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1. Introduction

Barat1 is a front-end for Java which supports static analysis of Java programs. It parses Java source
code files and class files and builds a complete abstract syntax tree (AST) of the parsed Java program.
The AST is contains name analysis information and type analysis information. During name analysis,
each use of a name (e.g., a field name in a field access expression, a class name in an extends
clause, or a label name in a break statement) is associated with the name’s declaration (e.g., the ac-
cessed field’s declaration, the declaration of the superclass, or the labeled statement that the break
statement refers to). During type analysis, the static type of each expression is determined. For exam-
ple, the static type of a character literal is the primitive type char, the static type of a string concate-
nation expression is java.lang.String, and the static type of a field access is the accessed field’s
declared type. As usual, these static types are an approximation to the actual run-time type, which
might be a subtype of the static type.

The AST built by Barat is a passive data structure which may not be changed. There are similar sys-
tems which allow the AST to be changed, and which therefore enable full compile-time reflection, or
even run-time reflection for Java [OpenJava]. However, to our knowledge, Barat is the only system
which builds a complete representation of Java programs including statements and expressions, to-
gether with full name analysis and type analysis. Barat parses source code according to the syntax of
Java 1.1 [Gosling et al. 96], and is fully implemented. It parses Java source files as well as class files2.
There is no explicit distinction between phases of loading, parsing, and analyzing Java source code.
All actions that need to be performed for building the AST of a Java program are transparent to clients
of Barat and are triggered on demand.

The rest of this paper is organized as follows: Section 1.1 contains installation instructions, and section
1.2 presents a simple example of how Barat can be used. Section 2 explains in detail how Barat can be
used "as is" for analyzing Java programs. Section 3 describes how Barat has been implemented and
gives hints how to adapt Barat’s implementation if necessary. In section 4, two useful example pro-
grams demonstrate possible uses of Barat.

1.1 Installation

Barat is implemented using an extension of Java, called "Poor Man’s Genericity" (PMG), that supports
parameterized classes and types, but is still compatible with the Java virtual machine [Bokowski,
Dahm 98]. Most of this, however, is hidden in the implementation package barat.parser and can
be ignored by users that do not want to change or extend Barat’s implementation.

Accordingly, we provide two distributions for Barat. The normal distribution contains class files for all
instantiations of parameterized types and may be executed as is on any Java virtual machine, whereas
the full distribution comes with PMG and source code for all parameterized types. The latter distribu-
tion is more difficult to work with, because of the need to understand some of the concepts of PMG for
compiling and running Barat. Please refer to [Bokowski, Dahm 1998] for details on Poor Man’s Gen-
ericity.

                                                  

1 "Java Barat" (West Java) is one of the three parts of the island of Java, the other two are called "Java Tengah"
(Central Java), and "Java Timor" (East Java).

2 Note that, as Barat does not perform decompilation for byte code, method bodies of class files cannot repre-
sented in the AST
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For using the normal distribution of Barat, the Barat distribution main directory must be included in
the classpath. Additionally, Barat makes use of JavaClass, a library for parsing class files [Dahm 98],
which has to be included in the classpath as well. All files needed for installing Barat are accessible
from the Barat homepage, http://www.inf.fu-berlin.de/~bokowski/barat, together with up-to-date in-
stallation instructions.

1.2 Example program using Barat

See listing 1 for a first example of how Barat can be used:

public class FirstExample
{

public static void main(String[] args)
{

barat.reflect.Class c = barat.Barat.getClass(args[0]);
System.out.println("accessible fields of class "+ c.getName() + ":");
for(barat.collections.FieldIterator i=c.getFields().iterator();

i.hasNext();)
{

barat.reflect.Field f = i.next();
if(!f.isPrivate())

System.out.println("\t" + f.getType() + " " + f.getName());
}

}
}

Listing 1 class FirstExample

Barat consists of several Java packages. In this example, three packages are used:

• The package barat.reflect contains the node types of the abstract syntax tree, like Class,
Interface, AbstractMethod, Field, Parameter, Block, ObjectAllocation, etc.

• The top-level package barat contains, among others, class Barat which is the main entry point
for Barat with methods like getClass() or getInterface() which return an AST node
representing a parsed class or interface.

• The package barat.collections contains type-specific collection classes (lists and iterators)
for AST node objects.

In the example program, the first String argument to main() is expected to be a fully qualified class
name. By calling barat.Barat.getClass(), an AST node object for this class is retrieved. (By
invoking accessor methods on such "initial" node objects, on-demand name analysis, type analysis or
loading of other source and class files is triggered, without the user noticing it.) After printing a short
message with the class name, an iterator object is used to iterate over all fields of that class, printing
types and names of each non-private field.

2. Using Barat

This section explains how to use Barat for analyzing standard Java programs, using the Barat abstract
syntax tree as a passive data structure and navigating within it. Usually, even very complex analyses
can be implemented this way (some examples will be given in this section and in the final section of
the paper).
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This section is divided into five parts. We will first describe features of AST nodes in general (section
2.1), and then explain the individual elements of Barat abstract syntax trees (section 2.2). In section
2.3, we will describe the main entry class of Barat and how to get hold of the root object of the ab-
stract syntax tree. Finally, in sections 2.4 and 2.5, we will present visitors and attributes as techniques
for navigating within a Barat syntax tree when performing a given analysis task.

2.1. AST Nodes

The common supertype of all AST node types is the interface Node (see listing 2), which is part of the
top-level package barat. All other AST node types are defined by interfaces in package
barat.reflect. They are classified into concrete interfaces which have a concrete class as their
implementation, and abstract interfaces which are implemented as abstract classes. For example, there
is an abstract interface AMethod representing Java methods in general, from which two concrete in-
terfaces ConcreteMethod and AbstractMethod are derived. Abstract interfaces, i.e. abstrac-
tions that help structuring the AST node type hierarchy, are marked with an uppercase prefix "A".

For accessor methods, we have used the following naming convention: Accessor methods for associa-
tion, aggregation, or containment relationships start with get, whereas accessor methods for attributes
do not have any prefix. For example, a BinaryOperation object supports the method
getLeftOperand() for accessing the left operand, which is contained within the binary operation,
whereas the operation for retrieving the binary operation’s operator as a string is called operator()
(without any prefix).

public interface Node
{

// container and containment aspect for this node
public Object container();
public String aspect();

// helper methods for traversing the container chain
public Object containing(java.lang.Class ofClass);
public barat.reflect.Class containingClass();
public barat.reflect.AUserType containingUserType();
public barat.reflect.AMethod containingMethod();

// line number for a node:
public int line_number();

// access to tags (/*:special*/ comments):
public boolean hasTag(String t);
public barat.collections.StringList getTags();

// method that calls back a visitor object:
public void accept (Visitor v);

// defining attributes and retrieving attribute values:
public void addAttribute(Object key, AbstractAttribute a);
public Object attributeValue(Object key);

}

Listing 2 Interface of Node

Containment

The most important operations defined for all nodes are those involving the "containment" relation
(methods aspect(), container(), and containingXXX()). These methods allow to find out,
for a given Barat Node, what higher level constructs it is contained in. For example, return statements
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are contained in methods, which are contained in classes. In Barat, you can access these "containers"
of a statement as follows:

barat.reflect.Return  r = ...;
barat.reflect.AMethod m = r.containingMethod();
barat.reflect.Class   c = m.containingClass();

The contains-relation is transitive, so that you could also write r.containingClass() on the last
line. The method container() returns the immediate container of a Node, while aspect() de-
scribes what kind of constituent a Node is for that container – you can think of aspect as the name
of the instance variable of the parent container in which the Node is stored. In our above example,
method m would be immediately contained in class c, and the containment aspect would be
"concreteMethod" (see also the class diagram, figure 2). As another example, consider an as-
signment:

a = b

Both variable access expressions a and b are immediately contained within the assignment expression;
but the containment aspect for a is "lvalue", and the containment aspect for b is "operand".

