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Abstract

Techniques for reliably estimating development efforts are a funda-
mental requirement for a wide-scale dissemination of ontologies in busi-
ness contexts. In this report we account for the similarities and differences
between software and ontology engineering in order to establish the ap-
propriateness of applying software cost models to ontologies. We present
a parametric approach to cost estimation for ontology development — ON-
TOCOM - and analyze various cost factors implied in the ontology engi-
neering process.
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Executive Summary

’ No \ Item \ Author \ Date \ Description ‘
1 Version 1 | Mochol | Januar 2006 | Description of the ONTOCOM
with modelling aspects and
updated cost drivers
2 | Version 1.1 | Mochol | March 2006 | Small changes in the cost factors
and example
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1 Introduction

Ontologies are targeted at providing means to formally specify a commonly
agreed understanding of a domain of interest in terms of concepts, relationships,
and axioms [17]. With applications in fields such as Knowledge Management,
Information Retrieval, Natural Language Processing, eCommerce, Information
Integration or the emerging Semantic Web, ontologies are part of a new approach
to building intelligent information systems [11] : they are intended to provide
knowledge engineers with reusable pieces of declarative knowledge, which can
be—together with problem-solving methods and reasoning services—easily as-
sembled to high-quality and cost-effective systems [27]. Though ontologies and
associated ontology management tools have become increasingly popular in the
last decades—in particular in conjunction with the emergence of Semantic Web
technologies—the dissemination of ontology-driven technologies in real-world
business contexts is inconceivable without fine-grained methodologies which are
able to deal with both technical and economical challenges of ontology engineer-
ing.

Besides feasible tool support, a major requirement for ontologies to be built
and deployed at large scale is the availability of methods which address the
business-oriented aspects of ontology development and deployment. A wide
range of ontology engineering methodologies have been elaborated in the Se-
mantic Web community ( [13, 18, 12, 38, 34]). According to these method-
ologies, engineering ontologies is defined as an iterative process, which shows
major similarities with established models from the neighbored research field
of Software Engineering. However existing methodologies, unlike adjacent en-
gineering disciplines, do not cover a crucial aspect of the engineering process,
which has gained significant attention in adjacent engineering areas because
of its importance in real-world business contexts. Issues like costs estimation
(using pre-defined cost models), quality assurance procedures (w.r.t. both end
product i.e. ontologies and associated engineering process) or means to monitor
the business value or the impact of these technologies in organizational con-
text have yet been marginally exploited by the Ontology Engineering research
community. In order to precisely estimate the costs related to the ontology engi-
neering process, there is a need for empirically tested cost models which exploit
the results already achieved w.r.t. this issue in related engineering fields. In
the same time a cost model for ontologies should take into account the critical
factors and particularities of the ontology engineering process. In this report
we propose ONTOCOM (ONTOlogy COst Model), a parametric cost model
for the estimation of the efforts involved in building, reusing and maintaining
ontologies in information systems.

2 Ontology vs. Software Engineering

The overall process of developing a cost model for ontology development shares
commonalities with existing approaches in adjacent engineering disciplines. In



particular, the similarities between ontology engineering and software engineer-
ing processes, as well as between ontology and software modelling make software
cost estimation methods a reasonable starting point for the development of a
cost estimation methodology for ontologies. In the following we account for the
similarities and differences between these disciplines in order to establish the
appropriateness of applying software cost models to the ontology engineering.
software engineering and ontology engineering belong to the general area of en-
gineering, a field which is usually defined by the usage of scientific principles and
methods to construct artifacts. Software engineering, one of the core disciplines
in Computer Science, provides systematic methods to handle the complexity
of designing, implementing and maintaining software systems. One of the ba-
sic actions of the software engineering is modelling. The process of building a
model—a concrete or mental image of an existing thing or a paradigm of an
original which can be created—supplies [16]:

e an inventory of fundamental languages and methods to describe and ana-
lyze specific classes of problems

e fundamental knowledge of problem solving methods
e methodologies for the building of software artifacts, as well as

e a deep understanding of the nature of these artifacts

Several decades of research and development in software engineering showed
that software projects can not be reduced to software implementation: they
should equally focus on user requirements, design, testing, documentation, de-
ployment and maintenance. Modelling is applied in many of these activities for
various purposes:

e requirements as models of the problem definition,
e architectures as models of the solution,
e test regulations as models of correct functioning of the code, and

o software itself as model of cutout of a real world [15].

Likewise software engineering, ontology engineering includes scientific meth-
ods to create, deploy and maintain ontologies (see Table 1). Though ontology
engineering and software engineering share the same final goal—the generation
of high-quality artifacts—and a similar development process [25], ontology engi-
neering methodologies available so far do not address every phase of the under-
lying process at the same level of detail and do not provide a fully-fledged tool
environment to aid the engineering team in their attempt to create, maintain
or use ontologies.

