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Abstract

This paper presents a front-end for Java, called Barat, that supports gtatic analysis of Java programs.
Barat builds a complete abstract syntax tree from Java source code files, enriched with name and type
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framework that supports traversals of abstract syntax trees using visitors and attributes, and provides
additional features such as parsing comments as tags, access to parent nodes in the abstract syntax tree,
and re-generation of source code. For users of Barat, there is no explicit distinction between phases of
loading, parsing, and analyzing Java source code: All actions that need to be performed for building
the AST of a Java program are transparent to clients of Barat and are triggered on demand.
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1. Introduction

Barat' is a front-end for Java which supports static analysis of Java programs. It parses Java source
code files and class files and builds a complete abstract syntax tree (AST) of the parsed Java program.
The AST is contains name analysis information and type analysis information. During name analysis,
each use of a name (e.g., a fiddd name in a fidld access expression, a class name in an ext ends
clause, or a label name in a br eak statement) is associated with the name's declaration (e.g., the ac-
cessed field's declaration, the declaration of the superclass, or the labeled statement that the br eak
statement refers to). During type analysis, the static type of each expression is determined. For exam-
ple, the static type of a character literal is the primitive type char , the static type of a string concate-
nation expressionisj ava. | ang. St ri ng, and the static type of a fidd access is the accessed field’s
declared type. As usual, these static types are an approximation to the actual run-time type, which
might be a subtype of the static type.

The AST built by Barat is a passive data structure which may not be changed. There are similar sys-
tems which allow the AST to be changed, and which therefore enable full compile-time reflection, or
even run-time reflection for Java [Opendaval. However, to our knowledge, Barat is the only system
which builds a complete representation of Java programs including statements and expressions, to-
gether with full name analysis and type analysis. Barat parses source code according to the syntax of
Java 1.1 [Gosling et al. 96], and is fully implemented. It parses Java source files as well as class files’.
There is no explicit distinction between phases of loading, parsing, and analyzing Java source code.
All actions that need to be performed for building the AST of a Java program are transparent to clients
of Barat and are triggered on demand.

Therest of this paper is organized as follows: Section 1.1 contains installation instructions, and section
1.2 presents a simple example of how Barat can be used. Section 2 explains in detail how Barat can be
used "as is" for analyzing Java programs. Section 3 describes how Barat has been implemented and
gives hints how to adapt Barat's implementation if necessary. In section 4, two useful example pro-
grams demonstrate possible uses of Barat.

1.1 Installation

Barat is implemented using an extension of Java, called "Poor Man's Genericity" (PMG), that supports
parameterized classes and types, but is still compatible with the Java virtual machine [Bokowski,
Dahm 98]. Most of this, however, is hidden in the implementation package bar at . par ser and can
beignored by users that do not want to change or extend Barat’s implementation.

Accordingly, we provide two distributions for Barat. The normal distribution contains class files for all
instantiations of parameterized types and may be executed as is on any Java virtual machine, whereas
the full distribution comes with PMG and source code for all parameterized types. The latter distribu-
tion is more difficult to work with, because of the need to understand some of the concepts of PMG for
compiling and running Barat. Please refer to [Bokowski, Dahm 1998] for details on Poor Man's Gen-
ericity.

1 Java Barat" (West Java) is one of the three parts of the isand of Java, the other two are caled "Java Tengah”
(Central Java), and "Java Timor" (East Java).

2 Note that, as Barat does not perform decompilation for byte code, method bodies of class files cannot repre-
sented in the AST



For using the normal distribution of Barat, the Barat distribution main directory must be included in
the classpath. Additionally, Barat makes use of JavaClass, a library for parsing class files [Dahm 98],
which has to be included in the classpath as well. All files needed for installing Barat are accessible
from the Barat homepage, http://www.inf.fu-berlin.de/~bokowski/barat, together with up-to-date in-
stallation instructions.

1.2 Example program using Barat

Seelisting 1 for afirst example of how Barat can be used:

public class FirstExanple
public static void main(String[] args)
{
barat.reflect.d ass ¢ = barat.Barat.getC ass(args[0]);
Systemout.println("accessible fields of class "+ c.getNanme() + ":");
for(barat.collections.Fieldlterator i=c.getFields().iterator();
i . hasNext();)
{
barat.reflect.Field f =i.next();
if(!f.isPrivate())
Systemout.println("\t" + f.getType() + " " + f.getNane());
}
}
}
Listing 1 classFi r st Exanpl e

Barat consists of several Java packages. In this example, three packages are used:

The package bar at . r ef | ect contains the node types of the abstract syntax tree, like Cl ass,
I nterface, Abst ract Met hod, Fi el d, Par anet er, Bl ock, Cbj ect Al | ocat i on, €tc.

Thetop-level package bar at contains, among others, class Bar at which is the main entry point
for Barat with methods like get Cl ass() or get I nterface() which return an AST node
representing a parsed class or interface.

Thepackagebar at . col | ect i ons contains type-specific collection classes (lists and iterators)
for AST node objects.

In the example program, the first String argument to mai n() is expected to be a fully qualified class
name. By calling bar at . Bar at . get Cl ass(), an AST node object for this class is retrieved. (By
invoking accessor methods on such "initial" node objects, on-demand name analysis, type analysis or
loading of other source and class files is triggered, without the user noticing it.) After printing a short
message with the class name, an iterator object is used to iterate over all fields of that class, printing
types and names of each non-private field.

2. Using Barat

This section explains how to use Barat for analyzing standard Java programs, using the Barat abstract
syntax tree as a passive data structure and navigating within it. Usually, even very complex analyses
can be implemented this way (some examples will be given in this section and in the final section of

the paper).



This section is divided into five parts. We will first describe features of AST nodes in general (section
2.1), and then explain the individual elements of Barat abstract syntax trees (section 2.2). In section
2.3, we will describe the main entry class of Barat and how to get hold of the root object of the ab-
stract syntax tree. Finally, in sections 2.4 and 2.5, we will present visitors and attributes as techniques
for navigating within a Barat syntax tree when performing a given analysis task.

2.1. AST Nodes

The common supertype of all AST nodetypesistheinterface Node (seelisting 2), which is part of the
top-level package barat. All other AST node types are defined by interfaces in package
barat.refl ect. They are classified into concrete interfaces which have a concrete class as their
implementation, and abstract interfaces which are implemented as abstract classes. For example, there
is an abstract interface AMet hod representing Java methods in general, from which two concrete in-
terfaces Concr et eMet hod and Abst r act Met hod are derived. Abstract interfaces, i.e. abstrac-
tions that help structuring the AST node type hierarchy, are marked with an uppercase prefix "A".

