
A Cost Model for Ontology Engineering

Elena Paslaru Bontas, Malgorzata Mochol
AG Netzbasierte Informationssysteme

paslaru@inf.fu-berlin.de
mochol@inf.fu-berlin.de

August 3, 2005

Technical Report B-05-03
Version 2

Abstract

In this report we propose a methodology for cost estimation for on-
tologies and analyze cost factors implied in the engineering process. We
examine the appropriateness of a COCOMO-like parametric approach
to ontology cost estimation and propose a non-calibrated ontology cost
model, which is to be continuously refined along with the collection of
empiric data on person month efforts invested in developing ontologies in
real-world projects. We further describe the human-driven evaluation of
the cost drivers described in the parametric model on the basis of the cost
models’ quality framework by Boehm[5]

Executive Summary

No Item Author Date Description
1 Version 1 Paslaru, Mochol April 2005 First draft of the ontology cost model
2 Version 2 Paslaru, Mochol August 2005 Added model validation methodology

i

Contents

1 Motivation 1

2 Estimating Costs for Ontology Engineering 1
2.1 Ontology vs. Software Engineering 3
2.2 COCOMO II . 6

3 ONTOCOM: An Ontology Cost Model 10

4 Cost Drivers for Ontology Building 12
4.1 Product Factors . 12

4.1.1 Instance: DATA . 12
4.1.2 Ontology Complexity: OCPLX 13
4.1.3 Required Reusability: REUSE 13
4.1.4 Documentation match to lifecycle needs: DOCU 14

4.2 Personnel Factors . 15
4.2.1 Ontologist/Domain Expert Capability: OCAP/DECAP . 15
4.2.2 Ontologist/Domain Expert Experience: OEXP/DEEXP . 15
4.2.3 Language and Tool Experience: LEXP/TEXP 15
4.2.4 Personnel Continuity: PCON 16

4.3 Project Factors . 16
4.3.1 Support tools for Ontology Engineering: TOOL 16
4.3.2 Multisite Development: SITE 17
4.3.3 Required Development Schedule: SCED 17

5 Extensions of ONTOCOM for Reuse 18
5.1 Cost Drivers for Ontology Reuse 18

5.1.1 Ontology Understandability: OU 18
5.1.2 Ontologist/Domain Expert Unfamiliarity: UNFM 19
5.1.3 Ontology Evaluation: OE 20
5.1.4 Ontology Modification: OM 20
5.1.5 Ontology Translation: OT 20
5.1.6 Reuse formula . 21

6 Extensions of ONTOCOM for Maintenance 21

7 Evaluation 22

8 Conclusions and Future Work 24

A Non-calibrated Values of the Cost Drivers in ONTOCOM 24

B Cost Model Validation - Questionnaire 25
B.1 Part 1 - General questions about the ontology engineering process 25
B.2 Part 2 - Questions to pre-selected costs factors 28

i

C Using ONTOCOM: An Example 34

ii

1 Motivation

Though ontologies and associated ontology management tools have become
increasingly popular in the last decades, the dissemination of ontologies and
ontology-based applications as envisioned by the Semantic Web community re-
quires fine-grained methodologies which are able to deal with both technical
and economical challenges of ontology engineering. In order for ontologies to be
built and deployed at a large scale one needs not only technologies and tools to
assist the development process, but also proved and tested means to control the
overall engineering process. A wide range of ontology engineering methodolo-
gies have emerged in the Semantic Web community[15, 16, 13, 40, 36]. Apart
from minor differences in the level of detail adopted for the description of the
process stages these methodologies define ontology engineering as an iterative
process, which shows major similarities to the neighbored research field of soft-
ware engineering. However existing methodologies do not cover a crucial aspect
of the engineering process, which has gained significant attention in adjacent
engineering areas because of its importance in real-world business contexts: the
costs estimation using pre-defined cost models.

In order to precisely estimate the costs related to the ontology engineering
process, there is a need for empirically tested cost models which exploit the
results already achieved w.r.t. this issue in related engineering fields. In the
same time a cost model for ontologies should take into account the critical
factors and particularities of the ontology engineering process.

2 Estimating Costs for Ontology Engineering

Cost Estimating is defined as the art of predetermining the lowest realistic cost
and price of an item or activity which assure a normal profit. In the case of
Ontology Engineering a cost model aims at predicting the costs (efforts in person
months or duration) related to activities performed during the life cycle of an
ontology.

Estimating costs for engineering processes can be performed according to
several methodologies[26, 32, 5]. Due to their limitations w.r.t. certain classes
of situations these methods are often used in conjunction during the estimation
phase:

Analogy Method The main idea of this methodology is the extrapolation of
available data from similar projects to estimate the costs of the proposed
project. The method is suitable in situations where empirical data from
previous project is available and trustworthy and depends on the accuracy
in establishing real differences between completed and current projects.

Bottom-Up Method This methodology involves identifying and estimating
costs of individual project components separately and subsequently com-
bining the outcomes to produce an estimation for the overall project. It

1

can not be applied early in the life cycle of the process because of the lack
of necessary information related to the project components.

Top-Down Method In contrast to the bottom-up approach the top-down
method relies on overall project parameters. For this purpose, the project
is partitioned into lower-level components and life cycle phases beginning
at the highest level. This method is more applicable to early cost estimates
when only global properties are known, but it can be less accurate due to
the less focus on lower-level parameters and technical challenges—usually
predictable later in the process life cycle, at most.

Expert Judgment/Delphi Method The Delphi Method is based on a struc-
tured process for collecting and distilling knowledge from a group of hu-
man experts by means of a series of questionnaires interspersed with con-
trolled opinion feedback. The involvement of human experts using their
past project experiences is a significant advantage of the Delphi approach,
while the most extensive critique point is related to the subjectivity of
the estimations and the difficulties to explicitly state the decision criteria
used by the contributing experts.