The main difference between the two engineering processes focuses on their
outcomes: software vs. ontologies. A software system is a collection of com-
puter programs and associated data and computer equipment that performs a



’ Models

\ Software Engineering \ Ontology Engineering

System analysis

Domain analysis

Model of solution

(program code)

Model of the problem (requirements (requirements
specification, reuse) specification,
knowledge acquisition)
Model of solution System design Conceptualization
(architecture) (conceptual model)
Implementation Implementation

(specification of the
conceptual model)

Model of tests

Test data generation

Ontology population

Model of correct
functioning of the code

System testing
(refinement)

Ontology evaluation
(refinement)

Model for the evolution

System maintenance

Ontology maintenance

of the system

Table 1: Software vs. Ontology Engineering

specific function or purpose. It consists of interrelated software components
which exchange data by means of interfaces and produce a certain result or
behavior given user-defined inputs. An ontology specifies a commonly agreed
conceptualization of a given universe of discourse. It is a collection of ontologi-
cal primitives, usually concepts or classes connected to each other by relations
and constrained by axioms, which may belong to specific sub-ontologies. Con-
sequently the way to measure the size of a software system, usually expressed
in lines of code or function/object points, can not be directly applied to on-
tologies. Due to the fact that the implementation of an ontology is mostly
realized using tools (i.e. ontology editors), the main size factor to express the
complexity of an ontology is not given by the actual size of an implementation
in a specific representation language, but by the number of ontological primi-
tives contained by conceptual model. Further on, modelling different types of
ontological primitives is associated to significantly different amounts of efforts:
the conceptualization of classes and their classification in a subclass-hierarchy is
recognized to imply considerably less efforts than modelling relationships or ax-
ioms. In comparison to a software system, an ontology may be used in a twofold
manner: it may be embedded in a software system for a specific purpose (e.g. to
index domain-specific documents) or it may be used directly by domain experts
without any mediator in form of some computer program (e.g. as a commonly
agreed vocabulary). Nevertheless an ontology does not show any behavior-it
does not produce an output for a given input as for a software system. This
aspect has implications in the way software and ontologies are evaluated. While
the evaluation of software (in the sense of software testing) is a mature disci-
pline despite the difficulties in achieving a commonly agreed, general purpose
software quality model, evaluating ontologies is still an open issue both from
a technical and a user-centered point of view. Another important difference



between software engineering and ontology engineering is related to engineer-
ing process themselves: the ontology population/instantiation, a particularity
of ontology engineering vs. the related software field, is often associated with
significant efforts depending on the characteristics of the data to be aligned to
the ontology. The project team involved in the construction of an ontology is
relatively small compared to the common team size in software development.
As a consequence of the importance of the conceptualization phase, the role of
the user/domain expert in the ontology construction and his experience in the
domain to be modelled are crucial factors for the success of ontology engineering
projects. Finally, as for the knowledge of the authors, given the present state of
the art of the ontology engineering area, the duration of ontology engineering
projects is significantly shorter than the typical duration of software projects.
Despite these differences a cost estimation model for ontologies should benefit
from the similar properties of the two engineering fields. The efforts associated
with the engineering process can still be assumed to depend on the complex-
ity of the resulting artifact: the size of the ontology to be modelled and in its
particularities, and in the size and functionality of the software product respec-
tively [5]. A cost model for ontology engineering should take into account the
results achieved by the software engineering community and customize and ex-
tend them in order to cover the particularities of the ontology development task.
Consequently, we now turn to a survey of some of the most relevant method-
ologies for costs estimation in software engineering for the purpose of assessing
their suitability for current ontology engineering processes.

3 ONTOlogy COst Model - ONTOCOM

For the development of a ontology cost model - ONTOCOM — we adopt a com-
bination of three estimation methodologies, which are in our opinion applicable
to ontology engineering according to the current state of the art in the field:

Top-Down Method This method can be applied to predict the costs associ-
ated with different upper-level stages of the engineering process. Despite
the young nature of the ontology engineering discipline, the Semantic Web
community has made significant progresses in analyzing the ontology engi-
neering process with its phases, their particularities and associated activ-
ities [13]. This is why we expect a top-down method to be appropriate to
construct an ontology cost model. For this purpose, one needs techniques
to evaluate the costs associated with the stages of the engineering process:
the domain analysis, conceptualization, implementation etc.

Delphi Method The expert judgement method seems to be appropriate for
our goals since large amount of expert knowledge w.r.t. ontologies is
already available in the Semantic Web community, while the costs of the
related engineering efforts are not. Experts’ opinion on this topic can be
used to compliment the results of other estimation methods.



Parametric Method Apart from the lack of costs-related information which
should be used to calibrate cost estimation formula for ontologies, the
analysis of the main cost drivers affecting the ontology engineering process
can be performed on the basis of existing case studies on ontology building,
representing an important step toward the elaboration of a predictable cost
estimation strategy for ontology engineering processes. The resulting cost
model has to be constantly refined and customized when cost information
becomes available. Nevertheless the definition of a fixed spectrum of cost
factors is important for a controlled collection of existing real-world project
data, a task which is fundamental for the subsequent model calibration.

Apart from expert judgement, we start with a top level approach, by iden-
tifying upper-level sub-tasks of the ontology engineering process and define the
associated costs using a parametric method. We distinguish among three areas:

Ontology Building includes the sub-tasks like: specification, conceptualiza-
tion, implementation, instantiation and evaluation.

Ontology Maintenance involves costs related to getting familiar and updat-
ing the ontology.

Ontology Reuse accounts for the efforts related to the re-usage of existing
(source) ontologies for the generation of new (target) ontologies and in-
volves costs related to finding, evaluating and adapting the former ones
to the requirements of the latter.

As a consequence, estimating the effort (in person months) related to ontol-
ogy engineering is reduced to a sum of the costs arising in the building (with or
without reuse) and maintaining ontologies:

PM = PMg+ PMy + PMg, (1)

where PMp , PMy; and PMpg represent the effort associated to building,
maintaining and reusing ontologies, respectively.
The partial costs are calculated in ONTOCOM as:

PM, = Ax (SizegC)B * HCDM- (2)

Each of the three development phases is associated with specific cost factors.
Experiences in related engineering areas[22, 5] let us assume that the most
significant one is the size of the ontology involved in the corresponding process.
In the formula above the size parameter Size, is expressed in thousands of
ontological primitives — concept, relations, axioms and instances. For example
for an ontology with 1000 concepts and 100 relations Size will have the value
1.1.