For accessor methods, we have used the following naming convention: Accessor methods for associa-
tion, aggregation, or containment relationships start with get , whereas accessor methods for attributes
do not have any prefix. For example, a Bi naryQperati on object supports the method
get Lef t Oper and() for accessing the left operand, which is contained within the binary operation,
whereas the operation for retrieving the binary operation’s operator as a string is called oper at or ()
(without any prefix).

public interface Node

{
/'l container and containment aspect for this node
public Object container();
public String aspect();

/'l hel per methods for traversing the container chain
publ ic Object containing(java.lang.C ass of d ass);
public barat.reflect.C ass containingC ass();

public barat.reflect.AUser Type contai ni ngUser Type();
public barat.reflect. AMet hod cont ai ni ngMet hod();

// line nunber for a node:
public int |ine_nunber();

/'l access to tags (/*:special*/ comrents):
publ i c bool ean hasTag(String t);
public barat.collections. StringList getTags();

/1 method that calls back a visitor object:
public void accept (Visitor v);

/'l defining attributes and retrieving attribute val ues:
public void addAttri bute(Cbject key, AbstractAttribute a);
public Object attributeVal ue(Object key);

Listing 2 Interface of Node

Containment

The most important operations defined for all nodes are those involving the "containment™ relation
(methods aspect (), cont ai ner (), and cont ai ni ngXXX() ). These methods allow to find out,
for a given Barat Node, what higher level constructsit is contained in. For example, return statements



are contained in methods, which are contained in classes. In Barat, you can access these "containers'
of a statement as follows:

barat.reflect.Return r
barat.refl ect. AMet hod m
barat.refl ect.d ass c

r 'c'ont ai ni nghet hod() ;
m cont ai ni ngd ass();

The contains-relation is transitive, so that you could also writer . cont ai ni ngd ass() onthelast

line. The method cont ai ner () returns the immediate container of a Node, while aspect () de

scribes what kind of constituent a Node is for that container — you can thinka$pect as the name

of the instance variable of the parent container in whichNdde is stored. In our above example,
method m would be immediately contained in class and the containment aspect would be
"concr et eMet hod" (see also the class diagram, figure 2). As another example, consider an as-
signment:

a=»>b

Both variable access expressi@nandb are immediately contained within the assignment expression;
but the containment aspect fois" | val ue", and the containment aspect fors " oper and" .

The methodgont ai ni ngd ass(), cont ai ni ngUser Type(), andcont ai ni nghMet hod()

traverse the containment hierarchy from inside to outside until an object of the requested type is found
— if none exists, null is returned. These methods are the most commonly needed operations on the
containment hierarchy, which is why they are provided explicitly. To search for other kinds of con-
tainers, the operationont ai ni ng( of Cl ass) may be used. For example, to search for an enclos-

ing if-statement, write:

barat.reflect. AStatenent s = ...;
barat.reflect.|If = (barat.reflect.|f)s.containing(
barat.reflect.|f.class);

It turns out that in the presence of inner classes, these methods could sometimes produce counter-
intuitive results. For example, consider

bj ect nethod() {
if (x == 0)
return new ohject() {
public int hashCode() { return 14; }
s

}

Suppose you want to check whether the statemeturn 14; is nested within an if-statement.
Usingcont ai ni ng(barat.refl ect.|f.class), as described above, would yield the outer
if-statement (in which the entire anonymous class is contained), which is probably not the intended
result. Therefore, the methodgont ai ni ngd ass(), contai ni ngUser Type(), and

cont ai ni ngMet hod() stop when they encounter a class or interface, except when the searched
container isConpi | ati onUnit or Package. In the example, the search for a containing if-
statement would therefore stop at the anonymous class, and null be returned.

The compilation unit in which each node is contained can be accessed using

ConpilationUnit cu = (ConpilationUnit)
node. cont ai ni ng( Conpi | ati onUni t. cl ass);

If the compilation unit is available as source codle, hasSour ce() returnstrue. By calling
I i ne_nunber () onnode, its line number in the compilation unit's source file can be obtained. The



line number refers to the source file, whose name is returned by calling cu. fi |l ename() . If theline
number is not available | i ne_nunber () returns—1.

Tags

The methods hasTag() and getTags() provide access to a special feature of Barat’s parser: Java
constructs may be marked with specially formatted comments in the source file, as in the following
example:

/*:10g-uses*/ [*:system|ayer*/ class TagExanmpl e {
/*:pre:o!=nul | */
public void print(Gbject o) {
...
}

}

Here, the parser stores "log-uses " and "system layer " as tags for class TagExample , and
"pre:o!=null " astag for method doit . The example demonstrates three possible uses for tags:

 Thetag "log-uses " could be used by a Barat-based tool that collects information about which
classes reference the tagged class.

e It could be enforced that classes marked with "system layer " should not be called from
classes that are not marked with "system_layer " as wdll, regardiess of normal Java access
control.

e Tags starting with "pre: " and containing a precondition could be used to generate modified
source code containing runtime checks. (See section 4.2 for an example of generating modified
source code.)

Visitors and Attributes

The remaining methods, accept() , addAttribute() , and attributeValue() , support tra-
versals and analyses of abstract syntax trees according to two complementing paradigms: the method
accept() is the hook for traversals using the Visitor design pattern [Gamma et al. 95], while
addAttribute() and attributeValue() support the definition of on-demand traversals
similar to attribute grammars [Knuth 68; Kastens, Waite 94]. Both ways of traversing the AST will be
explained in detail in section 2.4.

2.2. Elements of the Abstract Syntax Tree

In this section, we will go through the main categories of AST node types in detail: type nodes, struc-
tural nodes, expression nodes, and statement nodes. In the appendix, a complete UML class diagram is
provided for reference. Parts of this diagram will appear in each of the following sections.

Representing Types

The abstract supertype of all Java types (shown in figure 1) is the interface AType (remember that the

prefix A means that this interface is abstract — there is no implementation of it; in other words, there
can never be an instance &fType, only of one of its concrete subtypes). The methods

i sAssi gnabl eTo(), i sPassabl eTo() andi sCast abl eTo() allow you to check whether

an actual value of a given type may, according to the rules of the Java language, be assigned, passed or
casted to a formal of another type.



AType

isAssignableTo(
isPassableTo()
isCastableTo()
equals()

PrimitiveT’
: ype elenentType AReferenceType
is Bool ean : boolean
isByte : boolean isSubtypeOf()
is Char :b_oolean getinstanceMethod()
isDauble : boolean getStaticMethod()
isHoat :boolean
isInt: bool ean
isLorg :boolean
is Short : boolean <>

Array NullType AUserType

‘\nestedclasses

nestedinterfacks ﬁn’p@myﬁa

Interface

Class

isSubclassOf()
isImplementationOf()

isSubinterfaceOf()|

superclass

extendedinterfaces

Figurel Types
AType hastwo subtypes: Pri mi ti veType and ARef er enceType.

There is a distinct Pri m ti veType object for each primitive type in Java; you may check what

actual typeaPrim ti veType object represents by callingi sBool ean() ,i sByte(), ec. There

is also an operation Pri m ti veType. get Narme() which returns the Java name of that type. Note

that primitive types — as all types in Barat — are represented as singletons, i.e. there is always only a
single object that represents tyipet ordoubl e in the system, and you may compare these types for
equality using==.

Java reference types, modeledARef er enceType, may be subtypes of other reference types, and

you can check this by callingRef er enceType. i sSubt ypeOf (). Following the rules of the

Java language, this method returns true if, transitively, the argument type is a superclass or superinter-
face of this type. The methodet | nst anceMet hod() andget St ati cMet hod() allow you

to find a method of a type given the method's hame and the types of its arguments. These methods
also search any supertypes (transitively) for an applicable method, and follow the "most-specific” rule
to match parameter types.

There are three subtypes ARef er enceType: Array, Nul | Type, andAUser Type, the latter

being the abstract supertype of classes and interfaces (these are sometimes also called user-defined
types in Java, hence their namént er f ace has a methodsSubi nt er f aceX (), which tran-

sitively checks whether an interface extends another interf@eass, on the other hand, has a
methodi sSubcl assCOf (), which transitively follows the extends-relation between classes, while

i slnpl ementati onOf () transitively operates on the graph of superinterfaces implemented by

this class. Note that, unlike these methods, the attributesperd ass,

i npl ement edl nt er f aces andext endedl nt er f aces of classes and interfaces ana tran-

sitive, they only refer tdirect superclasses and superinterfaces.



It has proven practical to keep arrays and user-defined types separate, i.e. Array and AUser Type
are not in any inheritance relation. You can obtain the Array for any AType by calling
AType. get Cor respondi ngArray(). Notethat one array is the subtype of another array if and
only if their element types are subtypes of ancther; this rule is implemented by the method
i sSubt ypeOf () for arrays.