Parametric/Algorithmic Method This method involves the usage of math-
ematical equations based on research and historical data from previous
projects. The method analyzes main cost drivers of a specific class of
projects and their dependencies and uses statistical techniques to refine
and customize the corresponding formulas. As in the case of the analogy
method the generation of a proved and tested cost model using the para-
metric method is directly related to the availability of reliable and relevant
data to be used in calibrating the initial core model.

The applicability of the mentioned cost estimation methodologies to ontology
engineering depends of course on the characteristics of the ontology engineer-
ing process. In the following we examine the pro’s and con’s of each of these
approaches given the current state of the art in Ontology Engineering:

Analogy Method The analogy method requires an accurate comparison func-
tion for ontologies and assumes that we are aware of cost information from
previous ontology engineering projects. While several similarity measures
for ontologies have already been proposed in the Semantic Web commu-
nity (for example in [24]), no case studies on ontology costs are currently
available.

Bottom-up Method This methodology implies the availability of cost infor-
mation w.r.t. single engineering tasks, such as costs involved in the con-
ceptualization of single concepts or in the instantiation of the ontology.
Due to the lack of available information the bottom-up method can not
be applied yet to ontology engineering.

2

Top-Down Method This method can be applied to predict the costs asso-
ciated with different upper-level stages of the engineering process. De-
spite the young nature of the ontology engineering discipline, the Semantic
Web community has made significant progresses in analyzing the ontol-
ogy engineering process with its phases, their particularities and associated
activities[15]. This is why we expect a top-down method to be appropriate
to construct an ontology cost model. For this purpose, one needs tech-
niques to evaluate the costs associated with the stages of the engineering
process: the domain analysis, conceptualization, implementation etc.

Delphi Method The expert judgement method seems to be appropriate for
our goals since large amount of expert knowledge w.r.t. ontologies is
already available in the Semantic Web community, while the costs of the
related engineering efforts are not. Experts’ opinion on this topic can be
used to compliment the results of other estimation methods.

Parametric Method Apart from the lack of costs-related information which
should be used to calibrate cost estimation formula for ontologies, the
analysis of the main cost drivers affecting the ontology engineering process
can be performed on the basis of existing case studies on ontology building,
representing an important step toward the elaboration of a predictable cost
estimation strategy for ontology engineering processes. The resulting cost
model has to be constantly refined and customized when cost information
becomes available. Nevertheless the definition of a fixed spectrum of cost
factors is important for a controlled collection of existing real-world project
data, a task which is fundamental for the subsequent model calibration.

To summarize, top-down, parametric and expert-based methodologies can be
partially used to develop a cost estimation process for ontologies. Due to the
incompleteness of the information related to cost issues, a combination of the
three methodologies is likely to overcome certain limitations of single method-
ologies. A bottom-up or an analogy approach would be relevant after defining
and testing a higher-level cost estimation model and acquiring relevant cost
information from real-world projects.

2.1 Ontology vs. Software Engineering

The overall process of developing a cost model for ontologies is not different
from the process for estimating any other element of cost. In particular, the
similarities between the ontology and software engineering processes make soft-
ware cost estimation methods a reasonable starting point for the development
of a cost estimation methodology for ontologies. In the following we account for
the similarities and differences between these disciplines in order to establish
the appropriateness of applying software cost models to ontology engineering.

Software and Ontology Engineering belong to the general area of Engineer-
ing, a discipline which is usually defined by the usage of scientific principles
or methods to construct artifacts. In the first case the artifact is a software

3

system, while the latter aims at building ontologies, which can be deployed as
such by ontology users or further embedded in software systems (the so-called
ontology-based applications).

Software Engineering is a central discipline in computer science that provides
methods to handle the complexity of developing software systems. It offers a
systematic approach to the development, implementation and maintenance of
software1. Software Engineering is also concerned with the practical problems
of developing software systems. Software is not just the programmed code, the
software product; it also includes all the associated work, from requirements to
test specifications to deployment and maintenance. Several decades of research
and development in Software Engineering showed that software projects must
also focus on user requirements, design, testing, documentation, deployment
and maintenance.

In a similar manner the young discipline of Ontology Engineering includes
scientific methods to create, deploy and maintain ontologies. Though both fields
share the same final goal – the generation of high-quality artifacts – and a
similar development process (see Table 1), ontology engineering methodologies
available so far do not address every phase of the the underlying process at the
same level of detail and do not provide a fully-fledged tool environment to aid
the engineering team in their attempt to create, maintain or use ontologies.

Software Engineering Ontology Engineering
System analysis Domain analysis

(requirements specification, reuse) (requirements specification,
knowledge acquisition)

System design (architecture) Conceptualization (conceptual model)
Implementation (program code) Implementation

(specification of the conceptual model)
Test data generation Ontology population

System testing (refinements) Ontology evaluation (refinements)
System maintenance Ontology maintenance

Table 1: Software Engineering vs. Ontology Engineering

Engineering software or ontologies is confronted with the same problems:

• requirements are often ill-defined and subject to frequent changes

• changes to the requirements specification and design have side-effects

• major costs are associated with the design/conceptualization phase and
not with the implementation

• there is not agreed means to assure quality
1IEEE STD 610.12: IEEE Standard Glossary of Software Engineering Terminology