Sizey corresponds to the size of the newly built ontology i.e. the number of
primitives which are expected to result from the conceptualization phase.

Size,, in case of ontology maintenance, depends on the expected number of
modified items.

Size,, for reuse purpose, is the size of the original source after being tailored
to the present application setting.

In particular this involves the parts of the source ontologies which have to
be translated to the final representation language, the ones whose content has
to be adapted to the target scope and the fragments directly integrated.

The possibility of a non-linear behavior of the model w.r.t. the size of the
ontology is covered by parameter B. Further on, start-up costs, which are not
proportional to the size of a project, are intended to be counterbalanced by the
constant A.

The core parts of the ONTOCOM-formula are the cost drivers C'D,;, which
have a rating level (from very low to very high) that expresses their impact on
the development effort. For the purpose of a quantitative analysis, each rating
level of each cost driver is associated to a weight (effort multiplier - EM).
The average EM assigned to a cost driver is 1.0 (nominal weight). If a rating
level causes more development effort, its corresponding EM is above 1.0. If
the rating level reduces the effort then the corresponding EM is less than the
nominal value. For each cost driver we specified in detail the decision criteria
which are relevant when assigning the corresponding effort multipliers. In the a-
priori cost model a team of 3 ontology engineering experts assigned start values
between 0.1 and 2 to the effort multipliers, depending on the contribution of the
corresponding cost driver to the overall development costs. These parameters
were derived after surveying recent literature and from empirical findings of
various case studies in the ontology engineering field (such as [28, 37, 31, 2, 1,
35, 36, 24, 4, 6, 33, 29, 14, 39]). These values are subject of further calibration
on the basis of the statistical analysis of real-world project data. A list of the
initial input values for the cost drivers (the so-called “a-priori cost model”) is
depicted in Appendix A.

4 ONTOCOM: Product Cost Drivers

The product category accounts for the influence of product properties on the
overall costs.

4.1 Cost Drivers for Ontology Building
4.1.1 Complexity of the Domain Analysis: DCPLX

The domain complexity driver states for the efforts additionally arisen in the
engineering project by the particularities of the ontology domain and its analysis
during ontology building. The decision which concepts will be included and in



which form they will be represented in an ontology depends not only on the
intrinsic domain to be modelled (e.g., tourism), but rather on the application
domain. The latter also involves the technical setting and the characteristics
of the application in which the ontology is designed to be integrated to. As a
third decision field we introduced the sources which could be eventually used as
additional domain descriptions and thus as an aid for the domain analysis and
the subsequent conceptualization. The global value for the DCLPX driver is a
weighted sum of the aforementioned areas, which are depicted in Table 2, 3, 4.

’ Rating \ Rating Scale

Very Low | narrow scope, common-sense knowledge, low connectivity

Low narrow to moderate scope, common-sense or expert knowledge,
low connectivity

Nominal moderate to wide scope, common-sense or expert knowledge,
moderate connectivity

High moderate to wide scope, common-sense or expert knowledge,
high connectivity

Very High | wide scope, expert knowledge, high connectivity

Table 2: Domain Complexity
| Rating | Rating Scale

Very Low | few, simple requirements

Low small number of non-conflicting requirements
Nominal moderate number of requirements,

with few conflicts, few usability requirements
High high number of usability requirements,

few conflicting requirements

Very High | with a high conflicting degree, high number of

very high number of requirements

usability requirements

Table 3: Requirements complexity

Rating

\ Rating Scale

Very Low | high number of sources in various forms

Low competency questions and text documents available
Nominal some text documents available
High some unstructured information sources available

Very High | none

Table 4: Information sources complexity




4.1.2 Complexity of the Conceptualization: CCPLX

In order to realistically classify the complexity of the domain analysis phase in
terms of the pre-defined ratings we identified characteristics of the three areas
which usually influence this measure. For the domain category, we considered
the scope (narrow, moderate, wide), the commonality of the knowledge (be
that common-sense knowledge or expert knowledge) and the connectivity of
the domain. The latter is expressed in the number of interdependencies be-
tween domain concepts with ranges again among three levels (low, moderate
and high), while the scope is a feature which is related to the generality, but
also to the perceived amount of knowledge comprised per default in a certain
domain. For example a domain such as some department of an organization
is considered narrower than a domain describing a university, while the scope
of the economics domain is of course classified as wide. The three criteria are
prioritized according to common practices in the ontology engineering area, so
that the connectivity of the domain is considered decisive for establishing the
rating of this cost factor. The complexity of the requirements which are to be
taken into consideration when building an ontology is characterized here by the
total number of requirements available in conjunction with the rate of conflict-
ing ones and the rate of usability requirements, since the latter are seen as a
fundamental source of complexity for the building process.1 Finally the avail-
ability of information sources guiding the engineering team during the building
process or offering valuable insights in the domain to be modelled can be a major
success factor in ontology engineering. When deciding upon the impact of the
information sources on the effort required to perform the domain analysis ac-
tivity we suggest considering the number, the type and the form of the sources.
The conceptualization complexity accounts for the impact of the structure of
the conceptual ontology (taxonomy, conceptual graph etc.) and of help tech-
niques such as modelling patterns on the overall engineering costs. On the other
side, the existence of certain naming and modelling constraints might cause cost
increases (see Table 5).