TheNul | Type isthetype of the"nul | " literal in Java — it igot, as one might think, the "type" re-
turned by avoi d method. (Void methods have no return type at all in Barat, i.e.rtbeinr nType
is null.) The singletoMul | Type objecti sSubt ypeOf () any othelARef er enceType object.

Representing Structure

The inner structure of user-defined types (classes and interfaces) is modeled as shown in figure 2. The
essentials of this graph should be clear to any Java programmer, let us merely draw your attention to a
few details that may not be entirely obvious.

Methods come in two flavorsAbst r act Met hod objects andConcr et eMet hod objects, their
supertype being AMet hod. The difference between these kinds of methods is that
Concr et eMet hod objects have a body @& ock of statements) whil@bst r act Met hod objects

do not. It is this difference why both are modeled separately in Barat, whereas, for example, we do not
model static methods and instance methods separately because both have the same kinds of constitu-
ents.

To distinguish a static method from an instance method, you need to check the method's modifiers:
these are available through a set of boolean metha®t, atic(),isPublic(),isFinal (),

etc. which are implemented by all Barat nodes that inherit from the inté&fecseVodi fi er (as can

be seen in the diagramivet hod does inherit from this interface).

Constructor objects are derived fromAMet hod, adding both a body (like in

Concr et eMet hod) and the additional property that any constructor first makes a call to some other
constructor (by default, this is the caluper()). This is modeled as an attribute of type
Constructor Cal |, which Barat initializes to (the equivalent afuper () if no explicit call is

found in the source code. The exception is of course the construgtavaf | ang. Qbj ect , this is

the only case wherget Const ruct or Cal | () returns null.

Note also that getCall edConstructor() in ConstructorCall returns the real
Constructor object being called here (the actual parameters represented as a list of
AEXpr essi ons, see below). This is a first example of how Barat resolves inter-class references
automatically so that simply by calling the accessor funagienCal | edConst ruct or (), you

can retrieve the constructor object that is actually called.

By convention, each Java class always has at least a single default constructor that does nothing but
call super () . Such a constructor, if no other constructor is found in the source code of a class, is
always automatically generated by Barat and inserted into the class.
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AHasModifier name : Sring
qualifiedName(
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overriddenMethod
AMethod | Par aneter ] LocalVariable
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V resultType
AType
isAssignableTo( AbstractMethod C onar eteM ethod
isPassableTo()
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equals()
Field
exceplions
AReferenceType
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getStaticMethod()
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islmplementationOf()
ConstructorCall

Package

qualifiedName : Strincj:

classes

CompilationUnit

filename : String
hasSource : boolean

interfaces

Figure 2 Structure

Representing Expressions

All possible kinds of Java expressions (shown in figure 3) are modeled by the abstract type
AEXpr essi on. The (syntactic) type of any expression can be retrieved by reading the type attribute,
using methodt ype( ), of the expression.

There are two kinds of method calls in Java: calls to static methods and calls to instance methods. The
difference between them is that calls to instance methods contain an instance to which the call is actu-

ally directed, while calls to static methods don't have an instance — which is why we model the two as
separate types, unlike static methods and instance methods (see previous section).
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As we have already seen for constructors, Barat automatically resolves method calls, though only
based on the static types of expressions (for | nst anceMet hodCal | objects, it is not generally
possible to resolve polymorphism statically, and Barat makes no attempt to do so). The following ex-
amples may be helpful to understand Barat’s modeling of method calls:

public class Target {

public static void nethodA() { ... }; // ConcreteMethod,
/1 isStatic()==true
public void methodB() { ... }; // ConcreteMethod,
/1 isStatic()==fal se
}
Tar get . met hodA() ; /1 StaticMethodCall

/1 cal | edMet hod: Tar get . nmet hodA()

Target t = new Target();

t. met hodB(); /1 1 nstanceMet hodCal |
/1 i nstance: t (Variabl eAccess)
/1 cal | edMet hod: Tar get . nmet hodB()

/1 inside class Target

met hodB() ; /'l 1 nstanceMet hodCal |
/1 i nstance: This (thisC ass = Target)
/1 cal | edMet hod: Tar get . net hodB()

There is a similar distinction between accesses to static fields and instance fields, modeled as
St ati cFi el dAccess and | nst anceFi el dAccess. Both are different from objects of type
Vari abl eAccess (variables are defined locally within methods; formal method parameters are also
modeled as variables). To find out whether an access to a variable or field is a read or write access,
you need to find out whether it occurs on the left hand side of an assignment (in which case it is a
write access) or elsewhere (in which case it is a read). See the paragraph on "Containment” in section
2.1 for an example.

Accesses to array elements are modeled as a combination of Ar r ayAccess objects and field or vari-
able accesses. Consider

int a[4] = ...;
a[3] = 17;

Here a[3] isan ArrayAccess wherethearray isa Vari abl eAccess referring to a, and the
i ndex isalLiteral objectwithconstant Val ue equal to 3. Multi-dimensional arrays are mod-
eled likewise:

int b[3][4] = ...;

b[2][3] = 12;

Here the left hand side of the assignment is an Arr ayAccess, wherethei ndex isthelLit eral
"3" and the array is an ArrayAccess, in which the array isa Vari abl eAccess and the
i ndex istheLi teral "2".

There are three different kinds of aobject allocations (new expressions) in Java, and hence, in Barat:
Cbj ect Al | ocati on, ArrayAl | ocati on, and AnonynousAl | ocati on. An
Obj ect Al | ocat i on isan expression such as

new | nteger (4)

11



The attribute cal | edConst ruct or inthe Cbj ect Al | ocati on object refers to the constructor
used for the new object; to find out its class, you therefore write

barat.reflect.bjectAllocation o = ...;
barat.reflect.d ass ¢ = o.getCall edConstructor().containingd ass();

The arguments passed to the constructor can be accessed as alist of AEXpr essi on objects.

AnArrayAl | ocati on isanexpression of theform
new I nteger[4][]

As the example suggests, such an allocation may have an arbitrary nhumber of dimensions, starting
with a sequence of "definite dimensions’, i.e. dimensions for which a length expression is provided
([ 4] in the example), followed by an arbitrary number of "free dimensions", for which there is no
length expression ([]). In Barat, the definite dimensions are modeled as a list of argument expressions,
while the number of free dimensions is stored in the attribute f r eeDi mensi ons. To get the total
number of dimensions of a given array allocation, you could thus write:

barat.reflect. ArrayAl location a = ...;
i nt dinensions = a.get Argunents().size() + a.freeDi nensions();

Thethird kind of allocation in Java and Barat is called AnonynousAl | ocat i on. Here, an object of
agiven typeis allocated, but the type of the object is anonymously extended by code provided as part
of the allocation expression. For example:

hject o = new hject() {
public int hashCode() { return 14; }
s

Here, an anonymous (implicitly declared) class inheriting from Cbj ect that overrides hashCode()
is instantiated. In Barat, this allocation is modeled as a node of type AnonynousAl | ocati on,
which is a subtype of Obj ect All ocation. Thus, everything that has been said about
Obj ect Al | ocat i on above also applies here, with the additional property that the anonymous ex-
tension code is accessible through the accessor method anonynousCl ass() of the
AnonynousAl | ocat i on object.

Representing Statements

Java statements are modeled as subtypes of bar at . r ef | ect . ASt at enent , as shown in figure 4.
Some less obvious details about statements include:

e A UserTypeDecl arati on is adeclaration of an inner class or interface that occurs inside a
method. Java permits this wherever a statement is allowed. An inner class or interface declaration
that does not occur inside a method is modeled as anest edd ass or nest edl nt er f ace of
the enclosing AUs er Ty pe, see section "Representing Structure'.

e Do, While-, and For-Statements are subtypes of the abstract supertype ALoopi ngSt at enent .
By calling get Expr essi on(), the continuation condition can be retrieved. Objects of type
For support two additional methods: get For I nit () and get Updat eExpr essi ons().

e InJava, thereis no explicit assignment statement, because assignments are themselves expressions
and therefore may occur nested within a complex expression. Thus, a top-level assignment is
modeled as an Expr essi onSt at enent with the expression being an Assi gnnent (see sec-
tion "Representing Expressions").