The methods containingClass(), containingUserType(), and containingMethod()
traverse the containment hierarchy from inside to outside until an object of the requested type is found
– if none exists, null is returned. These methods are the most commonly needed operations on the
containment hierarchy, which is why they are provided explicitly. To search for other kinds of con-
tainers, the operation containing(ofClass) may be used. For example, to search for an enclos-
ing if-statement, write:

barat.reflect.AStatement s = ...;
barat.reflect.If = (barat.reflect.If)s.containing(

    barat.reflect.If.class);

It turns out that in the presence of inner classes, these methods could sometimes produce counter-
intuitive results. For example, consider

Object method() {
if (x == 0)

return new Object() {
public int hashCode() { return 14; }

};
}

Suppose you want to check whether the statement return 14; is nested within an if-statement.
Using containing(barat.reflect.If.class), as described above, would yield the outer
if-statement (in which the entire anonymous class is contained), which is probably not the intended
result. Therefore, the methods containingClass(), containingUserType(), and
containingMethod()stop when they encounter a class or interface, except when the searched
container is CompilationUnit or Package. In the example, the search for a containing if-
statement would therefore stop at the anonymous class, and null be returned.

The compilation unit in which each node is contained can be accessed using

CompilationUnit cu = (CompilationUnit)
node.containing(CompilationUnit.class);

If the compilation unit is available as source code, cu.hasSource() returns true. By calling
line_number() on node, its line number in the compilation unit's source file can be obtained. The
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line number refers to the source file, whose name is returned by calling cu.filename(). If the line
number is not available, line_number() returns –1 .

Tags

The methods hasTag()  and getTags()  provide access to a special feature of Barat’s parser: Java
constructs may be marked with specially formatted comments in the source file, as in the following
example:

/*:log-uses*/ /*:system_layer*/ class TagExample {
/*:pre:o!=null*/
public void print(Object o) {

// ...
}

}

Here, the parser stores "log-uses " and "system_layer " as tags for class TagExample , and
"pre:o!=null " as tag for method doit . The example demonstrates three possible uses for tags:

• The tag "log-uses " could be used by a Barat-based tool that collects information about which
classes reference the tagged class.

• It could be enforced that classes marked with "system_layer " should not be called from
classes that are not marked with "system_layer " as well, regardless of normal Java access
control.

• Tags starting with "pre: " and containing a precondition could be used to generate modified
source code containing runtime checks. (See section 4.2 for an example of generating modified
source code.)

Visitors and Attributes

The remaining methods, accept() , addAttribute() , and attributeValue() , support tra-
versals and analyses of abstract syntax trees according to two complementing paradigms: the method
accept()  is the hook for traversals using the Visitor design pattern [Gamma et al. 95], while
addAttribute()  and attributeValue()  support the definition of on-demand traversals
similar to attribute grammars [Knuth 68; Kastens, Waite 94]. Both ways of traversing the AST will be
explained in detail in section 2.4.

2.2. Elements of the Abstract Syntax Tree

In this section, we will go through the main categories of AST node types in detail: type nodes, struc-
tural nodes, expression nodes, and statement nodes. In the appendix, a complete UML class diagram is
provided for reference. Parts of this diagram will appear in each of the following sections.

Representing Types

The abstract supertype of all Java types (shown in figure 1) is the interface AType  (remember that the
prefix A means that this interface is abstract – there is no implementation of it; in other words, there
can never be an instance of AType, only of one of its concrete subtypes).  The methods
isAssignableTo(), isPassableTo() and isCastableTo() allow you to check whether
an actual value of a given type may, according to the rules of the Java language, be assigned, passed or
casted to a formal of another type.
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PrimitiveType

isBool ean : boolean
isByte : boolean
isChar  : boolean
isDouble :  boolean
isFloat : boolean
is Int : bool ean
isLong  : boolean
isShort : boolean

AType

isAssignableTo()
isPassableTo()
isCastableTo()
equals()

elementType

Array

AReferenceType

isSubtypeOf()
getInstanceMethod()
getStaticMethod()

NullType AUserType

Class

isSubclassOf()
isImplementationOf()

Interface

isSubinterfaceOf()

nestedInterfaces

nestedClasses

implementedInterfaces

superclass

extendedInterfaces

Figure 1 Types

AType has two subtypes: PrimitiveType and AReferenceType.

There is a distinct PrimitiveType object for each primitive type in Java; you may check what
actual type a PrimitiveType object represents by calling isBoolean(), isByte(), etc.  There
is also an operation PrimitiveType.getName() which returns the Java name of that type. Note
that primitive types – as all types in Barat – are represented as singletons, i.e. there is always only a
single object that represents type int or double in the system, and you may compare these types for
equality using ==.

Java reference types, modeled by AReferenceType, may be subtypes of other reference types, and
you can check this by calling AReferenceType.isSubtypeOf().  Following the rules of the
Java language, this method returns true if, transitively, the argument type is a superclass or superinter-
face of this type.  The methods getInstanceMethod() and getStaticMethod() allow you
to find a method of a type given the method's name and the types of its arguments.  These methods
also search any supertypes (transitively) for an applicable method, and follow the "most-specific" rule
to match parameter types.

There are three subtypes of AReferenceType: Array, NullType, and AUserType, the latter
being the abstract supertype of classes and interfaces (these are sometimes also called user-defined
types in Java, hence their name).  Interface has a method isSubinterfaceOf(), which tran-
sitively checks whether an interface extends another interface.  Class, on the other hand, has a
method isSubclassOf(), which transitively follows the extends-relation between classes, while
isImplementationOf() transitively operates on the graph of superinterfaces implemented by
this class.  Note that, unlike these methods, the attributes superClass,
implementedInterfaces and extendedInterfaces of classes and interfaces are not tran-
sitive, they only refer to direct superclasses and superinterfaces.
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It has proven practical to keep arrays and user-defined types separate, i.e. Array and AUserType
are not in any inheritance relation.  You can obtain the Array for any AType by calling
AType.getCorrespondingArray().  Note that one array is the subtype of another array if and
only if their element types are subtypes of another; this rule is implemented by the method
isSubtypeOf() for arrays.

The NullType is the type of the "null" literal in Java – it is not, as one might think, the "type" re-
turned by a void method.  (Void methods have no return type at all in Barat, i.e. their returnType
is null.)  The singleton NullType object isSubtypeOf() any other AReferenceType object.

Representing Structure

The inner structure of user-defined types (classes and interfaces) is modeled as shown in figure 2. The
essentials of this graph should be clear to any Java programmer, let us merely draw your attention to a
few details that may not be entirely obvious.