’ Rating \ Rating Scale
Very Low | concept list
Low taxonomy, high number of patterns, no constraints
Nominal properties, general pattern available, some constraints
High axioms, few modelling pattern, considerable number of constraints

Very High | instances, no patterns, considerable number of constraints

Table 5: Conceptualization Complexity

4.1.3 Complexity of the Implementation: ICPLX

As mentioned in one of the basic assumptions in ONTOCOM is that the most
significant factor for estimating the costs of ontology engineering projects is



the size of the conceptual model, while the implementation issue is regarded
to be a matter of tools, since a manual encoding of a conceptualization in a
particular formal representation language is not common practice. However the
original ONTOCOM model did not pay any attention to the semantic differences
between the conceptual and the implementation level, differences which might
appear in situations in which the usage of a specific representation language
is mandatory. In this case the implementation of the ontology requires a non-
trivial mapping between the knowledge level of the conceptualization and the
paradigms beyond the used representation language. The costs arisen during
this mapping are stated in the driver ICPX (implementation complexity), whose
ratings are illustrated in Table 6. For simplification reasons we restricted the
range of the ratings to 3 (from low to high).

’ Rating \ Rating Scale ‘

Low The semantics of the conceptualization compatible
to the one of the impl. lang.

Nominal | Minor differences between the two

High Major differences between the two

Table 6: Complexity of the Implementation

To summarize the complexity of the target ontology in ONTOCOM is taken
into account by means of three cost drivers, associated with the efforts arisen in
the domain analysis, conceptualization and implementation phase. We analyzed
features which are responsible for cost increases in these fields - independently
of the size of the final ontology, the competence of the team involved or the
setting of the current project - and aligned them to ratings from very low to
very high for quantification purposes.

4.1.4 Complexity of the Instantiation: DATA

The population of an ontology and the associated testing operations might be
related to considerable costs[7, 8, 10, 20, 32]. The measure attempts to capture
the effect instance data requirements have on the overall process. In particular
the form of the instance data and the method required for its ontological for-
malization are significant factors for the costs of the engineering process (Table
7).

On the basis of a survey of ontology population and learning approaches,
we assume that the population of an ontology with available instance data with
an unambiguous semantics can be performed more cost-effective than the pro-
cessing of relational tables or XML-structured data. Further on, the extraction
of ontology instances from poorly structured sources like natural language doc-
uments is assigned the highest value magnitude, due to the complexity of the
task itself and of the pre-processing and post-processing activities.

The rating does not take into consideration any costs related to eventual
mapping operations which might be required to integrate data from external



Rating Rating Scale

Very Low | structured data, same repr. language

Low structured data with formal semantics
Nominal semi-structured data e.g. databases, XML
High semi-structured data in natural language, e. g.

similar web pages
Very High | unstructured data in natural langauge, free form

Table 7: Instance Ratings DATA

resources. For example, if the data is provided as instances of a second ontology,
be that in the same representation language as the one at hand or not, the
estimation of the DATA cost driver should account for the efforts implied by
defining a mapping between the source and the target ontology as well. In this
case, the parameter is to be multiplied with an increment M (Mapping), as
depicted in Table 8 below.

M Increment | Ontology

for DATA Mapping

0.0 no mapping necessary
0.2 direct mapping

0.4 concept mapping

0.6 taxonomy mapping
0.8 relation mapping

1.0 axiom mapping

Table 8: M Increment for DATA

The M factor increments the effect of the DATA measure: an 1.0 M incre-
ment causes a 100% increase of the DATA measure while an 0.0 one does not
have any influence on the final value of DATA.

4.1.5 Required Reusability: REUSE

The measure attempts to capture the effort associated with the development of
a reusable ontology. Reusability is a major issue in the ontology engineering
community, due to the inherent nature of ontologies, as artifacts for knowledge
sharing and reuse. Currently there is no commonly agreed understanding of
the criteria required by an ontology in order to increase its reusability. Usually
reusability is mentioned in the context of application-independency, in that it
is assumed that application-dependent ontologies are likely to imply significant
customization costs if reused. Additionally several types of ontologies are of-
ten presumed to endue an increased reusability: core ontologies and upper-level
ontologies describing general aspects of the world are often used in alignment
tasks in order to ensure high-level ontological correctness. The Formal Ontolog-
ical Analysis of Guarino[19] also mentions 3 levels of generality, which might be
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associated with different reusability degrees: upper-level ontologies are used as
ontological commitment for general purpose domain and task ontologies, while
the latter two are combined to realize so-called application ontologies, which are
used for particular tasks in information systems. According to these considera-
tions the rating for the REUSE measure is depicted in Table 9.

’ Rating \ Rating Scale ‘
Very Low | for this application
Low for this application type
Nominal application independent domain ontology
High core ontology

Very High | upper level ontology

Table 9: Required Reusability

4.1.6 Documentation Needs: DOCU

The DOCU measure is intended to state the additional costs caused by detailed
documentation requirements. Likewise COCOMOII [3] we differentiate among
5 values from very low (many lifecycle needs uncovered) to very high (very
excessive for lifecycle needs) as illustrated in Table 10.

’ Rating \ Rating Scale ‘
Very Low | many lifecycle needs uncovered
Low some lifecycle needs uncovered
Nominal right-sized to lifecycle needs uncovered
High excessive for lifecycle needs

Very High | very excessive for lifecycle needs

Table 10: Ratings for Documentation Needs

4.1.7 Complexity of the Ontology Integration: OI

This cost drivers measures the costs produced by integrating different ontologies
to a common framework. The integration step is assumed to be performed on
ontologies sharing the same representation language - the efforts required for this
activity are covered by the OT (Ontology Translation) cost driver (see below) .
As criteria influencing its complexity we identified the following:

e overlapping degree among ontologies to be integrated: it is assumed that
this issue is proportional to the effort required by the integration, since it
is directly related to the number of mappings between ontological entities.

e type of mappings between ontological primitives: 1 to 1 mappings are
more easily discovered than multiple one (1 to n or n to m)