12



« A Vari abl eDecl ar ati on is a statement that declares a variable, however the actual variable
is modeled as a Local Vari abl e contained within the Vari abl eDecl aration. A
Vari abl eAccess (see "Representing Expressions”) always refers to that Local Vari abl e,
not totheVari abl eDecl arati on.

» Also note that short-hand variable declarations such as "i nt a, b;" are "canonicalized" by
Barat; thus the above statement would be modeled as two consecutive
Vari abl eDecl ar at i on statements.

Break 5 “
| prek | 77 wv
I
target
v e ]
ATargetStatement _ —

label : String S tatenrents

4 /\ “ elseBranch
enBranch body
l \ /rget
bloc

ALooping Statement Throw Return ExpressionStatement
1 1 1

[ Block | "/"Ck sychronized | /[ swich it

— L
? L
catchClauses expression branches

inallyClaus e

ASwitchBranch
———

>; T R
,ﬁitﬁh Fi rﬁm

I expression
L ]

| CaseBranch | | DefaultBranch |
I 1 | 1
L ] L ]

updateE xpre ssions

UserTypeDeclaration
——

consantExpression

ForlnitDeclaration I I ForlnitExpression I

VariableDeclaration

expressions

ABExpression
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2.3. Getting the Abstract Syntax Tree of a Java program

The single point of access to the entire Barat system is the class bar at . Bar at , shown in listing 3.
You can retrieve the root object of a Barat AST for a given Java class simply by calling

barat.reflect.d ass ¢ = barat.Barat.getC ass ("java.lang. Gbject");

i.e. you only need to call theget Cl ass() method with the fully qualified name of the class you are
interested in. The entire parsing process and internal analysis is handled by Barat transparently, on
demand. At any time, you may simply call the methods of the object that Barat supplied you with to
access the internal dements of the class, or other classes it refers to.
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public class Barat

{
/1 runtime flags:
public static bool ean debugLoading = false { ... }
public static bool ean preferByteCode = false { ... }

/] initialization:
public static void setd assPath(java.lang.String) { ... }

/'l accessing AST roots:

public static barat.refl ect. AUser Type getUser Type(java.lang. String) { ... }
public static barat.reflect.d ass getCl ass(java.lang.String) { ... }

public static barat.reflect.Interface getlnterface(java.lang.String) { ... }

/'l accessing prom nent types:

public static barat.reflect.d ass getObjectClass() { ... }

public static barat.reflect.d ass getStringC ass() { ...

public static barat.reflect.Interface getThrowablelnterface() { ... }
public static barat.reflect.Interface getC oneablelnterface() { ... }

/'l registering an attribute adder:
public static void registerAttributeAdder(Visitor adder) { ... }

/1 main:
public static void main(java.lang.String[]) { ... }

Listing 3 Interface of Barat

You may either use the method get Cl ass() or getInterface() toanayzea Java class or in-
terface, respectively. If you are not certain whether a given name refers to a class or an interface, use
the method get User Type( ), which returns an object of the common abstract supertype of inter-
faces and classes. There are also some convenience methods that allow you to access frequently
needed Java types: Obj ect , St ri ng, and the interfaces Thr owabl e and Cl oneabl e.

Just like the tools of the JDK, Barat uses the CLASSPATH environment variable to search for the
classes or interfaces you request from it O if the search fails, Barat throws a Runt i meExcepti on.
To use an alternate classpath for analysis, use the method set Cl assPat h() .

Usually, if the source codefor agiven classis found, Barat constructs the abstract syntax tree based on
that source code. However, if only a byte code file exists, Barat parses that, although it doesn't disas-
semble any of the actual instructions in it. Only field and method signatures will therefore be visible
for analysis; method bodies are left empty. If for any reason you do prefer loading the byte code even
if sourceisavailable, set Bar at . pr ef er Byt eCode to true.

Themethodr egi st er Att ri but eAdder () will be explained in section 2.5.

2.4. Working with Visitors

Traversing a Barat structure can be quite complicated if you must write the entire code for such a tra-
versal yourself. Barat therefore provides a framework based on the Visitor design pattern [Gamma et
al. 95] that allows you to formulate common analysis algorithms in a much easier way.

The Visitor design pattern lets programmers traverse hierarchical structures of objects in a way where

the code that does the traversal is separated from the actions to be performed at each visited object.
The pattern isillustrated by the examplein figure 5.
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Figure5 examplefor visitor pattern

Each of the objects to be visited (having types A or B in the example) implements a method voi d
accept (M sitor v).Tovisit anobject, the visitor calls this method with itself as the argument.
The implementation of accept issimply to make a callback to the visitor, however to a method spe-
cific for the type being visited. Thus, for class A, accept would be implemented as

class A {

;/.oi.d accept (MVisitor v) {
v.VvisitA (this);
}

}

The consequence is that the code for visiting A objects and B objectsis bundled inthe Vi si t or class,
rather than scattered all over the program. We will also see how this pattern allows us to abstract from
traversal algorithms in a nice way.

In Barat, all elements of abstract syntax trees (i.e. all Node objects) implement an accept () method
in the way described above. Consequently, thereis an interface bar at . Vi si t or which declares all

the appropriatevi si t ... methods:

package barat;

public interface Visitor {
public void visitArrayAccess(ArrayAccess 0);
public void visitArrayAl |l ocati on(ArrayAl |l ocation 0);
public void visitAssi gnnent (Assi gnnent 0);
public void visitBinaryQperation(Bi naryQperation 0);

}

One implementation of Vi si t or provided by Barat is the Descendi ngVi si t or . In this class, all
visiting methods are implemented so that the constituents of a given class are traversed in a depth-first
order. For example, theimplementation of vi si t Cl ass() looksroughly like this:
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public void visitCOass (Oass o) {
for (Constructorlterator i=0.getConstructors().iterator();
i .hasNext();) {
i.next().accept (this);

for (Fieldlterator i = o.getFields().iterator();
i .hasNext();) {
i.next().accept (this);

for (ConcreteMethodlterator i = o0.getConcreteMethods().iterator();
i .hasNext();) {
i .next().accept (this);

}

The nice property of the Descendi ngVi si t or isthat it is guaranteed to traverse all syntactic ele-
ments of a given class. To use this for your own analyses, you can subclass Descendi ngVi si t or,
overriding only those methods where something meaningful should be done. For example, to find out
how often a given classreferstoj ava. | ang. Syst em out , write

public class M/Visitor extends barat. DescendingVisitor {
public int result = O;
public void visitStaticFi el dAccess (StaticFiel dAccess 0) {
Field f = o.getField();
if (f.qualifiedNanme().equals ("java.lang.Systemout"))
resul t ++;
super.visitStaticFi el dAccess (0);

}

Note how the superclass method is called on the last line: this is to make sure the traversal remains a
complete one (the sub-nodes of the static field access will be traversed by this call). As static field
accesses cannot be nested in Java (i.e., the AST nodetype St at i cFi el dAccess has no children),
this would not strictly be necessary here, but it is always a good idea to follow this convention.

To use the above visitor on a class, write:

barat.reflect.d ass ¢ = barat.Barat.getC ass ("exanmple. Myd ass");
M/Visitor v = new MyVisitor();

c.accept (v);

Systemout.println ("Result: " + v.result);

Another useful class implementing the visitor interface is Def aul t Vi si t or, which implements all
visit methods by an empty method. This is useful for cases in which only some of the AST node types
need to be considered. Subclassing Def aul t Vi si t or and overriding only some methods yields a
visitor class that acts like a switch statement that switches over the visited object’s actual type, asin:

ALoopi ngStatenment s = ...;
s.accept (new DefaultVisitor() {
public void visitDo(Do d) {

/1

}

public void visitFor(For f) {
1.,

}

public void visitWiile(Wile w {
...