4

The main difference between the two engineering processes focuses on their
outcomes: software vs. ontologies. A software system is a collection of computer
programs and associated data and computer equipment that performs a specific
function or purpose. It consists of interrelated software components which ex-
change data by means of interfaces and produce a certain result or behavior given
user-defined inputs. An ontology specifies a commonly agreed conceptualization
of a given universe of discourse. It is a collection of ontological primitives, usu-
ally concepts or classes connected to each other by relations and constrained
by axioms, which may belong to specific sub-ontologies. Consequently the way
to measure the size of a software system, usually expressed in lines of code or
function/object points, can not be directly applied to ontologies. Due to the
fact that the implementation of an ontology is mostly realized using tools (i.e.
ontology editors), the main size factor to express the complexity of an ontology
is not given by the actual size of an implementation in a specific representation
language, but by the number of ontological primitives contained by conceptual
model. Further on, in comparison to a software system, an ontology may be
used in a twofold manner: it may be embedded in a software system for a specific
purpose (e.g. to index domain-specific documents) or it may be used directly
by domain experts without any mediator in form of some computer program
(e.g. as a commonly agreed vocabulary). Nevertheless an ontology does not
show any behavior—it does not produce an output for a given input as for a
software system. This aspect has implications in the way software and ontolo-
gies are evaluated. While the evaluation of software (in the sense of software
testing) is a mature discipline despite the difficulties in achieving a commonly
agreed, general purpose software quality model, evaluating ontologies is still an
open issue both from a technical and a user-centered point of view. Another
important difference between software and ontology engineering is related to the
particularities of the engineering process itself. While software implementation
is one of the major cost driver in software engineering, the most challenging
task when building an ontology is the conceptualization phase. Further on, the
ontology population/instantiation, a particularity of ontology engineering vs.
the related software field, is often associated with significant efforts depending
on the particularities of the data to be aligned to the ontology. The project
team involved in the construction of an ontology is relatively small compared
to the common team size in software development. As a consequence of the
importance of the conceptualization phase, the role of the user/domain expert
in the ontology construction and his experience in the domain to be modeled are
crucial factors for the success of ontology engineering projects. Finally, as for
the knowledge of the authors, given the present state of the art of the ontology
engineering area, the duration of ontology engineering projects is significantly
shorter than the typical duration of software projects.

Despite these differences a cost estimation model for ontologies should ben-
efit from the similar properties of the two engineering fields. The efforts associ-
ated with the engineering process still depend on the complexity of the resulting
artifact i.e. in the size of the ontology to be modeled and in its functionality,
and in the size of the software product respectively[5, 21]. Therefore a cost

5

model for ontology engineering should take into account the results achieved by
the software engineering community and customize and extend them in order
to cover the particularities of the ontology development task. In the following
section we describe COCOMO II[3] as the main exponent of a comprehensive
list of software cost estimation models in order to identify the ways it can be
re-used for ontology engineering purposes. Detailed overviews and evaluations
on this topic can be found in [5, 21, 8].

2.2 COCOMO II

COCOMO, acronym for Constructive Cost Model, is a simple method to es-
timate the costs i.e. the person months, man hours or duration arising in a
software project. The original COCOMO model - COCOMO 81 - was first
developed in 1981 by Barry W. Boehm[5]. COCOMO 81 provides cost esti-
mation procedures for three classes of software: applications, program systems
and embedded systems. The cost model became a standard tool in industrial
software projects of the eighties. However, since the model was built especially
for the cost prediction involved in the realization of largely custom and build-to-
specification software, it soon became obsolete as new engineering methods and
software system types arose[3]. A new version - COCOMO II - was developed
by the end of the nineties in order to cope with the new requirements:

• new software life cycle processes

• software component reuse

• software re-engineering

• object oriented programming

• standard middleware usage

COCOMOII is intended as a cost model for both resource and time estima-
tion. According to its authors it provides a flexible model calibration depending
on user-defined requirements and abilities using understandable assumptions
and definitions which avoid expensive misunderstandings. It can be customized
to specific organizational settings in order to improve the reliability of its pre-
diction.

Currently COCOMO II is one of the most popular empirical estimation tech-
niques and, like its predecessor COCOMO 81, follows the openness principles
(relationships, algorithms and interfaces are publicly available). The major re-
organization of COCOMO arose out of the need to represent the effects of the
new generation of software approaches. This rethinking helps to ensure that
the results are applicable to all major business sectors of software development.
The development of the new COCOMO was based on the model of the software
practices marketplace (see Table 2).

The developers realized that the end-user programming aspect of the soft-
ware practice marketplace model does not need a COCOMO model; instead a

6

End-User Programming
Application generators
and composition aids Application composition System integration

Infrastructure

Table 2: Software practices marketplace model

simple activity-based estimate was sufficient. The application composition part
of the marketplace is based on object points, i.e. a count of the screens, re-
ports and third-generation language modules developed in the application. The
other three sectors (application generator, system integration and infrastruc-
ture) are based on the mix of an application composition model, an early
design model and a post-architecture model. Consequently the new CO-
COMO offers estimating capability at three levels of granularity to capture the
three stages of the software development process, and provides three levels of
precision models (see Table 3).

State Estimation model Estimation basis
pre-project / prototyping application composition object points

source statements
early design early design or function points

with 7 cost drivers
source statements

development post-architecture or function points
with 17 costs drivers

Table 3: COCOMO 2.0

The model assumes that the costs involved in a software project are signif-
icantly influenced by the size of the software product, usually expressed as the
number of lines of code (KDSI- Kilo lines of delivered source instruction), and by
a particular set of empirically determined cost drivers. The effort is expressed
in person months (PM) i.e. the amount of time that one person spends
on software development in a month. The starting point for the calculation is
the average value PMnominal (nominal person months), which is further refined
with a special increment for maintenance and reuse. Additionally COCOMO II
specifies 22 cost drivers (7 in the Early Design and 17 in the Post-Architecture
model respectively) which should be considered in the calculation of the nominal
person months.

In the following we briefly describe the basic cost calculation principles in
COCOMOII by means of the corresponding formulas:

Application Composition Model : intended for the application composi-
tion part of the marketplace, focuses on the positive and negative effects
of using development tools in the software development process. In this
part of the software development process the result depends on the so-

7

called New Object Points - NOP (points count adjusted for reuse)
and the Productivity Rate - PROD.