11



e integration quality, in terms of precision (rate of correct mappings) and
recall (rate of mappings discovered): higher quality requirements imply
automatically increased efforts to perform the integration task.

e number of ontologies: it is clear that the integration effort is directly
proportional to the number of sources to be integrated

According to these considerations the ratings for the OI cost drivers were
defined as depicted in Table 11.

| Rating Rating Scale

Very Low | 1-1 mappings, approx. 50% precision and recall required,
barely overlapping, 2 ontologies

Low 1-1 mappings, approx. 60% precision and recall required,
barely overlapping, 2 ontologies

Nominal 1-n mappings, approx. 70% precision and recall required,
some overlapping, 2 ontologies

High 1-n mappings, approx. 80% precision

high overlapping, more than 2 ontologies and recall required,
Very High | n-m mappings, approx. 95% precision and recall required,
high overlapping, more than 2 ontologies

Table 11: Ratings for Complexity of the Ontology Integration

4.1.8 Complexity of the Ontology Evaluation: OE

The cost drivers captures the effort invested in evaluating ontologies, be that
testing, reviewing, usability or ontological evaluation. While in a reuse situation
the effort required for the evaluation of an ontology was monitored separately
as the one implied for its comprehension, in the building case the level of the
cost driver is determined autonomously of other cost factors by considering the
level of activity required to test a preliminary ontology against its requirements
specification document and for documentation purposes.

’ Rating \ Rating Scale
Very Low | many lifecycle needs uncovered
Low some lifecycle needs uncovered
Nominal right-sized to lifecycle needs uncovered
High excessive for lifecycle needs

Very High | very excessive for lifecycle needs

Table 12: Ratings for Complexity of the Ontology Evaluation
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4.2 Cost Drivers for Reuse and Maintenance

Though there is yet no fine-grained methodology to reuse existing ontologies
in the Semantic Web community, the main steps and the associated challenges
involved in the process are well-accepted by current ontology-based projects.
This process is, however, related to significant costs and efforts, which may cur-
rently outweigh its benefits. First, as in other engineering disciplines, reusing
some existing component implies costs to find, get familiar with, adapt and
update the necessary modules in a new context. Second building a new on-
tology means partially translating between different representation schemes or
performing scheme matching or both. For our cost estimation model we assume
that relevant ontologies are available to the engineering team and, according to
the mentioned top-level approach and to some case studies in ontology reuse we
examine the following two phases of the reuse process w.r.t. the corresponding
cost drivers:

e ontology evaluation: get familiar with the ontology and assess its relevance
for the target ontology

e ontology customization: translate the sources to a desired format, even-
tually extract relevant sub-ontologies and finally integrate them to the
target ontology

For the evaluation phase the engineering team is supposed to assess the
relevance of a given ontology to particular application requirements. The suc-
cess of the evaluation depends crucially on the extent to which the ontology is
familiar to the assessment team. The customization phase implies the identifi-
cation/extraction of sub-ontologies which are to be integrated in a direct, trans-
lated and modified form, respectively. In the first categories sub-ontologies are
included directly to the target ontology. The re-usage of the second category is
conditioned by the availability and the appropriate costs of knowledge represen-
tation translators, while the last category involves modifications of the original
model in form of insertions, deletions or updates at the ontological primitives
level.

4.2.1 Complexity of the Ontology Evaluation: OE

This measure accounts for the real effort needed to evaluate the ontology for
reuse purposes (see Table 13). The measure assumes a satisfactory ontology
understanding level and is associated solely with the efforts needed in order to
decide whether a given ontology satisfies a particular set of requirements and to
integrate its description into the overall product description.

4.2.2 Complexity of the Ontology Modifications: OM

This measure reflects the complexity of the modifications required by the reuse
process after the evaluation phase has been completed (see Table 14).
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Rating Rating Scale

Very Low | small number of tests, easily generated and reviewed

Low moderate number of tests
Nominal high number of tests
High considerable tests, easy to moderate to generate and review

Very High | extensive testing, difficult to generate and review

Table 13: Ontology Evaluation Cost Driver

’ Rating \ Rating Scale ‘
Very Low | few, simple modifications
Low some, simple modifications
Nominal some, moderate modifications
High considerable modifications

Very High | excessive modifications

Table 14: Complexity of the Ontology Modifications Cost Driver

4.2.3 Ontology Translation: OT

Translating between knowledge representation languages is an essential part
of a reuse process. Depending on the compatibility of the source and target
representation languages, as well as on the availability and performance of the
translating tools (amount of pre- and post-processing required), we differentiate
among 5 values as depicted in Table 15.

’ Rating \ Rating Scale ‘
Very Low | direct
Low low manual effort
Nominal some manual effort
High considerable manual effort

Very High | manual effort

Table 15: Cost Driver for Ontology Translation

4.2.4 Ontology Understandability: OU

Reusing an ontology and the associated efforts depend significantly on the ability
of the ontologists and domain experts to understand the ontology, which is
influenced by two categories of factors: the complexity of the conceptual model
and the self-descriptiveness or the clarity of the conceptual model. Additionally,
in case of the ontology engineer the comprehensiveness of an ontology depends
on his domain experience, while domain experts are assumed to provide this
know-how by definition. Factors contributing to the complexity of the model
are the size and expressivity of the ontology and the number of imported models
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together with the complexity of the import dependency graph. The clarity of
the model is mainly influenced by the human-perceived readability.