Methods come in two flavors: AbstractMethod objects and ConcreteMethod objects, their
supertype being AMethod. The difference between these kinds of methods is that
ConcreteMethod objects have a body (a Block of statements) while AbstractMethod objects
do not. It is this difference why both are modeled separately in Barat, whereas, for example, we do not
model static methods and instance methods separately because both have the same kinds of constitu-
ents.

To distinguish a static method from an instance method, you need to check the method's modifiers:
these are available through a set of boolean methods, isStatic(), isPublic(), isFinal(),
etc. which are implemented by all Barat nodes that inherit from the interface AHasModifier (as can
be seen in the diagram, AMethod does inherit from this interface).

Constructor objects are derived from AMethod, adding both a body (like in
ConcreteMethod) and the additional property that any constructor first makes a call to some other
constructor (by default, this is the call super()). This is modeled as an attribute of type
ConstructorCall, which Barat initializes to (the equivalent of) super() if no explicit call is
found in the source code. The exception is of course the constructor of java.lang.Object, this is
the only case where getConstructorCall() returns null.

Note also that getCalledConstructor() in ConstructorCall returns the real
Constructor object being called here (the actual parameters represented as a list of
AExpressions, see below). This is a first example of how Barat resolves inter-class references
automatically so that simply by calling the accessor function getCalledConstructor(), you
can retrieve the constructor object that is actually called.

By convention, each Java class always has at least a single default constructor that does nothing but
call super(). Such a constructor, if no other constructor is found in the source code of a class, is
always automatically generated by Barat and inserted into the class.
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AHasModifier ATyped

ANamed

name : Str ing

qualifiedName()

AVariable

Par ameter LocalVariableAMethod

AbstractMethod

Constructor

AType

isAssignableTo()
isPassableTo()
isCastableTo()
equals()

AReferenceType

isSubtypeOf()
getInstanceMethod()
getStaticMethod()

Field

AUserType

Interface

isSubinterfaceOf()

Package

qualifiedName : String

Class

isSubclassOf()
isImplementationOf()

CompilationUnit

filename : String
hasSource : boolean

ConstructorCall

type

overriddenMethod

C oncr eteM ethod

resultType

fields

abstractMethods

exceptions

concreteMethods

constr uctors

calledC onstructor

constructorCall

classes

interfaces

classes

interfaces

parameters

Figure 2 Structure

Representing Expressions

All possible kinds of Java expressions (shown in figure 3) are modeled by the abstract type
AExpression. The (syntactic) type of any expression can be retrieved by reading the type attribute,
using method type(), of the expression.

There are two kinds of method calls in Java: calls to static methods and calls to instance methods. The
difference between them is that calls to instance methods contain an instance to which the call is actu-
ally directed, while calls to static methods don't have an instance – which is why we model the two as
separate types, unlike static methods and instance methods (see previous section).
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As we have already seen for constructors, Barat automatically resolves method calls, though only
based on the static types of expressions (for InstanceMethodCall objects, it is not generally
possible to resolve polymorphism statically, and Barat makes no attempt to do so). The following ex-
amples may be helpful to understand Barat’s modeling of method calls:

public class Target {
public static void methodA() { ... }; // ConcreteMethod,

// isStatic()==true
public        void methodB() { ... }; // ConcreteMethod,

// isStatic()==false
}

Target.methodA(); // StaticMethodCall
//   calledMethod: Target.methodA()

Target t = new Target();
t.methodB(); // InstanceMethodCall

//   instance: t (VariableAccess)
//   calledMethod: Target.methodB()

// inside class Target
methodB(); // InstanceMethodCall

//   instance: This (thisClass = Target)
//   calledMethod: Target.methodB()

There is a similar distinction between accesses to static fields and instance fields, modeled as
StaticFieldAccess and InstanceFieldAccess. Both are different from objects of type
VariableAccess (variables are defined locally within methods; formal method parameters are also
modeled as variables). To find out whether an access to a variable or field is a read or write access,
you need to find out whether it occurs on the left hand side of an assignment (in which case it is a
write access) or elsewhere (in which case it is a read). See the paragraph on "Containment" in section
2.1 for an example.

Accesses to array elements are modeled as a combination of ArrayAccess objects and field or vari-
able accesses. Consider

int a[4] = ...;

a[3] = 17;

Here, a[3] is an ArrayAccess where the array is a VariableAccess referring to a, and the
index is a Literal object with constantValue equal to 3. Multi-dimensional arrays are mod-
eled likewise:

int b[3][4] = ...;

    b[2][3] = 12;

Here the left hand side of the assignment is an ArrayAccess, where the index is the Literal
"3" and the array is an ArrayAccess, in which the array is a VariableAccess and the
index is the Literal "2".

There are three different kinds of object allocations (new expressions) in Java, and hence, in Barat:
ObjectAllocation, ArrayAllocation, and AnonymousAllocation. An
ObjectAllocation is an expression such as

new Integer (4)
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The attribute calledConstructor in the ObjectAllocation object refers to the constructor
used for the new object; to find out its class, you therefore write

barat.reflect.ObjectAllocation o = ...;
barat.reflect.Class c = o.getCalledConstructor().containingClass();

The arguments passed to the constructor can be accessed as a list of AExpression objects.

An ArrayAllocation is an expression of the form

new Integer[4][]

As the example suggests, such an allocation may have an arbitrary number of dimensions, starting
with a sequence of "definite dimensions", i.e. dimensions for which a length expression is provided
([4] in the example), followed by an arbitrary number of "free dimensions", for which there is no
length expression ([]). In Barat, the definite dimensions are modeled as a list of argument expressions,
while the number of free dimensions is stored in the attribute freeDimensions. To get the total
number of dimensions of a given array allocation, you could thus write:

barat.reflect.ArrayAllocation a = ...;
int dimensions = a.getArguments().size() + a.freeDimensions();

The third kind of allocation in Java and Barat is called AnonymousAllocation. Here, an object of
a given type is allocated, but the type of the object is anonymously extended by code provided as part
of the allocation expression. For example:

Object o = new Object() {
public int hashCode() { return 14; }

};

Here, an anonymous (implicitly declared) class inheriting from Object that overrides hashCode()
is instantiated. In Barat, this allocation is modeled as a node of type AnonymousAllocation,
which is a subtype of ObjectAllocation. Thus, everything that has been said about
ObjectAllocation above also applies here, with the additional property that the anonymous ex-
tension code is accessible through the accessor method anonymousClass() of the
AnonymousAllocation object.

Representing Statements

Java statements are modeled as subtypes of barat.reflect.AStatement, as shown in figure 4.
Some less obvious details about statements include:

• A UserTypeDeclaration is a declaration of an inner class or interface that occurs inside a
method. Java permits this wherever a statement is allowed. An inner class or interface declaration
that does not occur inside a method is modeled as a nestedClass or nestedInterface of
the enclosing AUserType, see section "Representing Structure".

• Do-, While-, and For-Statements are subtypes of the abstract supertype ALoopingStatement.
By calling getExpression(), the continuation condition can be retrieved. Objects of type
For support two additional methods: getForInit() and getUpdateExpressions().