}

1),
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In this example, an anonymous inner class is used as a visitor. The visitor object does not traverse the
tree, it is used only once to distinguish between certain possible actual types of a node object. Using
Def aul t Vi si t or avoids using a nested if and explicit downcasts, and is more efficient when the
number of casesis large, as can be seen when comparing it to the more conventional code below:

ALoopi ngStatenment s = ...;
i f(s instanceof Do) {

Do d = (Do)s;

1.,

el se if(s instanceof For) {
For f = (For)s;
...

el se if(s instanceof Wile) {
While w= (Wile)s;
...

}

A variant of Def aul t Vi si tor, caled AbstractingVi sitor, provides even more flexibility.
AbstractingVisitor defines additional visit methods for abstract interfaces (such as
AMet hodCal |, AFi el dAccess, AExpression). In Abstracti ngVisitor, each visit
method for atype T has a default implementation that calls the visit method(s) for T's supertypeg(s). (If
there is more than one supertype, one or more of ANaned, ATyped, or AHasModi fi er arein-
volved, seefigure 2.) In the following example, abstract interface types may be separate cases as well:

AExpression e = ...;
e. accept (new AbstractingVisitor() {
public void visitlnstanceMethodCal |l (I nstanceMet hodCall o) {
Systemout.print("instance ");
super.visitlnstanceMet hodCal | (0);

}
public void visitStati cMethodCal |l (StaticMethodCall o) {

Systemout.print("static ");
super.visitStati cMet hodCall (0);

}
public void visitAwethodCall (Cast 0) {

Systemout.println("nmethod call");
}

public void visitAExpressi on( AExpressi on o) {
Systemout.println("not a call expression");
}

1),

It is instructive to compare this example to a hypothetical switch statement that selects cases based on
actual node types:

e Calling visit methods of super is similar to a fall-through (omitting br eak) in a case branch.
However, note that both vi si t | nst anceMet hodCal | and vi sit St ati cMet hodCal |
"fall through" tovi si t AMet hodCal | , which would not be possible in a switch statement. Note
that unlike in switch statements with fall-through, the order of "cases' does not matter in our ex-
ample.

« Visit methods for more abstract types are like default branches in switch statements, but there may
be several levels of defaults.

Another useful visitor provided by Barat is the QutputVisitor. It is similar to the
Descendi ngVi si t or inthat it traverses an entire user type in natural order, however it also prints
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that type's source code to an arbitrary file (effectively re-generating the source code). By subclassing
CQut put Vi si t or and overriding certain methods of it, all sorts of source code modifications and
transformations can be implemented. As an example, seethe | nst runment i ngVi si t or in section
4.2.

It must be noted, though, that the Qut put Vi si t or re-generates a classes’ source code based on the
information in the Barat AST. This newly generated source code is guaranteed to be semantically
equivalent to the original source code, but it is mildly canonicalized with respect to formatting and
some other issues, such as the order of declarations inside a class. Also, all comments in the original
code arelost.

2.5. Working with Attributes

For some purposes that involve a non-standard traversal of the AST, visitors may not be adequate. By
means of an example, we will explain user-defined node attributes, an alternative way of structuring
traversals of the AST.

In Barat, the attribute concept allows to store user-defined data for each node, and to cache data that is
calculated automatically on-demand. Rather than storing user-defined data directly, so-called attribute
objects that return user-defined data objects can be stored for each node object. Attribute objects are
instances of classes that implement the interface Abstract Attri but e:

public interface AbstractAttribute {
public Object objectValue();
}

Listing 4 interfface Abstract Attri bute

Objects of type AbstractAttribute can be stored in a node object n by calling
n.addAttri bute(k, a),wherek isakey object and a is an attribute. By calling, on the same
node object, the method at t ri but eVal ue( k), providing the key object k, the result of calling
obj ect Val ue() on the stored attribute object will be returned.

Two implementations of Abstract Attribute are aready provided: The first, caled
Constant Attri but e, can be used for storing a constant value as an attribute. For storing an object
0 in node n under key Kk, use

n. addAttri bute(k, new ConstantAttribute(o));
The stored value o can beretrieved using:

n.attributeval ue(k);

The second implementation, CachedAt t ri but e, can be used for on-demand calculated attributes
whose values will be cached once they have been calculated. Cached attributes are usually added to
newly created AST nodes by registering a Visitor (usually, a subclass of Def aul t Vi sitor or
AbstractingVisitor)usingBarat.regi sterAttribut eAdder().

Assume that you want to compute, for a number of classes, the set of interfaces implemented by each
class. It is reatively straightforward to write a recursive algorithm for computing the set of interfaces
for one class. However, if the result of this calculation is to be used several times, e.g. for computing
the set of interfaces that are implemented by subclasses of the current class, it will be desirable to
maintain a cache of already computed sets.

Using attributes, we can write a concise solution to this problem:
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final Object inplementors = new bject(); // used as key
Barat.regi sterAttri but eAdder (new DefaultVisitor() {
public void visitdass(final Cass c) {
c.addAttri bute(i npl enent ors,
new CachedAttribute() {
protected Object calculate() {
Set result = new HashSet();
for(Interfacelterator i=c.getlnplenmentedlnterfaces();
i .hasNext();) {
resul t.addAl | (
(Collection)i.next().attributeVal ue(inplenentors));

}
i f(c!=Barat.getObjectC ass()) result.addAl I (

(Set)c. get Superclass().attributeVal ue(i npl emrentors));
return result;

}
IDE
}

public void visitinterface(final Interface c) {
c.addAttri bute(i npl enent ors,
new CachedAttribute() {
protected Object calculate() {
Set result = new HashSet();
for(lInterfacelterator i=c.getExtendedlnterfaces();
i .hasNext();) {
resul t.addAl | (
(Set)i.next().attributeVal ue(inpl enentors));

return result;

}
IDE
}
DK

By registering an attribute adder visitor, visit methods will be called for every newly created AST
node object. As these node objects are not yet properly inserted into the AST, the only method that can
safely be called on them is addAt tri but e() . The added attribute's code, however, can invoke
arbitrary methods on the node, because it will be called only if the attribute's value is to be computed,
which can only happen after proper initialization. Note that by creating anonymous attribute classes
that inherit from CachedAt t ri but e, the attribute's code will be called only once per AST node
object.

To get the value of an attribute as defined in this example, you can use the following code:

AUser Type ut = ...;
Set s = (Set)ut.attributeVal ue(inpl enentors);

Note that calls of at t ri but eVal ue(i npl enent ors) occur during calculation of the attributes
values dueto their recursive definition. Of course, there should be no cycles in recursive definitions of
attribute calculations. From our experience, cycles normally do not occur; however, if they do, the
classCachedAt t ri but e will detect this at runtime.

3. Implementation of Barat

Barat’s public interface consists of the three packages barat, barat.reflect, and
barat. col | ecti ons. The fourth package, bar at . par ser, contains the implementation that is
normally hidden from users of Barat: There is an explicit distinction between interface and imple-
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mentation parts of AST node types. For each AST node type there is a public interface in
barat.refl ect and a class implementing the interface in package bar at . par ser . The names
of implementation classes are derived from the names of the implemented interfaces and end with
"I mpl ". Implementation details are not exposed by Barat's public interface: The interfaces in
barat. refl ect contain read-only accessor methods with parameter and return types that reference
only other interfacesinbar at . ref | ect.