’ Rating \ Rating Scale ‘

complex dependency graph
Very Low | large domain

complex representation language
no concept names

taxonomic dependency graph
Very Low | large domain

complex representation language
concept names

taxonomic dependency graph
Nominal middle domain

moderate representation language
concept names

no imports

High middle domain

simple representation language
concept names

no imports

Very High | small domain

simple representation language
concept names

Table 16: Cost Drivers for Complexity of the Ontology Understandability

4.2.5 Ontologist/Domain Expert Unfamiliarity: UNFM

The effort related to ontology maintenance decreases significantly in situations
where the human user works frequently with the particular ontology. This mea-
sure accounts for this dependency and distinguishes among 6 levels as depicted
in Table 18.

The UNFM factor increments the effect of the Ontology Understanding mea-
sure: an 1.0 UNFM increment causes a 100% increase of the OU measure while
an 0.0 one does not have any influence on the final value of OU (see Table 18).

5 ONTOCOM: Personnel Cost Drivers

The personnel cost drivers emphasizes the role of team experience, ability and
continuity for the effort invested in the process.
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Rating Rating Scale

representation language know-how
Very Low | no comments in naturale language
no metadata

representation language know-how
Low no comments in naturale language
no metadata

representation language tool
Nominal 30% comments in naturale language
no metadata

representation language tool

High 60% comments in naturale language
no metadata

representation language tool

Very High | 90% comments in naturale language
metadata

Table 17: Cost Drivers for Clarity of the Ontology Understandability

’ Rating \ Rating Scale ‘
0.0 self built
0.2 team built
04 every day usage
0.6 occasional usage
0.8 little experience
1.0 completely unfamiliar

Table 18: Ratings for Ontologist/Domain Expert Unfamiliarity

5.1 Cost Drivers for Building, Reuse and Maintenance

The personnel cost drivers, in contrast to the product factors, do not differen-
tiate between the three sub-tasks of ontology engineering: building, reuse and
maintenance.

5.1.1 Ontologist/Domain Expert Capability: OCAP/DECAP

The development of an ontology requires the collaboration between a team of on-
tology engineers (ontologists), usually with an advanced technical background,
and a team of domain experts that provide the necessary know-how in the field
to be ontologically modeled. These cost drivers account the perceived abil-
ity and efficiency of the single actors involved in the process, as well as their
teamwork capabilities.
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Rating \ Rating Scale ‘
Very Low | 15%

Low 35%
Nominal 55%
High 5%

Very High | 95%

Table 19: Capability of the Engineering Team Cost Drivers

5.1.2 Ontologist/Domain Expert Experience: OEXP/DEEXP

These measures take into account the experience of the engineering team con-
sisting of both ontologists and domain experts w.r.t. the ontology engineering
process. They are not related to the abilities of single team members, but relate
directly to the experience in constructing ontologies and in conceptualizing a
specific domain respectively.

’ H Very Low \ Low \ Nominal \ High \ Very High ‘
OEXP 2 months 6 months | 1 year 1.5 years | 3 years
DEEXP || 6 months 1 year 3 years 5 years 7 years

Table 20: Ontologists and Domain Experts Experience Cost Drivers

5.1.3 Personnel Continuity: PCON

As in other engineering disciplines frequent changes in the project team are a
major obstacle for the success of an ontology engineering process within given
budget and time constraints. Due to the small size of the project teams we
adapted the general ratings of the COCOMO model to a maximal team size of
10 (see Table 21).

’ H Very Low \ Low \ Nominal \ High \ Very High ‘
’ PCON H 2 months \ 6 months \ 1 year \ 3 years \ 6 years ‘

Table 21: Personnel Continuity Cost Driver

5.1.4 Language and Tool Experience: LEXP/TEXP

The aim of these cost drivers is to measure the level experience of the project
team constructing the ontology w.r.t. the conceptualization language and the
ontology management tools respectively. The conceptualization phase requires
the usage of knowledge representation languages with appropriate expressivity
(such as Description Logics or Prolog), while the concrete implementation is
addicted to support tools such as editors, validators and reasoners. The dis-
tinction among language and tool experience is justified by the fact that while
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ontology languages rely on established knowledge representation languages from
the Artificial Intelligence field and are thus possibly familiar to the ontology
engineer, the tool experience implies explicitly the previous usage of typical on-
tology management tools and is not directly conditioned by the know-how of
the engineering team in the KR field. The maximal time values for the tool
experiences are adapted to the ontology management field and are thus lower
than the corresponding language experience ratings (see Table 22).

’ H Very Low \ Low \ Nominal \ High \ Very High ‘
LEXP || 2 months 6 months | 1 year 3 years 6 years
TEXP || 2 months 6 months | 1 year 1,5 years | 3 years

Table 22: Language and Tool Experience Cost Drivers

6 ONTOCOM: Project Cost Drivers

The project category states the dimensions of the engineering process which are
relevant for the cost estimation.

6.1 Cost Drivers for Building, Reuse and Maintenance

The project cost drivers as well as personnel cost drivers do not differentiate
between the three sub-tasks of ontology engineering: building, reuse and main-
tenance.

6.1.1 Tool Support: TOOL

We take account of the different levels of tool support for the different phases of
an ontology engineering process (domain analysis, conceptualization, implemen-
tation, ontology understanding and evaluation, ontology instantiation, ontology
modification, ontology translation, ontology integration and documentation) by
means of a single general-purpose cost driver and calculate the final value as
the average tool support across the entire process. The ratings for tool support
are defined at a general level, as shown in Table 23 below.

Rating Rating Scale \
Very Low | High quality tool support, no manual intervention needed
Low Few manual processing required

Nominal Basic manual intervention needed

High Some tool support

Very High | Minimal tool support, mostly manual processing

Table 23: Tool Support Cost Driver

18



The rating of the cost driver should be specified for each of the most promi-
nent process phases, while the importance of the corresponding phase is ex-
pressed in terms of weights. The global TOOL value for a specific project is
calculated as a normalized sum of the weighted local values.