• In Java, there is no explicit assignment statement, because assignments are themselves expressions
and therefore may occur nested within a complex expression. Thus, a top-level assignment is
modeled as an ExpressionStatement with the expression being an Assignment (see sec-
tion "Representing Expressions").
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• A VariableDeclaration is a statement that declares a variable, however the actual variable
is modeled as a LocalVariable contained within the VariableDeclaration. A
VariableAccess (see "Representing Expressions") always refers to that LocalVariable,
not to the VariableDeclaration.

• Also note that short-hand variable declarations such as "int a, b;" are "canonicalized" by
Barat; thus the above statement would be modeled as two consecutive
VariableDeclaration statements.

Do

EmptyStatement

While

DefaultBranch

Break

ATargetStatement

label : String

target

ForInitDeclaration

AForInit

VariableDeclaration

declarations

Finally

Tr y

finallyClaus e

Catch

catchClauses

UserTypeDeclaration

Continue

AStatement

ASwitchBranch

statements

ForInitExpression

For

forInit

Return

CaseBranch

ExpressionStatementThrowALoopingStatement

target
body

If

thenBranch

elseBranch

Switch

branches

Block
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Figure 4 Statements

2.3. Getting the Abstract Syntax Tree of a Java program

The single point of access to the entire Barat system is the class barat.Barat, shown in listing 3.
You can retrieve the root object of a Barat AST for a given Java class simply by calling

barat.reflect.Class c = barat.Barat.getClass ("java.lang.Object");

i.e. you only need to call the getClass() method with the fully qualified name of the class you are
interested in. The entire parsing process and internal analysis is handled by Barat transparently, on
demand. At any time, you may simply call the methods of the object that Barat supplied you with to
access the internal elements of the class, or other classes it refers to.
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public class Barat
{

// runtime flags:
public static boolean debugLoading = false { ... }
public static boolean preferByteCode = false { ... }

// initialization:
public static void setClassPath(java.lang.String) { ... }

// accessing AST roots:
public static barat.reflect.AUserType getUserType(java.lang.String) { ... }
public static barat.reflect.Class getClass(java.lang.String) { ... }
public static barat.reflect.Interface getInterface(java.lang.String) { ... }

// accessing prominent types:
public static barat.reflect.Class getObjectClass() { ... }
public static barat.reflect.Class getStringClass() { ... }
public static barat.reflect.Interface getThrowableInterface() { ... }
public static barat.reflect.Interface getCloneableInterface() { ... }

// registering an attribute adder:
public static void registerAttributeAdder(Visitor adder) { ... }

// main:
public static void main(java.lang.String[]) { ... }

}

Listing 3 Interface of Barat

You may either use the method getClass() or getInterface() to analyze a Java class or in-
terface, respectively. If you are not certain whether a given name refers to a class or an interface, use
the method getUserType(), which returns an object of the common abstract supertype of inter-
faces and classes. There are also some convenience methods that allow you to access frequently
needed Java types: Object, String, and the interfaces Throwable and Cloneable.

Just like the tools of the JDK, Barat uses the CLASSPATH environment variable to search for the
classes or interfaces you request from it  if the search fails, Barat throws a RuntimeException.
To use an alternate classpath for analysis, use the method setClassPath().

Usually, if the source code for a given class is found, Barat constructs the abstract syntax tree based on
that source code. However, if only a byte code file exists, Barat parses that, although it doesn’t disas-
semble any of the actual instructions in it. Only field and method signatures will therefore be visible
for analysis; method bodies are left empty. If for any reason you do prefer loading the byte code even
if source is available, set Barat.preferByteCode to true.

The method registerAttributeAdder() will be explained in section 2.5.

2.4. Working with Visitors

Traversing a Barat structure can be quite complicated if you must write the entire code for such a tra-
versal yourself. Barat therefore provides a framework based on the Visitor design pattern [Gamma et
al. 95] that allows you to formulate common analysis algorithms in a much easier way.

The Visitor design pattern lets programmers traverse hierarchical structures of objects in a way where
the code that does the traversal is separated from the actions to be performed at each visited object.
The pattern is illustrated by the example in figure 5.
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a : A

b : B

v : Visitor

a.accept(v);

v.visitA(a);

b.accept(v);

v.visitB(b);

1

2

3

4

Figure 5 example for visitor pattern

Each of the objects to be visited (having types A or B in the example) implements a method void
accept (Visitor v). To visit an object, the visitor calls this method with itself as the argument.
The implementation of accept is simply to make a callback to the visitor, however to a method spe-
cific for the type being visited. Thus, for class A, accept would be implemented as

class A {
...
void accept (Visitor v) {

v.visitA (this);
}

}

The consequence is that the code for visiting A objects and B objects is bundled in the Visitor class,
rather than scattered all over the program. We will also see how this pattern allows us to abstract from
traversal algorithms in a nice way.

In Barat, all elements of abstract syntax trees (i.e. all Node objects) implement an accept() method
in the way described above. Consequently, there is an interface barat.Visitor which declares all
the appropriate visit... methods:

package barat;

public interface Visitor {
public void visitArrayAccess(ArrayAccess o);
public void visitArrayAllocation(ArrayAllocation o);
public void visitAssignment(Assignment o);
public void visitBinaryOperation(BinaryOperation o);
...

}

One implementation of Visitor provided by Barat is the DescendingVisitor. In this class, all
visiting methods are implemented so that the constituents of a given class are traversed in a depth-first
order. For example, the implementation of visitClass() looks roughly like this:
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public void visitClass (Class o) {
for (ConstructorIterator i=o.getConstructors().iterator();

i.hasNext();) {
i.next().accept (this);

}
for (FieldIterator i = o.getFields().iterator();

i.hasNext();) {
i.next().accept (this);

}
for (ConcreteMethodIterator i = o.getConcreteMethods().iterator();

i.hasNext();) {
i.next().accept (this);

}
}

The nice property of the DescendingVisitor is that it is guaranteed to traverse all syntactic ele-
ments of a given class. To use this for your own analyses, you can subclass DescendingVisitor,
overriding only those methods where something meaningful should be done. For example, to find out
how often a given class refers to java.lang.System.out, write:

public class MyVisitor extends barat.DescendingVisitor {
public int result = 0;
public void visitStaticFieldAccess (StaticFieldAccess o) {

Field f = o.getField();
if (f.qualifiedName().equals ("java.lang.System.out"))

result++;
super.visitStaticFieldAccess (o);

}
}

Note how the superclass method is called on the last line: this is to make sure the traversal remains a
complete one (the sub-nodes of the static field access will be traversed by this call). As static field
accesses cannot be nested in Java (i.e., the AST node type StaticFieldAccess has no children),
this would not strictly be necessary here, but it is always a good idea to follow this convention.

To use the above visitor on a class, write:

barat.reflect.Class c = barat.Barat.getClass ("example.MyClass");
MyVisitor v = new MyVisitor();
c.accept (v);
System.out.println ("Result: " + v.result);

Another useful class implementing the visitor interface is DefaultVisitor, which implements all
visit methods by an empty method. This is useful for cases in which only some of the AST node types
need to be considered. Subclassing DefaultVisitor and overriding only some methods yields a
visitor class that acts like a switch statement that switches over the visited object’s actual type, as in:

ALoopingStatement s = ...;
s.accept(new DefaultVisitor() {

public void visitDo(Do d) {
// ...