Package bar at . par ser aso contains the actual parser, which is generated by JavaCC (version
0.7.1) from the grammar file Bar at Par ser . j j . This file consists of a BNF-based grammar from
which a scanner is derived for transforming the input file into a sequence of tokens, and of a LL(K)
grammar augmented with tree-building Java code that specifies Java's syntax based on the tokens.
Class files are parsed by Cl assFi | ePar ser ; name analysis is defined in class NaneAnal ysi s
and type analysisin class TypeAnal ysi s.

For certain advanced uses, accessing Barat using the public interface — where the internals of Barat are
hidden — may not be sufficient. For example, changing the syntax of the parsed language would re-
guire changing the implementation of the parser part of Barat, or parsing comments other than tag
comments would require changing the implementation of the scanner part of Barat

This section, which assumes familiarity with basic compiler construction techniques, guides the reader
through the inner workings of Barat, and points out areas where changes might be needed for certain
advanced uses of Barat.

Section 3.1 explains how Barat is implemented. Section 3.2 describes hooks that are provided for
white-box users of Barat, making it possible to adapt Barat without changing its implementation. Sec-
tion 3.3 lists possibilities for changing Barat's implementation.

3.1. Implementation of Barat

A first version of Barat was designed using a conventional architecture for parsers: After building an
explicit abstract syntax tree, name and type analysis were performed by several passes, each of which
was defined as a traversal of the abstract syntax tree. Experiences with this first version showed two
main drawbacks of the chosen architecture:

e It turned out that name and type analysis for Java is a non-trivial problem that cannot easily be
divided into a small number of passes (we ended up with six passes: registering hames, resolving
type names, establishing inheritance links, building lists of all methods per class/interface, resolv-
ing remaining names, and type analysis). Moreover, each of the required passes had to produce
complex intermediate results which were then used as input to other passes. This lead to a situation
where debugging and testing became extremely difficult: Often, a bug in one of the passes mani-
fested itself in a later pass, when the incorrect intermediate result was being used.

» During name and type analysis for Java source files, other source files need to be parsed and partly
analyzed on demand. Because it is difficult to predict in advance how much analysis is needed for
these other source files, we had to maintain information about each source file's parsing and analy-
sis status, and we needed a complex recursive algorithm that triggered parsing and different analy-
sis passes based on that information. Because the algorithm at certain points made conservative
decisions about which files needed to be parsed, the number of files that were parsed starting from
a certain file was much greater than would have been needed for name and type analysis of the first
file. Worse still, because Barat is used as the basis for other analyses, it is not possible to tell to
what extent name and type analysis is needed for other source files. Because client code should not
be concerned with problems of how much name and type analysis has been performed already on
needed source files, we decided to parse all source files that are transitively referenced from the
starting source file, and to perform full name and type analysis on all those files. This lead to enor-
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mous startup times (five to ten minutes) for Barat, before any user-defined static analysis could
proceed.

Due to the performance and stability problems we encountered with the first version, we decided to

redesign Barat, supporting on-demand parsing, on-demand name analysis, and on-demand type analy-

sis. Central to the new architecture of Barat are lazily-evaluated attributes of AST node objects similar

to attributes as known from attribute grammars [Knuth 68; Kastens, Waite 94]. In some cases, attrib-

utes are sometimes used to calculate parts of the AST itsdf, like in higher order attribute grammars

[Vogt et al. 89]. We also chose to use parameterized types — at least internally — to gain more type
safety when building the AST, and to support type-safe attribute objects.

In attribute grammars, attributes can be defined for each terminal or nonterminal of a grammar, where
an attribute's value may depend on values of other attributes of possibly different terminals or nonter-
minals. As parsers are usually used for transforming a sentence of an input grammar into a sentence of
an output grammar, in the ideal case, a complete parser could be generated from an attribute grammar,
specifying the output of the parser as the value of a distinguished top-level attribute. There are systems
for automatically generating efficient parsers based on attribute grammars, which usually avoid gener-
ating an explicit abstract syntax tree with explicit attributes at the nodes of the tree — both attribute
values and parts of the abstract syntax tree are stored only if they will be needed to calculate the value
of other attributes.

Because Barat should support arbitrary static analyses on Java source code, there is no "main" or "top-
level" attribute as in an attribute grammar. Thus, an explicit abstract syntax tree is still built, and at-
tributes are used as a means for structuring name and type analysis in a declarative way.

Attributes have been described already in section 2.5. In the implementation part of Barat, we use
type-parameterized classes for attributes that allow to access an attribute's value without downcasts.
Attributes in packagédar at . parser are instances of subclasses of the generic abstract class
At tri but e<A>, defined in packagéar at . parser, with two methods: the abstract method

cal cul at e() must be implemented in subclasse\of r i but e<A> to return a value of typA,

and the public final methodal ue() should be called to retrieve the value of an attribute. The im-
plementation ofval ue() always performs caching: it caltsal cul at e() only if there is no

cached value yet. For compatibility with the attribute classes defined in padiagat ,

At tri but e<A> implements the interfadear at . Abstract Attri but e by returning the attrib-

ute's value as a value of type java.lang.Object. However, as this way of accessing the attribute's value
does not retain type information and thus would require downcasts, the generic metho )

returning an object of typ& is used instead.

There are two subclassesAift ri but e<A>: Const ant <A> is used for constant values that need
to be wrapped in an attribute, a@dst i ngAt t ri but e<A, B> is necessary for some cases where a
typecast on the level of attributes is need&hsti ngAttri but e<A, B> inherits from

At tri but e<B> and expects in its constructor an attribute of tfpéer i but e<A>. Its calculate
method callsral ue() on this attribute, yielding a value of typeand then casts this value to type
and returns it.

As attribute objects should be invisible for users of Barat, the accessor methods defined in interfaces
in packagebar at . r ef | ect return values rather than attribute objects, i.e., on calling an accessor
method, the underlying attributelsal ue() method will be called. For example, in interface
Stati cFi el dAccess, an accessor methaget Fi el d() is defined that returns the AST node
object for the accessed field's declaration. Clearly, this involves name analysis, and thus, the imple-
mentation ofget Fi el d() in classSt ati cFi el dAccessl npl returns the result of calling

val ue() on the corresponding attribute.

Rather than being separate objects, the desired lazy evaluation and caching of attribute values could be
achieved by implementing the caching scheme in each of the accessor methods explicitly. We chose

21



thefirst alternative for two reasons: Firgt, it factors out common code that manages caching, so that for
example provisions for detecting cyclic dependencies between attributes are handled in one class
rather than in each accessor method. Second, and more important, it allows to separate the calculation
code for attributes from the classes that have attributes. Similar to the visitor pattern, this allows at-
tribute calculation code to be collected in separate classes; for example, all attribute calculations that
implement name analysis are contained in asingle classbar at . par ser. NaneAnal ysi s.

We now sketch the steps that are performed when a user of Barat calls the top-level method
bar at . Bar at . get Cl ass(gn). The parameter gn, of type St ri ng, is the fully qualified name
of the class that will be returned by the call.

1. The implementation in class Bar at delegates the  cal to class
bar at . par ser. NanmeAnal ysi s, converting the passed string to an object of class
bar at. Qual i fi edName, which allows iterating over a qualified name's components and easy
access to the base and qualifier parts of a qualified name.

2. Thecaled methodin class NaneAnal ysi s iterates over the qualified name, maintaining a prefix
qualified name (initially empty), a current simple name, and the remaining qualified name. For
each prefix, it retrieves an object representing the package with the prefix name. (In the case of the
empty prefix, thisisthe global, unnamed package.) It then tries to find a class or interface with the
current simple name in that package. If it finds such a class or interface, the remaining qualified
name must denote an inner class of this class or interface. Otherwise, if no class or interface is
found, the next iteration is performed by appending the current simple name to the prefix and
fetching the first simple name of the remaining qualified name.