6.1.2 Multisite Development: SITE

Constructing an ontology requires intensive communication between ontology
engineers and domain experts on one hand and between domain experts for
consensus achievement purposes on the other hand. This measure involves the
assessment of the communication support tools (see Table 24).

Rating \ Rating Scale ‘
Very Low | mail

Low phone, fax

Nominal email

High teleconference, occasional meetings

Very High | frequent F2F meetings

Table 24: Multisite Ontology Development Cost Driver

6.1.3 Required Development Schedule: SCED

This cost driver takes into account the particularities of the engineering process
given certain schedule constraints. Accelerated schedules (ratings below 100%,
see Table 25) tend to produce more efforts in the refinement and evolution
steps due to the lack of time required by an elaborated domain analysis and
conceptualization. Stretch-out schedules (over 100%) generate more effort in
the earlier phases of the process while the evolution and refinement tasks are
best case neglectable.

’ H Very Low \ Low \ Nominal \ High \ Very High ‘
[SCED [ 7% [8% [ 100% [130% [ 160% |

Table 25: Required Development Schedule Cost Driver
For example, a high SCED value of 130% (see Table 25) represents a stretch-

out of the nominal schedule of 30% and thus more resources in the domain
analysis and conceptualization.

7 Evaluation

The parametric approach described in this report is currently being validated
towards a reliable method for estimating the costs of ontology engineering. The
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most important evaluation criterium is of course the reliability of its predic-
tions, which however depends on the amount of accurate project data used to
calibrate the model (i.e. adjust the values of the modifiers and identify eventual
correlated cost drivers). On the other hand, a comprehensive evaluation of the
model should go beyond the evaluation of its functionality (i.e. the accuracy
of its estimations) and also address issues related to its usability in typical on-
tology engineering scenarios, as suggested in common quality frameworks for
information systems (such as [30, 26, 21, 23]; see [9] for a comprehensive survey
on this topic). For a comprehensive evaluation of the model we rely on the
quality framework for cost models by Boehm, which was adapted to the par-
ticularities of ONTOCOM and Ontology Engineering. Parts of this framework
are used in to assess the quality of the a-priori and the a-posteriori cost models,
respectively (see below). According to this differentiation, the evaluation of the
cost model is performed in two steps: in the first one we evaluate the relevance
of the mentioned cost drivers for the purpose of predicting costs arisen in on-
tology engineering projects; the remaining aspects of the framework relate to
its capability of reliably fulfilling its goal (i.e. that of estimating engineering
efforts) and will be applied in a second step on the a-posteriori model resulting
from the calibration of the preliminary one. The original quality framework by
Boehm [5] consisted of the 10 features, which we divided into two categories,
depending on their relevance to the a-priori and the a-posteriori model, respec-
tively. The meaning of the quality criteria has been adapted to the scope of
ONTOCOM.

a-priori evaluation

definition has the model clearly defined the costs it is estimating and the
costs it is excluding? Does the estimate include the cost of manage-
ment, training, domain analysis, conceptualization, implementation,
testing, maintenance? Does the model clearly define the decision cri-
teria used to specify the ratings of the cost drivers? Does the model
use intuitive and non-ambiguous terms to denominate the cost drivers
it involves?

objectivity does the model avoid allocating most of the cost variance
to poorly calibrated subjective factors? Are the cost drivers defined
using objective decision criteria, which allow an accurate assignment
of the corresponding cost driver ratings?

constructiveness can a user tell why the model gives the estimates it
does?

detail does the model easily accommodate the estimation of new process
models or is it conceived for a particular ontology engineering pro-
cess? Does it give accurate phase and activity breakdowns? Does the
model take into consideration factors related to the main tasks of the
engineering process? Do these sub-tasks correspond to the process
model applied in your engineering process? Which phases should be
further covered by the model in order to increase its usability?
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stability do small differences in inputs produce small differences in out-
put cost estimates?

scope does the model cover the class of projects whose costs you want to
estimate? Is it representative for a wide class of ontology engineering
projects?

ease of use are the model inputs and options easy to understand and
specify? Is it easy for you to assess a rating to a cost driver based on
the associated decision criteria?

prospectiveness does the model avoid the user of information which will
not be well known until the project is complete? Can the model be
applied in early phases of the project as well?

parsimony does the model avoid the use of highly redundant factors or
factors which make no appreciable contribution to the results?

a-posteriori evaluation

all items of the former category, plus

fidelity, since this requirement will definitely not be fulfilled after collect-
ing reliable data from previous projects used to refine the values of
the cost drivers and to discover eventual correlations between them.

The evaluation of the a-priori model was performed by conducting interviews
with two groups of experts in the area of Ontology Engineering, consisting of
4 and, respectively 8 participants. In each of the two phases of the evaluation,
participants were given a one hour overview of the ONTOCOM approach, which
was followed by individual interviews according to the aforementioned frame-
work. During the interviews, the participants expressed their concerns w.r.t. a
wide range of costs-related issues in ontology engineering projects and discussed
about their experiences in building, reusing or deploying ontologies. The first
phase of the evaluation resulted in major changes w.r.t. the definition of the
cost drivers and the introduction of missing ones. The second phase of the eval-
uation produced minimal adaptations of the revised model, in particular w.r.t.
a more precise scope of the model, and helped us identifying possible directions
for further research. The model presented in the previous sections is the result
of this first phase. The second phase of the evaluation is being performed, in
parallel to the recently started data collection initiative. Empirical data from
previous ontology engineering projects is collected from various organizations in
the Semantic Web field, contributing to the continuous calibration of the model.
Furthermore, the data collection procedure offers us valuable information about
the usability of ONTOCOM and its cost drivers w.r.t. a wide range of ontology
engineering scenarios (by now we collected data from 27 projects). The analy-
sis of the empirical data collected so far indicates a well-balanced influence of
the cost drivers on the model estimations. The reliability of the predictions is
planed to be computed on a data set of at least 75 data points.
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8 Conclusions and Future Work

Reliable methods for cost estimation are a fundamental requirement for a wide-
scale dissemination of ontologies in business contexts. However, though the
importance of cost issues is well-recognized in the community, no cost estima-
tion model for ontology engineering is available so far. Starting from existing
cost estimation methodologies applied across various engineering disciplines, we
propose a parametric cost estimation model for the ontology engineering area.
The model is intended to predict cost arisen during ontology engineering pro-
cesses by analyzing the costs factors caused by the end product, the process itself
and the engineering team. We evaluate the model a-priori and a-posterior.