}
public void visitFor(For f) {

// ...
}
public void visitWhile(While w) {

// ...
}

});
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In this example, an anonymous inner class is used as a visitor. The visitor object does not traverse the
tree, it is used only once to distinguish between certain possible actual types of a node object. Using
DefaultVisitor avoids using a nested if and explicit downcasts, and is more efficient when the
number of cases is large, as can be seen when comparing it to the more conventional code below:

ALoopingStatement s = ...;
if(s instanceof Do) {

Do d = (Do)s;
// ...

}
else if(s instanceof For) {

For f = (For)s;
// ...

}
else if(s instanceof While) {

While w = (While)s;
// ...

}

A variant of DefaultVisitor, called AbstractingVisitor, provides even more flexibility.
AbstractingVisitor defines additional visit methods for abstract interfaces (such as
AMethodCall, AFieldAccess, AExpression). In AbstractingVisitor, each visit
method for a type T has a default implementation that calls the visit method(s) for T’s supertype(s). (If
there is more than one supertype, one or more of ANamed, ATyped, or AHasModifier are in-
volved, see figure 2.) In the following example, abstract interface types may be separate cases as well:

AExpression e = ...;
e.accept(new AbstractingVisitor() {

public void visitInstanceMethodCall(InstanceMethodCall o) {
System.out.print("instance ");
super.visitInstanceMethodCall(o);

}
public void visitStaticMethodCall(StaticMethodCall o) {

System.out.print("static ");
super.visitStaticMethodCall(o);

}
public void visitAMethodCall(Cast o) {

System.out.println("method call");
}
public void visitAExpression(AExpression o) {

System.out.println("not a call expression");
}

});

It is instructive to compare this example to a hypothetical switch statement that selects cases based on
actual node types:

• Calling visit methods of super is similar to a fall-through (omitting break) in a case branch.
However, note that both visitInstanceMethodCall and visitStaticMethodCall
"fall through" to visitAMethodCall, which would not be possible in a switch statement. Note
that unlike in switch statements with fall-through, the order of "cases" does not matter in our ex-
ample.

• Visit methods for more abstract types are like default branches in switch statements, but there may
be several levels of defaults.

Another useful visitor provided by Barat is the OutputVisitor. It is similar to the
DescendingVisitor in that it traverses an entire user type in natural order, however it also prints
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that type’s source code to an arbitrary file (effectively re-generating the source code). By subclassing
OutputVisitor and overriding certain methods of it, all sorts of source code modifications and
transformations can be implemented. As an example, see the InstrumentingVisitor in section
4.2.

It must be noted, though, that the OutputVisitor re-generates a classes’ source code based on the
information in the Barat AST. This newly generated source code is guaranteed to be semantically
equivalent to the original source code, but it is mildly canonicalized with respect to formatting and
some other issues, such as the order of declarations inside a class. Also, all comments in the original
code are lost.

2.5. Working with Attributes

For some purposes that involve a non-standard traversal of the AST, visitors may not be adequate. By
means of an example, we will explain user-defined node attributes, an alternative way of structuring
traversals of the AST.

In Barat, the attribute concept allows to store user-defined data for each node, and to cache data that is
calculated automatically on-demand. Rather than storing user-defined data directly, so-called attribute
objects that return user-defined data objects can be stored for each node object. Attribute objects are
instances of classes that implement the interface AbstractAttribute:

public interface AbstractAttribute {
public Object objectValue();

}

Listing 4 interface AbstractAttribute

Objects of type AbstractAttribute can be stored in a node object n by calling
n.addAttribute(k, a), where k is a key object and a is an attribute. By calling, on the same
node object, the method attributeValue(k), providing the key object k, the result of calling
objectValue() on the stored attribute object will be returned.

Two implementations of AbstractAttribute are already provided: The first, called
ConstantAttribute, can be used for storing a constant value as an attribute. For storing an object
o in node n under key k, use:

n.addAttribute(k, new ConstantAttribute(o));

The stored value o can be retrieved using:

n.attributeValue(k);

The second implementation, CachedAttribute, can be used for on-demand calculated attributes
whose values will be cached once they have been calculated. Cached attributes are usually added to
newly created AST nodes by registering a Visitor (usually, a subclass of DefaultVisitor or
AbstractingVisitor) using Barat.registerAttributeAdder().

Assume that you want to compute, for a number of classes, the set of interfaces implemented by each
class. It is relatively straightforward to write a recursive algorithm for computing the set of interfaces
for one class. However, if the result of this calculation is to be used several times, e.g. for computing
the set of interfaces that are implemented by subclasses of the current class, it will be desirable to
maintain a cache of already computed sets.

Using attributes, we can write a concise solution to this problem:
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final Object implementors = new Object(); // used as key
Barat.registerAttributeAdder(new DefaultVisitor() {

public void visitClass(final Class c) {
c.addAttribute(implementors,

 new CachedAttribute() {
  protected Object calculate() {

Set result = new HashSet();
for(InterfaceIterator i=c.getImplementedInterfaces();
   i.hasNext();) {
   result.addAll(

(Collection)i.next().attributeValue(implementors));
}
if(c!=Barat.getObjectClass()) result.addAll(
   (Set)c.getSuperclass().attributeValue(implementors));
return result;

  }
});

}
public void visitInterface(final Interface c) {

c.addAttribute(implementors,
 new CachedAttribute() {

  protected Object calculate() {
Set result = new HashSet();
for(InterfaceIterator i=c.getExtendedInterfaces();
   i.hasNext();) {
   result.addAll(

(Set)i.next().attributeValue(implementors));
}
return result;

  }
});

}
});

By registering an attribute adder visitor, visit methods will be called for every newly created AST
node object. As these node objects are not yet properly inserted into the AST, the only method that can
safely be called on them is addAttribute(). The added attribute’s code, however, can invoke
arbitrary methods on the node, because it will be called only if the attribute’s value is to be computed,
which can only happen after proper initialization. Note that by creating anonymous attribute classes
that inherit from CachedAttribute, the attribute’s code will be called only once per AST node
object.

To get the value of an attribute as defined in this example, you can use the following code:

AUserType ut = ...;
Set s = (Set)ut.attributeValue(implementors);

Note that calls of attributeValue(implementors) occur during calculation of the attributes’
values due to their recursive definition. Of course, there should be no cycles in recursive definitions of
attribute calculations. From our experience, cycles normally do not occur; however, if they do, the
class CachedAttribute will detect this at runtime.

3. Implementation of Barat

Barat’s public interface consists of the three packages barat, barat.reflect, and
barat.collections. The fourth package, barat.parser, contains the implementation that is
normally hidden from users of Barat: There is an explicit distinction between interface and imple-
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mentation parts of AST node types. For each AST node type, there is a public interface in
barat.reflect and a class implementing the interface in package barat.parser. The names
of implementation classes are derived from the names of the implemented interfaces and end with
"Impl". Implementation details are not exposed by Barat’s public interface: The interfaces in
barat.reflect contain read-only accessor methods with parameter and return types that reference
only other interfaces in barat.reflect.

Package barat.parser also contains the actual parser, which is generated by JavaCC (version
0.7.1) from the grammar file BaratParser.jj. This file consists of a BNF-based grammar from
which a scanner is derived for transforming the input file into a sequence of tokens, and of a LL(k)
grammar augmented with tree-building Java code that specifies Java’s syntax based on the tokens.
Class files are parsed by ClassFileParser; name analysis is defined in class NameAnalysis
and type analysis in class TypeAnalysis.