3. Toretrieve an object representing a package, an internally maintained table is searched. If such an
object does not yet exist, it is created and inserted into the internal table. Thus, for each qualified
name, there is a single unique package object, allowing to compare package objects by identity
comparison (using '=='rather than equal s())

4. Tosearchfor aclassor interface within a package, the list of already loaded classes and interfaces
of that package is searched. If no class or interface is found, the classpath is searched for a Java
sourcefile or a Java classfile in a directory with the package’'s name. Whether Java source files or
class files are considered first can be determined by the property "bar at . pr ef er Byt eCode",
which is false by default, but may be sa to true by ether setting
barat. Barat. preferByteCode to true or by the command line switch "—
Dbarat.preferByteCode ". There is a second property called barat.debuglLoading
which, when set to true (the default is false), causes messages to be printed to System.out
whenever a Java sourcefile or classfileis read.

5. Parsing of Java source files is performed by barat.parser.BaratParser , a parser class
generated by JavaCC [JavaCC] (version 0.7.1), based on the Java 1.1 grammar distributed with
JavaCC. The grammar input file, called BaratParser.jj , contains code for creating the ab-
stract syntax tree for a given compilation unit. Since the abstract syntax tree generated by the
parser should be fully typed and be based on names that correspond to the Java language specifi-
cation rather than generated names like fO , f1 , ... , we did not use parse tree generator tools
[JJTree JTB].

6. Parsing of class files is performed using JavaClass [Dahm 98], a package for reading and writing
byte-code files. The class barat.parser.ClassFileParser is responsible for transform-
ing JavaClass's internal representation of byte-code filesinto AST node objects of Barat.

For implementing Barat, we have used type-parameterized versions of the new (JDK 1.2) collection
classes. In Barat, these come in two flavors: In package barat.collections , we have placed
source-levd instantiations of such classes, in order to keep things simple for normal users of Barat.

22



The package bar at . par ser , which contains the implementation part of Barat, makes use of a ver-
sion of the collection classes modified to work with Poor Man's Genericity, an extension of Java that
supports parameterized types by automatically generating byte-code level instantiations of generic
classes.

Most of the classes in bar at . r ef | ect and bar at . par ser have been generated from a UML
class diagram using a custom-made code generator. (A copy of the diagram is provided in the appen-
dix.) Infact, everything about package bar at . r ef | ect isobvious from the class diagram, so that it
isusually easier to look in the class diagram for names of methods rather than in the source files. Note
that, at least in package bar at . par ser, there are some methods and constructors that have been
generated for the sake of completeness, although they are not needed by the current implementation.

3.2. Hooks for Adapting Barat

Factory

In both the source file parser and the class file parser, AST node objects are never created directly
using the new operator; rather, a factory object is used, which can be set using the static method
barat . parser. Factory. setlnstance(). For this purpose, the default Factory class
bar at . par ser . Fact ory should be subclassed. Note that in the current implementation, only one
(singleton) factory instance is supported. Because the factory object stores a list of package objects
that have been created so far, changing the factory object starts a new "session”, and all previously
accessed Barat objects should be discarded. Thus, in a program that wishes to create objects differ-
ently, setting the appropriate factory object should be the first statement.

When overriding factory methods in subclasses of bar at . par ser . Fact ory, care should be taken
not to break assumptions made by other parts of Barat. The most important assumption is that hame
and type analysis relies on attributes to be set right after object creation; thus, if an overridden factory
method does not call the overridden method, it should call static methods in both NaneAnal ysi s
and TypeAnal ysi s analogously to the original implementation to have the required attributes cre-
ated. Furthermore, user-defined attributes that can be set by registering a callback with the factory will
not be set if the callbacks are not performed by an overriding factory method.

Even more careis needed if the new factory allocates objects of classes which implement the required
interfaces of barat. refl ect, but do not inherit from the default implementation classes in
bar at . par ser, as the current implementation in some methods relies on downcasts to implemen-
tation classes.

Notification on Parsed Files

Because loading and parsing of Java source code is performed on-demand only, some clients of Barat
(e.g., acode generator) might be interested in being notified whenever a file has been parsed. For this
purpose, the class bar at . par ser. NanmeAnal ysi s provides a method for registering a callback.
This method is called addSour ceParsedCbserver(). It has one argument of type
bar at . parser. SourcePar sedObserver, an inteface with the calback method
sour cePar sed() (seelisting 5). As an argument to sour cePar sed() , Barat provides the AST
node object for the newly parsed compilation unit.
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public interface SourceParsedObserver

public voi d sourceParsed(ConpilationUit cu);
}

Listing 5 interface Sour cePar sedCbser ver

3.3. Possible Changes and Extensions

As with any framework, there are many possibilities for improving Barat. In this section, we list some
of the possibilities we already have thought about, and try to assess how much effort would be needed
for the improvements. We have classified possible improvements into the categories changes, exten-
sions, and optimizations.

Grammar Changes

For experimenting with Java language extensions or derivations, Barat currently only supports parsing
of special comments that can be used to tag classes, interfaces, methods, and declarations of fields,
parameters, and local variables. Certainly, for some applications, this is not sufficient, and changing
the grammar that Barat uses would be desirable. However, the generated parser cannot easily be sub-
stituted by a user-defined parser, and changing the syntax often will cause changes in the structure of
the ASTsaswell. Thus, if you change the grammar, you will create a different branch in the devel op-
ment history of Barat, and it will be difficult to incorporate bug-fixes and improvements of Barat itsdlf
in the changed version of Barat. After these necessary warnings have been said, this is how you would
proceed: The parser within Barat has been generated using the parser generator JavaCC 0.7.1, and the
input file for the generator is called BaratParser.jj in directory barat/parser. The grammar file also
contains the scanner definition; e.g., comments are handled by the scanner. If you change the grammar
part itself, you will probably need different AST node types which should then be introduced in
barat. refl ect andimplementedinbar at . par ser.

Allowing Write Access to the AST

Barat’s on-demand name and type analysis has been designed with the assumption that the parsed pro-
gram will not change over time. Thus, the attributes used for name and type analysis will only be
evaluated once. If changing the AST were allowed, re-evaluation would be required for those attrib-
utes which relied on parts of the AST that have changed. Such a re-evaluation could be incorporated
into the implementation, by causing an invalidation and eventual re-evaluation of affected attributes.
This would be possible if, during evaluation of one attribute, accesses to other attributes would be
logged, so that if one of these attributes was invalidated, the dependent attribute could be invalidated
as well. This behavior could be implemented globally in class At t r i but e. Unfortunately, this sim-
ple modification would allow only certain kinds of changes, because some references in the AST are
stored directly rather than within an attribute. Currently, only references to expression nodes and type
nodes are consistently wrapped by an attribute, because these are results of name and type analysis. If
al computed references were wrapped in attributes, including all calculations a user of Barat has
made, this scheme would work in the general case as well.

Extensions

Whenever a class has been parsed from a class file instead of a Java source file, method bodies of con-
crete methods are empty blocks, although more information could be recovered from the byte code. As
has been shown by several decompilers for Java (e.g., [Proebsting, Watterson 97]), recovering Java
source code from byte code is possible. Integrating a decompiler in Barat would be an attractive exten-
sion, as it would enable normal Barat-style static analyses on byte code classes as well. This would
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allow to use Barat not only at compile-time, but also at load time, e.g. for checking security-related
constraints.