In the future we will apply ONTOCOM to other ontology engineering method-
ologies. This can lead to the introduction of new cost drivers or the redefinition
of exiting ones, or both. While definitely in an incipient phase, the a-posterior
evaluation has already indicated a balanced influence of the cost factors. The
collection of data is also a pre-requisite for a more accurate calibration of the
model. Nevertheless our present experiences with the model are very promis-
ing: the evaluation of the a-priori model demonstrated the applicability of the
model for ontology development processes, while the public data collection ini-
tiative was received favorably by the community and will continue in the future.
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A Non-calibrated Values of the Cost Drivers in
ONTOCOM

The initial input values for the cost drivers in the ONTOCOM model are illus-
trated in Tables 26, 27 and 28.

Product Cost Drivers
Building Rating
Very Low | Low | Nominal [ High | Very High
DCPLX 0,70 0,85 1 1,30 1,60
CCPLX 0,70 0,85 1 1,30 1,60
ICPLX 0,85 1 1,30
DATA 0,80 0,90 1 1,30 1,60
REUSE 0,70 0,85 1 1,15 1,30
DOCU 0,70 0,85 1 1,15 1,30
OE 0,80 0,90 1 1,30 1,60
Ol 0,80 0,90 1 1,30 1,60
Reuse
and Very Low | Low | Nominal | High | Very High
Maintenance
OE 0,70 0,85 1 1,30 1,60
oM 0,80 0,90 1 1,20 1,40
oT 0,70 0,85 1 1,30 1,60
ou 1,80 1,40 1 0,90 0,80
UNFM for ratings see Tab. 18

Table 26: Product Cost Drivers and their ratings
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Personnel Cost Drivers
Rating
Very Low | Low | Nominal [ High | Very High
OCAP 1,30 1,15 1 0,85 0,70
DECAP 1,30 1,15 1 0,85 0,70
OEXP 1,30 1,15 1 0,85 0,70
DEEXP 1,30 1,15 1 0,85 0,70
PCON 1,30 1,15 1 0,85 0,70
LEXP 1,60 1,30 1 0,90 0,80
TEXP 1,50 1,25 1 0,90 0,80

Table 27: Personnel Cost Drivers and their ratings

Project Cost Drivers
Rating
Very Low | Low | Nominal [ High | Very High
TOOL 1,60 1,30 1 0,90 0,80
SITE 1,30 1,15 1 0,85 0,70
SCED 1,30 1,15 1 0,85 0,70

Table 28: Project Cost Drivers and their ratings

B Using ONTOCOM: An Example

In this section we give a brief example on the usage of the ontology cost model
described in this report. Starting from a typical ontology building scenario, in
which a domain ontology is created from scratch by the engineering team, we
simulate the cost estimation process according to the parametric method under-
lying ONTOCOM. Given the top-down nature of our approach this estimation
can be realized in the early phases of a project, in particular after the domain
analysis has been accomplished and an initial prediction of the size of the target
ontology is available.

The first step of the cost estimation is the specification of the size of the on-
tology to be build, expressed in thousands of ontological primitives. Ontological
primitives are concepts, relations (including is-a), axioms and instances. Note
that we do not consider the size of the data set which will be used to populate
the ontology, but only the instances which are to be conceptualized manually
during the conceptualization phase. For example, if we consider an ontology
with 1000 concepts, 200 relations and 100 axioms, the size parameter of the
estimation formula will be 1,3.

The next step is the specification of the cost driver ratings, corresponding
to the information available at this point. Assuming that the ratings of the cost
drivers are those depicted in Table 29 these ratings are replaced by numerical
values (as illustrated in Tables 26, 27 and 28 in Appendix A).

The value of the DCPLX cost driver was computed as an equally weighted,
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| Cost Driver | Rating (Value) |

DCPLX High (1,20)
CCPLX Nominal (1)
ICPLX Low (0,85)
Product Factors DATA High (1,30)
REUSE Nominal (1)
DOCU Low (0,85)
OE Low (1)
0 Tow (1)
OCAP High (0,85)
DECAP Low (1,15)
Personnel Factors OEXP High (0,85)

DEEXP | Very Low (1,30)
PCON | Very High (0,70)

LEXP Nominal (1)
TEXP Nominal (1)
TOOL Very Low (1,60)
Project Factors SITE Nominal (1)
SCED Nominal (1)

Table 29: Values of the Cost Drivers

averaged sum of a high-valued rating for the domain complexity (1,3) , a nominal
rating for the requirements complexity (1,0) and a high effort multiplier for the
information sources complexity (1,3):

1513 41%1,041%1,3
DCPLX — *7+*3’+*’ (3)

According to the main formula (Formula 2) the estimated effort in person
months would be amount to 1,77 PMs and be calculated as follows:

PM = 1x%(1,3)'%(1,2%1%%0,85* 1,302 1,15 %0,7%1,60)  (4)
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