For certain advanced uses, accessing Barat using the public interface – where the internals of Barat are
hidden – may not be sufficient. For example, changing the syntax of the parsed language would re-
quire changing the implementation of the parser part of Barat, or parsing comments other than tag
comments would require changing the implementation of the scanner part of Barat

This section, which assumes familiarity with basic compiler construction techniques, guides the reader
through the inner workings of Barat, and points out areas where changes might be needed for certain
advanced uses of Barat.

Section 3.1 explains how Barat is implemented. Section 3.2 describes hooks that are provided for
white-box users of Barat, making it possible to adapt Barat without changing its implementation. Sec-
tion 3.3 lists possibilities for changing Barat's implementation.

3.1. Implementation of Barat

A first version of Barat was designed using a conventional architecture for parsers: After building an
explicit abstract syntax tree, name and type analysis were performed by several passes, each of which
was defined as a traversal of the abstract syntax tree. Experiences with this first version showed two
main drawbacks of the chosen architecture:

• It turned out that name and type analysis for Java is a non-trivial problem that cannot easily be
divided into a small number of passes (we ended up with six passes: registering names, resolving
type names, establishing inheritance links, building lists of all methods per class/interface, resolv-
ing remaining names, and type analysis). Moreover, each of the required passes had to produce
complex intermediate results which were then used as input to other passes. This lead to a situation
where debugging and testing became extremely difficult: Often, a bug in one of the passes mani-
fested itself in a later pass, when the incorrect intermediate result was being used.

• During name and type analysis for Java source files, other source files need to be parsed and partly
analyzed on demand. Because it is difficult to predict in advance how much analysis is needed for
these other source files, we had to maintain information about each source file's parsing and analy-
sis status, and we needed a complex recursive algorithm that triggered parsing and different analy-
sis passes based on that information. Because the algorithm at certain points made conservative
decisions about which files needed to be parsed, the number of files that were parsed starting from
a certain file was much greater than would have been needed for name and type analysis of the first
file. Worse still, because Barat is used as the basis for other analyses, it is not possible to tell to
what extent name and type analysis is needed for other source files. Because client code should not
be concerned with problems of how much name and type analysis has been performed already on
needed source files, we decided to parse all source files that are transitively referenced from the
starting source file, and to perform full name and type analysis on all those files. This lead to enor-
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mous startup times (five to ten minutes) for Barat, before any user-defined static analysis could
proceed.

Due to the performance and stability problems we encountered with the first version, we decided to
redesign Barat, supporting on-demand parsing, on-demand name analysis, and on-demand type analy-
sis. Central to the new architecture of Barat are lazily-evaluated attributes of AST node objects similar
to attributes as known from attribute grammars [Knuth 68; Kastens, Waite 94]. In some cases, attrib-
utes are sometimes used to calculate parts of the AST itself, like in higher order attribute grammars
[Vogt et al. 89]. We also chose to use parameterized types – at least internally – to gain more type
safety when building the AST, and to support type-safe attribute objects.

In attribute grammars, attributes can be defined for each terminal or nonterminal of a grammar, where
an attribute's value may depend on values of other attributes of possibly different terminals or nonter-
minals. As parsers are usually used for transforming a sentence of an input grammar into a sentence of
an output grammar, in the ideal case, a complete parser could be generated from an attribute grammar,
specifying the output of the parser as the value of a distinguished top-level attribute. There are systems
for automatically generating efficient parsers based on attribute grammars, which usually avoid gener-
ating an explicit abstract syntax tree with explicit attributes at the nodes of the tree – both attribute
values and parts of the abstract syntax tree are stored only if they will be needed to calculate the value
of other attributes.

Because Barat should support arbitrary static analyses on Java source code, there is no "main" or "top-
level" attribute as in an attribute grammar. Thus, an explicit abstract syntax tree is still built, and at-
tributes are used as a means for structuring name and type analysis in a declarative way.

Attributes have been described already in section 2.5. In the implementation part of Barat, we use
type-parameterized classes for attributes that allow to access an attribute's value without downcasts.
Attributes in package barat.parser are instances of subclasses of the generic abstract class
Attribute<A>, defined in package barat.parser, with two methods: the abstract method
calculate() must be implemented in subclasses of Attribute<A> to return a value of type A,
and the public final method value() should be called to retrieve the value of an attribute. The im-
plementation of value() always performs caching: it calls calculate() only if there is no
cached value yet. For compatibility with the attribute classes defined in package barat,
Attribute<A> implements the interface barat.AbstractAttribute by returning the attrib-
ute's value as a value of type java.lang.Object. However, as this way of accessing the attribute's value
does not retain type information and thus would require downcasts, the generic method value()
returning an object of type A is used instead.

There are two subclasses of Attribute<A>: Constant<A> is used for constant values that need
to be wrapped in an attribute, and CastingAttribute<A,B> is necessary for some cases where a
typecast on the level of attributes is needed. CastingAttribute<A,B> inherits from
Attribute<B> and expects in its constructor an attribute of type Attribute<A>. Its calculate
method calls value() on this attribute, yielding a value of type A, and then casts this value to type B
and returns it.

As attribute objects should be invisible for users of Barat, the accessor methods defined in interfaces
in package barat.reflect return values rather than attribute objects, i.e., on calling an accessor
method, the underlying attribute's value() method will be called. For example, in interface
StaticFieldAccess, an accessor method getField() is defined that returns the AST node
object for the accessed field's declaration. Clearly, this involves name analysis, and thus, the imple-
mentation of getField() in class StaticFieldAccessImpl returns the result of calling
value() on the corresponding attribute.

Rather than being separate objects, the desired lazy evaluation and caching of attribute values could be
achieved by implementing the caching scheme in each of the accessor methods explicitly. We chose
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the first alternative for two reasons: First, it factors out common code that manages caching, so that for
example provisions for detecting cyclic dependencies between attributes are handled in one class
rather than in each accessor method. Second, and more important, it allows to separate the calculation
code for attributes from the classes that have attributes. Similar to the visitor pattern, this allows at-
tribute calculation code to be collected in separate classes; for example, all attribute calculations that
implement name analysis are contained in a single class barat.parser.NameAnalysis.

We now sketch the steps that are performed when a user of Barat calls the top-level method
barat.Barat.getClass(qn). The parameter qn, of type String, is the fully qualified name
of the class that will be returned by the call.

1. The implementation in class Barat delegates the call to class
barat.parser.NameAnalysis, converting the passed string to an object of class
barat.QualifiedName, which allows iterating over a qualified name’s components and easy
access to the base and qualifier parts of a qualified name.

2. The called method in class NameAnalysis iterates over the qualified name, maintaining a prefix
qualified name (initially empty), a current simple name, and the remaining qualified name. For
each prefix, it retrieves an object representing the package with the prefix name. (In the case of the
empty prefix, this is the global, unnamed package.) It then tries to find a class or interface with the
current simple name in that package. If it finds such a class or interface, the remaining qualified
name must denote an inner class of this class or interface. Otherwise, if no class or interface is
found, the next iteration is performed by appending the current simple name to the prefix and
fetching the first simple name of the remaining qualified name.