PM =
NOP

PROD
(1)

where

NOP =
(object points) ∗ (100−%Reuse)

100
(2)

where

• %Reuse - the percentage of screens, reports s.o. reused from previous
applications pro-rated by degree of reuse;

• PROD - depends on developers’ experience and capability, adapting
values from very low (4) to very high (50).

Early Design Model : used in the early phases of software development that
are characterized by poor knowledge about the size of the product to be
developed, the nature of the individuals involved in the creation process
and the nature of the platform used. It is based on function points which
measure software by quantifying the information processing functionality
associated with the major external data or control input, output or file
types [3]. The function-points costs estimation approach is based on the
degree of functionality in a software and a set of individual project factors.
For the combined Early Design cost drivers, the numerical values of the
contributing Post-Architecture cost drivers are added together with the
resulting totals allocated to an expanded Early Design model rating scale
ranging from extremely low to extremely high (see Table 4).

The associated formulas apply both to the Early Design and to the Post-
Architecture model:

PM = A ∗ [Size′]B ∗
7∏

i=0

EMi + PMM (3)

where

PMM =
ASLOC ∗ AT

100

ATPROD
(4)

B = 1, 01 + 1, 01 ∗
5∑

j=1

SFj (5)

8

Early Design Cost Drivers Post-Architecture Cost Drivers
RCPX-product reliability RELY-required software reliability
and complexity DATA-database size

CPLX-product complexity
DOCU-documentation match
to life-cycle needs

RUSE-required reuse RUSE-required reuse
PDIF-platform difficulty TIME-execution time

STOR-main storage constraint
PVOL-platform volatility

PERS-personnel capability ACAP-analysis capability
PCAP-programmer capability
PCON-personnel capability

PREX-personnel Experience AEXP-application experience
PEXP-platform experience
LTEX-language and tool experience

FCIL-facilities TOOL-use of software tools
SITE-multisite development

SCED-schedule SCED-schedule

Table 4: Early Design and Post-Architecture Cost Drivers

Size′ = Size ∗ (1 +
BRAK

100
) (6)

Size = KNSLOC + KASLOC ∗ (
100−AT

100
) ∗AAM (7)

AAM =


AA+AAF∗(1+0/02(SU)(UNFM)

100 , for AAF ≤ 0, 05

AA+AAF+SU∗UNFM
100 , for AAF ≥ 0, 05

(8)

where

AA percentage of reuse effort due to Assessment and Assimilation

AAF Adaptation Adjustment Factor

AAM Adaptation Adjustment Multiplier

ASLOC Adapted Source Lines of Code

AT Automated Translation

ATPROD Automatic Translation Productivity

9

KASLOC Thousands of Equivalent Source Lines of Code

BRAK Breakage. The amount of controlled change allowed in a software
development before requirements are “frozen”

KNSLOC Thousands of Adapted Source Lines of Code

SF Scale Factors

SU Percentage of reuse effort due to Software Understanding

UNFM Programmer Unfamiliarity

Post-Architecture Model : used between the development of the software
life-cycle architecture and the implementation phase. In this case the
function points used in the Early-Design model are converted to lines
of code, which are defined as logical source statements. The goal is to
measure the amount of intellectual work put into program development,
while difficulties arise when trying to define consistent measures across
different implementation languages [3]. The cost drivers used in this model
are divided into four categories: product, platform, personnel, and project
(see Table 4).

3 ONTOCOM: An Ontology Cost Model

For the development of a cost model for ontologies we adopt a combination of
three estimation methodologies, which are in our opinion applicable to ontology
engineering according to the current state of the art in the field (see Section
2) . Apart from expert judgement, we start with a top level approach, by
identifying upper-level sub-tasks of the ontology engineering process and define
the associated costs using a parametric method. We distinguish among three
areas, whose costs are to be defined separately:

Ontology Building includes all sub-tasks mentioned in Table 1 excepting the
re-usage of available knowledge sources (termed as knowledge acquisition)
and the ontology maintenance.

Ontology Maintenance involves costs related to getting familiar and updat-
ing the ontology.

Ontology Reuse accounts for the efforts related to the re-usage of existing
(source) ontologies for the generation of new (target) ontologies and in-
volves costs related to finding, evaluating and adapting the former ones
to the requirements of the latter.

This upper-level distribution is of course subject of future refinements in order
to increase the usability of the estimation method in real-world engineering
projects. In particular, the ontology building area should be elaborated in the
same top-down manner in order to partition this tedious and complex process
down to a level in which the associated efforts can be reliably predicted. In this

10

case, the cost drivers relevant the overall ontology building process (see below)
are to be aligned to the corresponding sub-phases and activities. 2

As a consequence estimating the effort (in person months) related to ontology
engineering is reduced to a sum of the costs arising in the building (with or
without reuse) and maintaining ontologies:

PM = PMB + PMM + PMR, (9)

where PMB , PMM and PMR represent the effort associated to building, main-
taining and reusing ontologies, respectively.

The costs caused by ontology building are calculated in a COCOMO-similar
manner as:

PMx = Sizex ∗
∏

CDxi (10)

Each of the three development phases is associated with specific cost factors.
Experiences in related engineering areas[21, 5] let us assume that the most
significant one is the size of the ontology involved in the corresponding process.
In the formula above the size parameter Sizex is expressed in thousands of
ontological primitives – concept, relations, axioms and instances. For example
for an ontology with 1000 concepts and 100 relations Size will have the value
1.1. Sizeb corresponds to the size of the newly built ontology i.e. the number
of primitives which are expected to result from the conceptualization phase. In
case of ontology maintenance the size of the ontology (Sizem) depends on the
expected number of modified items. For reuse purposes the relevant factor Sizer

is the size of the original source after being tailored to the present application
setting. In particular this involves the parts of the source ontologies which have
to be translated to the final representation language, the ones whose content has
to be adapted to the target scope and the fragments directly integrated. The cost
drivers CDxi have a rating level (from very low to very high) that expresses their
impact on the development effort. For the purpose of a quantitative analysis,
each rating level of each cost driver is associated to a weight (effort multiplier
- EM). The average EM assigned to a cost driver is 1.0 (nominal weight). If
a rating level causes more development effort, its corresponding EM is above
1.0. If the rating level reduces the effort then the corresponding EM is less
than the nominal value. For each cost driver we specified in detail the decision
criteria which are relevant when assigning the corresponding effort multipliers
(see below).