Optimizations

So far, we have focused on the functionality aspect of Barat. The current version has been in use by
several persons that use Barat for different purposes each. However, as we have neither optimized
performance nor space requirements, Barat tends to be slow and sometimes needs a larger heap than
provided by the JVM by default. From our experience, there are two areas of paossible optimizations
that would berdatively easy to implement:

1. Currently, as soon as an object of type Cl assl npl or I nt er facel npl is created, the corre-
sponding sourcefile or class fileis parsed. It turned out that some classes and interfaces are parsed
unnecessarily: During type analysis, when method lookup is performed, simple identity compari-
sons between method argument types could be performed before actually parsing the correspond-
ing classes or interfaces. Only if subtype reationships have to be considered, parsing needs to be
performed. We hope that by decoupling creation of class or interface objects from the actual pars-
ing, asignificant number of classes and interfaces would not need to be parsed.

2. As Barat does not support changing the AST once it has been created, all attributes that are used
for name and type analysis are only computed once, and from then on, the calculated result is
cached. However, the attribute object used for calculating this result is still referenced, and so are
al intermediate attributes or objects that are needed only for this calculation. Space requirements
of Barat could be reduced significantly if references to already computed attribute objects were
deleted and the resulting garbage objects were collected by the garbage collector.

4. Examples

In this section, we present two complete examples of using Barat. In the first example, a simple static
analysis task is performed, while in the second example, Barat is used to instrument Java source code.

4.1. Immutable Classes

As a first example, we want to determine whether a given Java class is immutable, i.e. whether the
state of objects of this class cannot be changed after creation. We define this a little more rigorously as
follows:

e For an immutable class, we require al fields to be private. Hence, only the methods of the class
itsdf could possibly alter the state.

«  Weallow thefields to be written in constructors, or by field initializers, but not in ordinary meth-
ods.

* For simplicity, we do not check for write accesses into arrays — that is, we regard arrays as sepa-
rate objects: if an immutable object has an instance variable that is an array, the object is allowed
to change the array's elements, but it may not replace the entire array.

« Also for simplicity, we do not consider inheritance. In practice, objects could only be immutable if
their superclasses were also immutable (transitively).

Given this definition, it is straightforward to write a Visitor that checks for immutability:
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public class ImmutabilityVisitor extends barat.DescendingVisitor {
public bool ean islmmutable = true

public void visitConstructor (Constructor o) {
/1 Do nothing, i.e. don't check for wite accesses in constructors.
}

public void visitField (Field o) {
if (lo.isPrivate())
i sl mut abl e = fal se;
super.visitField (0);

}

private bool ean i sWiteAccess (AFi el dAccess 0) {
return (o.container() instanceof Assignment)
&& (0. aspect().equals ("lvalue"));

}
public void visitlnstanceFi el dAccess (I nstanceFi el dAccess 0) {
if (o.getField().containingdass() == o.containingdass())
if (isWiteAccess (0))
i sl mut abl e = fal se;
super. vi sitlnstanceFi el dAccess (0);
}
public void visitStaticFi el dAccess (StaticFi el dAccess 0) {
if (o.getField().containingdass() == o.containingdass())
if (isWiteAccess (0))
i sl mut abl e = fal se;
super.visitStaticFi el dAccess (0);
}

Listing 6 classl nmut abi lityVisitor

The Visitor inherits from the DescendingVisitor, i.e. it is guaranteed to traverse the entire class on
which it is started. The analysis result is stored inthefiddi sl nmrut abl e, initialized to t r ue. If any
violation of the immutability condition is found, that variableissettof al se.

The method vi si t Const ruct or () doesnot contain a call to super. vi si t Constructor (),
which means that the body of constructors is skipped by the analysis (writing to fields is allowed in
constructors). The method vi si t Fi el d() makes sure that all fields of the class are private, while
vi sitl nstanceFi el dAccess() andvisitStaticFi el dAccess() ensure that fields are
only read, but not written (remember that field accesses inside constructors are not seen by these
methods). To distinguish a read access from a write access, the visitor checks (in method
i sSWiteAccess() ) whether the access occurs on the |eft hand side of an assignment.

To usethis visitor on a class, write

barat.reflect.dass ¢
ImmutabilityVisitor v
c.accept (v);
if (v.islmutable)
Systemout.println ("java.lang. String is inmmutable");
el se
Systemout.println ("java.lang. String is not inmmutable");

barat.Barat.getd ass ("java.lang. String");
new | nmutabilityVisitor();
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4.2. Logging method calls

This example shows how Barat can be used to instrument a Java program. Assume you want to log
method calls, and you have written a runtime support class| og. Log which implements two methods
ent er Met hod() and exi t Met hod( ) . These methods should be called on each method entry and
method exit, respectively. Now, although the AST built by Barat cannot be changed, there is a way to
generate programs that are instrumented with calls to ent er Met hod() and exi t Met hod() : We
can write a subclass of Qut put Vi si t or that, whenever a method body is written, inserts the appro-
priate calls.

Before we describe our solution, we examine what exactly needs to be inserted into method bodies: It
is easy to make sure that the call to ent er Met hod() is performed by inserting a method call state-
ment before the first original statement of the method's body. But where should we insert the call to
exi t Met hod() ? Things are more complicated with method exits because the method may return in
the middle of its body, using ar et ur n statement, and it may exit by throwing an exception. Fortu-
nately, we can makeuseof thetry ... fi nal | y construct which guarantees that thef i nal | y block
is executed after thet r y block, regardiess of how thet ry block exits.

An obvious solution would be to override vi sit Concret eMet hod() in our subclass of
Qut put Vi sitor,caled | nstrunentingVisitor. This, however, would require that we copy
the original code for vi si t Concr et eMet hod() into our subclass. But there is a better solution:
By overriding vi si t Bl ock() instead, and checking whether the block is directly contained within a
ConcreteMethod object, we can reuse both the original implementation of
vi si t Concr et eMet hod() and of vi si t Bl ock() : If the visited block is not directly contained
in a Concr et eMet hod aobject, we call the superclass implementation of vi si t Bl ock() . Other-
wise, the visited Block is a method body and needs to be instrumented. Thus, we first print the call to
ent er Met hod() . After printing the keyword try, we call the superclass implementation of
vi si t Bl ock(), which will output the original method body. Then, we print thef i nal | y clause
that contains the call to exitMethod(). In listing 7, the complete source code for
I nstrunentingVisitor isshown.

Tousel nstrunenti ngVi si t or onaclass, write

barat.reflect.d ass ¢ = barat.Barat.getC ass ("exanmple. Myd ass");
InstrumentingVisitor v = new InstrunmentingVisitor();
c.accept (v);

For example, applying | nst runent i ngVi si t or to itself would print the following code for the
method vi si t Bl ock() (somelines of the output have been omitted):

public void visitBlock(Bl ock o) {
| og. Log. ent er Met hod("barat.test. | nstrunmentingVisitor.visitBlock");

try {
if(o.container() // ... etc
/1l ... etc
}
finally {
| og. Log. exi t Met hod(
"barat.test.InstrunmentingVisitor.visitBlock");
}
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package barat.test;

i mport barat.reflect.*;
i mport barat.*;

public class InstrunentingVisitor extends CQutputVisitor
public void visitBl ock(Bl ock 0)

i f(o.container() instanceof ConcreteMthod)
{
String met hodName = ((ConcreteMet hod)o. container())
.qualifiedName();
printin("{");
currentl| ndent ++;
i ndent () ;
println("l og.Log.enterMethod(\"" + nethodName + "\");");
i ndent () ;
print("try ");
super. vi si t Bl ock(0);
ni();
i ndent () ;
printin("finally {");
i ndent () ;
println("\tlog. Log. exitMethod(\"" + nethodName + "\");");
i ndent () ;
printin("}");
currentl ndent--;
i ndent () ;

printin("}");

super. vi si t Bl ock(0);

Listing 7 classl nst runmenti ngVi si t or
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APPENDIX: class diagram for barat.reflect
Thefollowing pages can be glued together to form alarge UML class diagram of all AST node types.
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