3. To retrieve an object representing a package, an internally maintained table is searched. If such an
object does not yet exist, it is created and inserted into the internal table. Thus, for each qualified
name, there is a single unique package object, allowing to compare package objects by identity
comparison (using ’==’ rather than equals())

4. To search for a class or interface within a package, the list of already loaded classes and interfaces
of that package is searched. If no class or interface is found, the classpath is searched for a Java
source file or a Java class file in a directory with the package’s name. Whether Java source files or
class files are considered first can be determined by the property "barat.preferByteCode",
which is false by default, but may be set to true by either setting
barat.Barat.preferByteCode to true or by the command line switch "–
Dbarat.preferByteCode ". There is a second property called barat.debugLoading
which, when set to true (the default is false), causes messages to be printed to System.out
whenever a Java source file or class file is read.

5. Parsing of Java source files is performed by barat.parser.BaratParser , a parser class
generated by JavaCC [JavaCC] (version 0.7.1), based on the Java 1.1 grammar distributed with
JavaCC. The grammar input file, called BaratParser.jj , contains code for creating the ab-
stract syntax tree for a given compilation unit. Since the abstract syntax tree generated by the
parser should be fully typed and be based on names that correspond to the Java language specifi-
cation rather than generated names like f0 , f1 , ... , we did not use parse tree generator tools
[JJTree, JTB].

6. Parsing of class files is performed using JavaClass [Dahm 98], a package for reading and writing
byte-code files. The class barat.parser.ClassFileParser  is responsible for transform-
ing JavaClass’s internal representation of byte-code files into AST node objects of Barat.

For implementing Barat, we have used type-parameterized versions of the new (JDK 1.2) collection
classes. In Barat, these come in two flavors: In package barat.collections , we have placed
source-level instantiations of such classes, in order to keep things simple for normal users of Barat.
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The package barat.parser, which contains the implementation part of Barat, makes use of a ver-
sion of the collection classes modified to work with Poor Man’s Genericity, an extension of Java that
supports parameterized types by automatically generating byte-code level instantiations of generic
classes.

Most of the classes in barat.reflect and barat.parser have been generated from a UML
class diagram using a custom-made code generator. (A copy of the diagram is provided in the appen-
dix.) In fact, everything about package barat.reflect is obvious from the class diagram, so that it
is usually easier to look in the class diagram for names of methods rather than in the source files. Note
that, at least in package barat.parser, there are some methods and constructors that have been
generated for the sake of completeness, although they are not needed by the current implementation.

3.2. Hooks for Adapting Barat

Factory

In both the source file parser and the class file parser, AST node objects are never created directly
using the new operator; rather, a factory object is used, which can be set using the static method
barat.parser.Factory.setInstance(). For this purpose, the default Factory class
barat.parser.Factory should be subclassed. Note that in the current implementation, only one
(singleton) factory instance is supported. Because the factory object stores a list of package objects
that have been created so far, changing the factory object starts a new "session", and all previously
accessed Barat objects should be discarded. Thus, in a program that wishes to create objects differ-
ently, setting the appropriate factory object should be the first statement.

When overriding factory methods in subclasses of barat.parser.Factory, care should be taken
not to break assumptions made by other parts of Barat. The most important assumption is that name
and type analysis relies on attributes to be set right after object creation; thus, if an overridden factory
method does not call the overridden method, it should call static methods in both NameAnalysis
and TypeAnalysis analogously to the original implementation to have the required attributes cre-
ated. Furthermore, user-defined attributes that can be set by registering a callback with the factory will
not be set if the callbacks are not performed by an overriding factory method.

Even more care is needed if the new factory allocates objects of classes which implement the required
interfaces of barat.reflect, but do not inherit from the default implementation classes in
barat.parser, as the current implementation in some methods relies on downcasts to implemen-
tation classes.

Notification on Parsed Files

Because loading and parsing of Java source code is performed on-demand only, some clients of Barat
(e.g., a code generator) might be interested in being notified whenever a file has been parsed. For this
purpose, the class barat.parser.NameAnalysis provides a method for registering a callback.
This method is called addSourceParsedObserver(). It has one argument of type
barat.parser.SourceParsedObserver, an interface with the callback method
sourceParsed() (see listing 5). As an argument to sourceParsed(), Barat provides the AST
node object for the newly parsed compilation unit.
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public interface SourceParsedObserver
{

public void sourceParsed(CompilationUnit cu);
}

Listing 5 interface SourceParsedObserver

3.3. Possible Changes and Extensions

As with any framework, there are many possibilities for improving Barat. In this section, we list some
of the possibilities we already have thought about, and try to assess how much effort would be needed
for the improvements. We have classified possible improvements into the categories changes, exten-
sions, and optimizations.

Grammar Changes

For experimenting with Java language extensions or derivations, Barat currently only supports parsing
of special comments that can be used to tag classes, interfaces, methods, and declarations of fields,
parameters, and local variables. Certainly, for some applications, this is not sufficient, and changing
the grammar that Barat uses would be desirable. However, the generated parser cannot easily be sub-
stituted by a user-defined parser, and changing the syntax often will cause changes in the structure of
the ASTs as well. Thus, if you change the grammar, you will create a different branch in the develop-
ment history of Barat, and it will be difficult to incorporate bug-fixes and improvements of Barat itself
in the changed version of Barat. After these necessary warnings have been said, this is how you would
proceed: The parser within Barat has been generated using the parser generator JavaCC 0.7.1, and the
input file for the generator is called BaratParser.jj in directory barat/parser. The grammar file also
contains the scanner definition; e.g., comments are handled by the scanner. If you change the grammar
part itself, you will probably need different AST node types which should then be introduced in
barat.reflect and implemented in barat.parser.

Allowing Write Access to the AST

Barat’s on-demand name and type analysis has been designed with the assumption that the parsed pro-
gram will not change over time. Thus, the attributes used for name and type analysis will only be
evaluated once. If changing the AST were allowed, re-evaluation would be required for those attrib-
utes which relied on parts of the AST that have changed. Such a re-evaluation could be incorporated
into the implementation, by causing an invalidation and eventual re-evaluation of affected attributes.
This would be possible if, during evaluation of one attribute, accesses to other attributes would be
logged, so that if one of these attributes was invalidated, the dependent attribute could be invalidated
as well. This behavior could be implemented globally in class Attribute. Unfortunately, this sim-
ple modification would allow only certain kinds of changes, because some references in the AST are
stored directly rather than within an attribute. Currently, only references to expression nodes and type
nodes are consistently wrapped by an attribute, because these are results of name and type analysis. If
all computed references were wrapped in attributes, including all calculations a user of Barat has
made, this scheme would work in the general case as well.

Extensions

Whenever a class has been parsed from a class file instead of a Java source file, method bodies of con-
crete methods are empty blocks, although more information could be recovered from the byte code. As
has been shown by several decompilers for Java (e.g., [Proebsting, Watterson 97]), recovering Java
source code from byte code is possible. Integrating a decompiler in Barat would be an attractive exten-
sion, as it would enable normal Barat-style static analyses on byte code classes as well. This would
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allow to use Barat not only at compile-time, but also at load time, e.g. for checking security-related
constraints.