In the a-priori cost model a team of 3 ontology engineering experts as-
signed start values between 0.1 and 2 to the effort multipliers, depending on
the contribution of the corresponding cost driver to the overall development
costs. These parameters were derived after surveying recent literature and from
empirical findings of various case studies in the ontology engineering field (such

2At this point we restrict to manual ontology building activities. Automatic ontology
generation methods as those proposed in the area of ontology learning are not considered in
this work yet.

11

as [27, 39, 33, 2, 1, 37, 38, 23, 4, 6, 35, 29, 14, 41]). These values are subject of
further calibration on the basis of the statistical analysis of real-world project
data. A list of the initial input values for the cost drivers (the so-called “a-priori
cost model”) is depicted in Appendix A.

The reuse process and its process measures are examined in Section 5. Main-
tenance cost estimation is discussed in Section 6

4 Cost Drivers for Ontology Building

Similar to the COCOMOII cost model we differentiate among product, process
and personnel cost drivers. The product category accounts for the influence
of product properties on the overall costs. The process category states the
dimensions of the engineering process which are relevant for the cost estimation,
while the personnel one emphasizes the role of team experience, ability and
continuity for the effort invested in the process.

4.1 Product Factors

4.1.1 Instance: DATA

The population of an ontology and the associated testing operations might be
related to considerable costs[7, 10, 12, 18, 34]. The measure attempts to capture
the effect instance data requirements have on the overall process. In particular
the form of the instance data and the method required for its ontological for-
malization are significant factors for the costs of the engineering process (Table
5). On the basis of a survey of ontology population and learning approaches, we

DATA
Very Low structured data, same repr. language
Low structured data with formal semantics
Nominal semi-structured data e.g. databases, XML
High semi-structured data in natural language, e. g.

similar web pages
Very High unstructured data in natural langauge, free form

Table 5: Instance Ratings DATA

assume that the population of an ontology with available instance data with an
unambiguous semantics can be performed more cost-effective than the process-
ing of relational tables or XML-structured data. Further on, the extraction of
ontology instances from poorly structured sources like natural language docu-
ments is assigned the highest value magnitude, due to the complexity of the
task itself and of the pre-processing and post-processing activities.

The rating does not take into consideration any costs related to eventual
mapping operations which might be required to integrate data from external
resources. For example, if the data is provided as instances of a second ontology,

12

be that in the same representation language as the one at hand or not, the
estimation of the DATA cost driver should account for the efforts implied by
defining a mapping between the source and the target ontology as well. In this
case, the parameter is to be multiplied with an increment M (Mapping), as
depicted in Table 6 below.

M Increment Ontology
for DATA Mapping
0.0 no mapping necessary
0.2 direct mapping
0.4 concept mapping
0.6 taxonomy mapping
0.8 relation mapping
1.0 axiom mapping

Table 6: M Increment for DATA

The M factor increments the effect of the DATA measure: an 1.0 M incre-
ment causes a 100% increase of the DATA measure while an 0.0 one does not
have any influence on the final value of DATA.

4.1.2 Ontology Complexity: OCPLX

The complexity of the ontology to be built is the major cost factor in the prod-
uct category. The OCPLX measure is intended to account for those ontology
features which increase the complexity of the engineering outcome. After ex-
amining the phases of a common ontology building process, we identified three
main sources of complexity: the domain analysis, the conceptualization and
the instantiation of the ontology. Table 7 illustrates the ratings given for the
three categories w.r.t. intrinsic ontology properties like representation language
or size. The overall ontology complexity is the averaged weighted sum of the
mentioned area.

4.1.3 Required Reusability: REUSE

The measure attempts to capture the effort associated with the development of
a reusable ontology. Reusability is a major issue in the ontology engineering
community, due to the inherent nature of ontologies, as artifacts for knowledge
sharing and reuse. Currently there is no commonly agreed understanding of
the criteria required by an ontology in order to increase its reusability. Usually
reusability is mentioned in the context of application-independency, in that it
is assumed that application-dependent ontologies are likely to imply significant
customization costs if reused. Additionally several types of ontologies are of-
ten presumed to endue an increased reusability: core ontologies and upper-level
ontologies describing general aspects of the world are often used in alignment
tasks in order to ensure high-level ontological correctness. The Formal Ontolog-
ical Analysis of Guarino[17] also mentions 3 levels of generality, which might be

13

OCPLX Domain Conceptuali- Instantiation
Analysis zation

Very Low concept list
small size

Low short req. list taxonomy structured data
coarse grained
appl. indep.
middle size

Nominal middle req. list properties semi-structured data
few conflicting req.

large size
High large req. list instances unstructured data

many conflicting req.
fine grained

Very High axioms

Table 7: The Ontology Complexity Ratings OCPLX

associated with different reusability degrees: upper-level ontologies are used as
ontological commitment for general purpose domain and task ontologies, while
the latter two are combined to realize so-called application ontologies, which are
used for particular tasks in information systems. According to these considera-
tions the rating for the REUSE measure is depicted in Table 8.

