
use delegation [10].

public String foo(int bar) {
if(hook != null)

return hook.foo(this, bar);
... // Old code becomes unreachable

}

It would be awkward to incorporate this explicit “reloading” and delegation code
into the source of the original class. But on the meta (byte code) level we can easily
implement user-transparentbehavorialreflection features like the ones described.

Another useful example for the transformation ofnew statements may be to avoid
costly thread creation operations by replacing them with factory methods that reuse old
thread objects. This is also a good example of how to add optimizations on the meta
level that are orthogonal to the original program and thus do not affect its semantics.

4 Conclusion and Future Work

In this paper we have presented the JAVA CLASS framework, a general purpose tool for
byte code engineering. It provides the developer with a completely object-oriented view
upon byte code and allows him to conveniently analyze, transform or create classes. In
combination with class loaders, JAVA CLASS is a powerful tool to implement reflec-
tional features on a meta level not visible to the user. There are many possible applica-
tion areas ranging from class browsers, profilers, byte code-optimizers, and compilers
to sophisticated run-time analysis tools and extensions to the Java language.

The framework has already proved its usefulness in several projects. We have been
able, e.g., to implement the byte code-generating back end of a Java compiler within
ten days. We plan to further enhance JAVA CLASS with more support for load-time
reflection and control flow analysis on the byte code level.
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