Optimizations

So far, we have focused on the functionality aspect of Barat. The current version has been in use by
several persons that use Barat for different purposes each. However, as we have neither optimized
performance nor space requirements, Barat tends to be slow and sometimes needs a larger heap than
provided by the JVM by default. From our experience, there are two areas of possible optimizations
that would be relatively easy to implement:

1. Currently, as soon as an object of type ClassImpl or InterfaceImpl is created, the corre-
sponding source file or class file is parsed. It turned out that some classes and interfaces are parsed
unnecessarily: During type analysis, when method lookup is performed, simple identity compari-
sons between method argument types could be performed before actually parsing the correspond-
ing classes or interfaces. Only if subtype relationships have to be considered, parsing needs to be
performed. We hope that by decoupling creation of class or interface objects from the actual pars-
ing, a significant number of classes and interfaces would not need to be parsed.

2. As Barat does not support changing the AST once it has been created, all attributes that are used
for name and type analysis are only computed once, and from then on, the calculated result is
cached. However, the attribute object used for calculating this result is still referenced, and so are
all intermediate attributes or objects that are needed only for this calculation. Space requirements
of Barat could be reduced significantly if references to already computed attribute objects were
deleted and the resulting garbage objects were collected by the garbage collector.

4. Examples

In this section, we present two complete examples of using Barat. In the first example, a simple static
analysis task is performed, while in the second example, Barat is used to instrument Java source code.

4.1. Immutable Classes

As a first example, we want to determine whether a given Java class is immutable, i.e. whether the
state of objects of this class cannot be changed after creation. We define this a little more rigorously as
follows:

• For an immutable class, we require all fields to be private. Hence, only the methods of the class
itself could possibly alter the state.

• We allow the fields to be written in constructors, or by field initializers, but not in ordinary meth-
ods.

• For simplicity, we do not check for write accesses into arrays – that is, we regard arrays as sepa-
rate objects: if an immutable object has an instance variable that is an array, the object is allowed
to change the array's elements, but it may not replace the entire array.

• Also for simplicity, we do not consider inheritance. In practice, objects could only be immutable if
their superclasses were also immutable (transitively).

Given this definition, it is straightforward to write a Visitor that checks for immutability:
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public class ImmutabilityVisitor extends barat.DescendingVisitor {

public boolean isImmutable = true;

public void visitConstructor (Constructor o) {
// Do nothing, i.e. don’t check for write accesses in constructors.

}

public void visitField (Field o) {
if (!o.isPrivate())

isImmutable = false;
super.visitField (o);

}

private boolean isWriteAccess (AFieldAccess o) {
return (o.container() instanceof Assignment)

 && (o.aspect().equals ("lvalue"));
}

public void visitInstanceFieldAccess (InstanceFieldAccess o) {
if (o.getField().containingClass() == o.containingClass())

if (isWriteAccess (o))
isImmutable = false;

super.visitInstanceFieldAccess (o);
}

public void visitStaticFieldAccess (StaticFieldAccess o) {
if (o.getField().containingClass() == o.containingClass())

if (isWriteAccess (o))
isImmutable = false;

super.visitStaticFieldAccess (o);
}

}

Listing 6 class ImmutabilityVisitor

The Visitor inherits from the DescendingVisitor, i.e. it is guaranteed to traverse the entire class on
which it is started. The analysis result is stored in the field isImmutable, initialized to true. If any
violation of the immutability condition is found, that variable is set to false.

The method visitConstructor() does not contain a call to super.visitConstructor(),
which means that the body of constructors is skipped by the analysis (writing to fields is allowed in
constructors). The method visitField() makes sure that all fields of the class are private, while
visitInstanceFieldAccess() and visitStaticFieldAccess() ensure that fields are
only read, but not written (remember that field accesses inside constructors are not seen by these
methods). To distinguish a read access from a write access, the visitor checks (in method
isWriteAccess()) whether the access occurs on the left hand side of an assignment.

To use this visitor on a class, write

barat.reflect.Class c = barat.Barat.getClass ("java.lang.String");
ImmutabilityVisitor v = new ImmutabilityVisitor();
c.accept (v);
if (v.isImmutable)

System.out.println ("java.lang.String is immutable");
else

System.out.println ("java.lang.String is not immutable");
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4.2. Logging method calls

This example shows how Barat can be used to instrument a Java program. Assume you want to log
method calls, and you have written a runtime support class log.Log which implements two methods
enterMethod() and exitMethod(). These methods should be called on each method entry and
method exit, respectively. Now, although the AST built by Barat cannot be changed, there is a way to
generate programs that are instrumented with calls to enterMethod() and exitMethod(): We
can write a subclass of OutputVisitor that, whenever a method body is written, inserts the appro-
priate calls.

Before we describe our solution, we examine what exactly needs to be inserted into method bodies: It
is easy to make sure that the call to enterMethod() is performed by inserting a method call state-
ment before the first original statement of the method’s body. But where should we insert the call to
exitMethod()? Things are more complicated with method exits because the method may return in
the middle of its body, using a return statement, and it may exit by throwing an exception. Fortu-
nately, we can make use of the try ... finally construct which guarantees that the finally block
is executed after the try block, regardless of how the try block exits.

An obvious solution would be to override visitConcreteMethod() in our subclass of
OutputVisitor, called InstrumentingVisitor. This, however, would require that we copy
the original code for visitConcreteMethod() into our subclass. But there is a better solution:
By overriding visitBlock() instead, and checking whether the block is directly contained within a
ConcreteMethod object, we can reuse both the original implementation of
visitConcreteMethod() and of visitBlock(): If the visited block is not directly contained
in a ConcreteMethod object, we call the superclass implementation of visitBlock(). Other-
wise, the visited Block is a method body and needs to be instrumented. Thus, we first print the call to
enterMethod(). After printing the keyword try, we call the superclass implementation of
visitBlock(), which will output the original method body. Then, we print the finally clause
that contains the call to exitMethod(). In listing 7, the complete source code for
InstrumentingVisitor is shown.

To use InstrumentingVisitor on a class, write:

barat.reflect.Class c = barat.Barat.getClass ("example.MyClass");
InstrumentingVisitor v = new InstrumentingVisitor();
c.accept (v);

For example, applying InstrumentingVisitor to itself would print the following code for the
method visitBlock() (some lines of the output have been omitted):

public void visitBlock(Block o) {
log.Log.enterMethod("barat.test.InstrumentingVisitor.visitBlock");
try {

if(o.container() // ... etc
// ... etc

}
finally {

log.Log.exitMethod(
"barat.test.InstrumentingVisitor.visitBlock");

}
}
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package barat.test;

import barat.reflect.*;
import barat.*;

public class InstrumentingVisitor extends OutputVisitor
{

public void visitBlock(Block o)
{

if(o.container() instanceof ConcreteMethod)
{

String methodName = ((ConcreteMethod)o.container())
.qualifiedName();

println("{");
currentIndent++;
indent();
println("log.Log.enterMethod(\"" + methodName + "\");");
indent();
print("try ");
super.visitBlock(o);
nl();
indent();
println("finally {");
indent();
println("\tlog.Log.exitMethod(\"" + methodName + "\");");
indent();
println("}");
currentIndent--;
indent();
println("}");

}
else
{

super.visitBlock(o);
}

}
}

Listing 7 class InstrumentingVisitor
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APPENDIX: class diagram for barat.reflect
The following pages can be glued together to form a large UML class diagram of all AST node types.
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