Very Low Low Nominal High Very High
for this for this appl. core ont. upper level

REUSE appl. appl. type independent ont.
domain ont.

Table 8: Reusability Ratings REUSE

4.1.4 Documentation match to lifecycle needs: DOCU

The DOCU measure is intended to state the additional costs caused by detailed
documentation requirements. Likewise COCOMOII we differentiate among 5
values from very low (many lifecycle needs uncovered) to very high (very exces-
sive for lifecycle needs) as illustrated in Table 9.

Very Low Low Nominal High Very High
many LC some LC right-sized to excessive for very excessive

DOCU needs needs LC needs LC needs for LC needs
uncovered uncovered

Table 9: Ratings for Documentation Costs

14

4.2 Personnel Factors

4.2.1 Ontologist/Domain Expert Capability: OCAP/DECAP

The development of an ontology requires the collaboration between a team of on-
tology engineers (ontologists), usually with an advanced technical background,
and a team of domain experts that provide the necessary know-how in the field
to be ontologically modeled. These cost drivers account the perceived abil-
ity and efficiency of the single actors involved in the process, as well as their
teamwork capabilities.

Very Low Low Nominal High Very High
OCAP/DECAP 15% 35% 55% 75% 95%

Table 10: Capability Ratings of the Engineering Team OCAP/DECAP

These approximations are adopted from the corresponding ACAP/PCAP
measures in COCOMO, because we assume a homogeneous capability assess-
ment in software and ontology engineering. In comparison to COCOMO, the
programmer capability is ignored since it is reduced to the usage of ontology
management tools and thus covered by LEXP/TEXP (see Subsection 4.2.3).

4.2.2 Ontologist/Domain Expert Experience: OEXP/DEEXP

These measures take into account the experience of the engineering team con-
sisting of both ontologists and domain experts w.r.t. the ontology engineering
process. They are not related to the abilities of single team members, but relate
directly to the experience in constructing ontologies and in conceptualizing a
specific domain respectively.

Very Low Low Nominal High Very High
OEXP 2 months 6 months 1 year 1.5 years 3 years
DEEXP 6 months 1 year 3 years 5 years 7 years

Table 11: Experience Ratings for Ontologists and Domain Experts
OEXP/DEEXP

The COCOMO experience ratings were modified according to the particular-
ities of the ontology engineering process: while ontology engineering is relatively
new in the computer science community (thus maximal rating 3 years), the ex-
perience of the domain experts in their particular field is rated according to a
different scale (an expert in a certain domain is supposed to have a minimal 3
year experience).

4.2.3 Language and Tool Experience: LEXP/TEXP

The aim of these cost drivers is to measure the level experience of the project
team constructing the ontology w.r.t. the conceptualization language and the

15

ontology management tools respectively. The conceptualization phase requires
the usage of knowledge representation languages with appropriate expressivity
(such as Description Logics or Prolog), while the concrete implementation is
addicted to support tools such as editors, validators and reasoners. The dis-
tinction among language and tool experience is justified by the fact that while
ontology languages rely on established knowledge representation languages from
the Artificial Intelligence field and are thus possibly familiar to the ontology
engineer, the tool experience implies explicitly the previous usage of typical on-
tology management tools and is not directly conditioned by the know-how of
the engineering team in the KR field. The maximal time values for the tool
experiences are adapted to the ontology management field and are thus lower
than the corresponding language experience ratings (see Table 12).

Very Low Low Nominal High Very High
LEXP 2 months 6 months 1 year 3 years 6 years
TEXP 2 months 6 months 1 year 1,5 years 3 years

Table 12: Language and Tool Experience LEXP/TEXP

4.2.4 Personnel Continuity: PCON

As in other engineering disciplines frequent changes in the project team are a
major obstacle for the success of an ontology engineering process within given
budget and time constraints. Due to the small size of the project teams we
adapted the general ratings of the COCOMO model to a maximal team size of
10 (Table 13).

Very Low Low Nominal High Very High
PCON 50% 35% 25% 15% 10%

Table 13: Ratings for the personnel turnover PCON

4.3 Project Factors

4.3.1 Support tools for Ontology Engineering: TOOL

The usage of ontology management tools is an essential success factor in every
ontology engineering process. Apart from the implementation phase, which
is worst-case performed by manually feeding the conceptual model to some
ontology editor, the evaluation of the ontology can not be imagined without the
utilization of validation and reasoning tools. A few support tools for the domain
analysis and the conceptualization phases have also been proposed, but their
general acceptance and compatibility to other tools are still an open issue (see
Table 14).

16

Very Low Nominal High Very Extra
Low High High

reasoner editor APIs for tool for ont. tool for completely
TOOL validator implement. population ont. integrated

evolution, tool
moderately
integrated

Table 14: Ratings for support tools for ontology engineering TOOL

4.3.2 Multisite Development: SITE

Constructing an ontology requires intensive communication between ontology
engineers and domain experts on one hand and between domain experts for
consensus achievement purposes on the other hand. This measure involves the
assessment of the communication support tools (Table 15).

Very Low Low Nominal High Very High
SITE mail phone, email teleconference, frequent F2F

fax occasional meetings meetings

Table 15: Ratings for multisite ontology development SITE

4.3.3 Required Development Schedule: SCED

This cost driver takes into account the particularities of the engineering process
given certain schedule constraints. Accelerated schedules (ratings below 100%,
see Table 16) tend to produce more efforts in the refinement and evolution
steps due to the lack of time required by an elaborated domain analysis and
conceptualization. Stretch-out schedules (over 100%) generate more effort in
the earlier phases of the process while the evolution and refinement tasks are
best case neglectable.

Very Low Low Nominal High Very High
SCED 75% 85% 100% 130% 160%

Table 16: Required Development Schedule SCED

For example, a high SCED value of 130% (Table 16) represents a stretch-out
of the nominal schedule of 30% and thus more resources in the domain analysis
and conceptualization.

17

5 Extensions of ONTOCOM for Reuse

Though there is yet no fine-grained methodology to reuse existing ontologies
in the Semantic Web community, the main steps and the associated challenges
involved in the process are well-accepted by current ontology-based projects[30,
39]. This process is, however, related to significant costs and efforts, which
may currently outweigh its benefits. First, as in other engineering disciplines,
reusing some existing component implies costs to find, get familiar with, adapt
and update the necessary modules in a new context. Second building a new
ontology means partially translating between different representation schemes
or performing scheme matching or both.

For our cost estimation model we assume that relevant ontologies are avail-
able to the engineering team and, according to the mentioned top-level approach
and to some case studies in ontology reuse[27, 28, 33, 38, 1] we examine the fol-
lowing two phases of the reuse process w.r.t. the corresponding cost drivers:

• ontology evaluation: get familiar with the ontology and assess its relevance
for the target ontology

• ontology customization: translate the sources to a desired format, even-
tually extract relevant sub-ontologies and finally integrate them to the
target ontology

For the evaluation phase the engineering team is supposed to assess the
relevance of a given ontology to particular application requirements. The suc-
cess of the evaluation depends crucially on the extent to which the ontology is
familiar to the assessment team. The customization phase implies the identifi-
cation/extraction of sub-ontologies which are to be integrated in a direct, trans-
lated and modified form, respectively. In the first categories sub-ontologies are
included directly to the target ontology. The re-usage of the second category is
conditioned by the availability and the appropriate costs of knowledge represen-
tation translators, while the last category involves modifications of the original
model in form of insertions, deletions or updates at the ontological primitives
level.

5.1 Cost Drivers for Ontology Reuse

5.1.1 Ontology Understandability: OU

Reusing an ontology and the associated efforts depend significantly on the ability
of the ontologists and domain experts to understand the ontology, which is
influenced by two categories of factors: the complexity of the conceptual model
and the self-descriptiveness or the clarity of the conceptual model. Additionally,
in case of the ontology engineer the comprehensiveness of an ontology depends
on his domain experience, while domain experts are assumed to provide this
know-how by definition.

Factors contributing to the complexity of the model are the size and expres-
sivity of the ontology and the number of imported models together with the

18

complexity of the import dependency graph. The clarity of the model is mainly
influenced by the human-perceived readability.

Very Low Low Nominal High Very High
Com- complex DG taxon. DG taxon. DG no imports no imports
plexity large ont. large ont. middle ont. middle ont. small ont.

complex RL complex RL moderate RL simple RL simple RL
no concept concept concept concept concept

names, names, names, names, names,
Clarity RL know-how RL know-how RL tool RL tool RL tool

no comm. no comm. 30 % comm. 60% comm. 90% comm.
no metadata no metadata no metadata no metadata metadata

Table 17: Complexity and Clarity Levels for Ontology Understanding

The complexity of the ontology depends on three factors: the size of the
ontology, the expressivity of used representation language and the structure of
the import graph – containing imported ontologies. The import graph structure
(DG - dependency graph) can be divided into simple, as in taxonomical tree
structures and complex, as in non-tree structures. Further on, the complexity of
the used syntax (RL in Table 17) is termed to be simple for common taxonomical
hierarchies, moderate if further property types are used and complex in the case
of restrictions and axioms. The third ontology complexity driver is related to
the size of the ontology: small ontologies are supposed to contain up to 100
ontological primitives, middle ontologies contain up to 1000 concepts, while
ontologies with more than 1000 concepts are classified as large in our model
(see Table 17)

The clarity categorization depends on the readability/meaningfulness of on-
tological primitives, the technical know-how required by the representation lan-
guage and the availability of natural language comments (comm.) and defi-
nitions. The understandability of an ontology can be increased significantly
when ontological primitives are given meaningful names in a natural language
which is familiar to the ontology engineer and the domain expert respectively.
Further on, a self-descriptive representation language does not cause significant
impediments in dealing with an ontology, especially when user-friendly tools are
available.

5.1.2 Ontologist/Domain Expert Unfamiliarity: UNFM

The effort related to ontology maintenance decreases significantly in situations
where the human user works frequently with the particular ontology. This mea-
sure accounts for this dependency and distinguishes among 6 levels as depicted
in Table 18.

The UNFM factor increments the effect of the Ontology Understanding mea-
sure: an 1.0 UNFM increment causes a 100% increase of the OU measure while
an 0.0 one does not have any influence on the final value of OU (see Table 18).

19

OU Increment Level of
for UNFM Unfamiliarity
0.0 self built
0.2 team built
0.4 every day usage
0.6 occasional usage
0.8 little experience
1.0 completely unfamiliar

Table 18: OU Increment for UNFM

5.1.3 Ontology Evaluation: OE

This measure accounts for the real effort needed to evaluate the ontology for
reuse purposes (see Table 19). The measure assumes a satisfactory ontology
understanding level and is associated solely with the efforts needed in order to
decide whether a given ontology satisfies a particular set of requirements and to
integrate its description into the overall product description.

Rating Scale for Level of activity required
the OE Increment
Very Low none
Low basic documentation
Nominal some testing and documentation
High considerable testing and documentation
Very High extensive testing and documentation

Table 19: Rating Scale for the Ontology Evaluation Increment

5.1.4 Ontology Modification: OM

This measure reflects the complexity of the modifications required by the reuse
process after the evaluation phase has been completed.

Very Low Low Nominal High Very High
OM few, simple some simple some considerable excessive

modifications modifications moderate mod. modifications modifications

Table 20: Efforts for modification

5.1.5 Ontology Translation: OT

Translating between knowledge representation languages is an essential part
of a reuse process. Depending on the compatibility of the source and target

20

representation languages, as well as on the availability and performance of the
translating tools (amount of pre- and post-processing required)[20, 9], we dif-
ferentiate among 5 values as depicted in Table 21.

Very Low Low Nominal High Very High
OT direct low manual some manual considerable manual

effort effort manual effort
effort

Table 21: Efforts for translation

5.1.6 Reuse formula

The cost drivers mentioned above flow in the person months calculation of the
reuse process as follows:

PMR = SizeR ∗
∏

CDi (11)

The reused size is divided into the size of the directly integrated, translated
and modified components with different cost drivers.

SizeR = Sizedir ∗ (OU ∗ UNFM + OE) + (12)
Sizetrans ∗ (OU ∗ UNFM + OE + OT) +
Sizemod ∗ (OU ∗ FM + OE + OM) +
Sizetransmod ∗ (OU ∗ UNFM + OE + OT + OM)

6 Extensions of ONTOCOM for Maintenance

The maintenance cost model is similar to its reuse counterpart, but it does
not take into consideration translation and evaluation costs. The maintenance
process still implies efforts to get familiar with the ontology as well as the
real costs of the update, insert or delete operations. We obtain the following
computation formula for the maintenance person months:

PMM = SizeM ∗
∏

CDi (13)

where SizeM is the sum of the added and modified ontology fragments,
which are influenced by the OU , UNFM and OM cost factors as follows:

SizeM = Sizeadded ∗OU ∗ UNFM + (14)
Sizemodified ∗ (OU ∗ UNFM + OM)

21

7 Evaluation

The parametric approach described in this report is subject of further refine-
ments towards a reliable method for estimating the costs of ontology engineer-
ing. The most important evaluation criterium is of course the reliability of
its predictions, which depends on the amount of accurate project data used to
calibrate the model i.e. to adjust the values of the modifiers and to identify
eventual correlated cost drivers. However, a comprehensive evaluation of the
model should go beyond the evaluation of its functionality (i.e. the accuracy
of its estimations) and address issues related the quality of its usage in typical
ontology engineering scenarios, as suggested in common quality frameworks for
information systems (such as [31, 25, 19, 22]; see [11] for a comprehensive survey
on this topic).

For a comprehensive evaluation of the model we rely on the quality frame-
work for cost models by Boehm, which is a list of required and desirable fea-
tures for these category of models, showing many similarities with established
frameworks for evaluating information or data models[11]. For our purposes
we adapted this framework to the particularities of ONTOCOM and ontology
engineering and used parts of its in order to assess the quality of the a-priori
and the a-posteriori cost models, respectively.

The evaluation of the cost model is intended to be performed in two steps.
In the first one we evaluated the relevance of the mentioned cost drivers for
the purpose of predicting costs arisen in ontology engineering projects. The
remaining aspects of the framework relate to its capability of reliably fulfilling its
goal (i.e. that of estimating engineering efforts) and will be applied in a second
step on the a-posteriori model resulting from the calibration of the preliminary
one.

The original quality framework by Boehm[5] consisted of the 10 features,
which we divided these features into two categories, depending on their relevance
to the a-priori and the a-posteriori model, respectively. The meaning of the
quality criteria has been adapted to the scope of ONTOCOM.

a-priori evaluation

definition has the model clearly defined the costs it is estimating and the
costs it is excluding? Does the estimate include the cost of manage-
ment, training, domain analysis, conceptualization, implementation,
testing, maintenance? Does the model clearly define the decision cri-
teria used to specify the ratings of the cost drivers? Does the model
use intuitive and non-ambiguous terms to denominate the cost drivers
it involves?

objectivity does the model avoid allocating most of the cost variance
to poorly calibrated subjective factors? Are the cost drivers defined
using objective decision criteria, which allow an accurate assignment
of the corresponding cost driver ratings?

22

constructiveness can a user tell why the model gives the estimates it
does?

detail does the model easily accommodate the estimation of new process
models or is it conceived for a particular ontology engineering process?
Does it give accurate phase and activity breakdowns? Does the model
take into consideration factors related to the main tasks of the engi-
neering process? Do these sub-tasks correspond to the process model
applied in your engineering process? Which phases should be further
covered by the model in order to increase its usability?

stability do small differences in inputs produce small differences in out-
put cost estimates?

scope does the model cover the class of projects whose costs you want to
estimate? Is it representative for a wide class of ontology engineering
projects?

ease of use are the model inputs and options easy to understand and
specify? Is it easy for you to assess a rating to a cost driver based on
the associated decision criteria?

prospectiveness does the model avoid the user of information which will
not be well known until the project is complete? Can the model be
applied in early phases of the project as well?

parsimony does the model avoid the use of highly redundant factors or
factors which make no appreciable contribution to the results?

a-posteriori evaluation

all items of the former category, plus

fidelity, since this requirement will definitely not be fulfilled after collect-
ing reliable data from previous projects used to refine the values of
the cost drivers and to discover eventual correlations between them.

The a-priori evaluation is currently being performed on the basis of a two-
phased structured process, in which domain experts from industry and academia
are interviewed on these topics. The evaluation activity is monitored by two
ontology engineers, with a solid background in the field and deep knowledge
of the cost estimation model to be validated. The interviewed expert team
consists of approximately 10 members with similar knowledge background in the
engineering field, who were trained in advanced in order to understand the main
ideas of the ONTOCOM model. The results of the first phase of the evaluation,
are currently collected and analyzed by the team conducting the study. They
will be used to trigger the second phase of the Delphi process, striving for the
achievement of a common opinion on the modifications the preliminary model
should be subject of. The final analysis of the interviews will result in a new
version of the a-priori cost model, whose content has been validated according
to the judgement of the expert team. The a-posteriori evaluation of the model

23

will be performed in a similar manner, but it depends on the availability of
historical project data used to calibrate the parametric equations underlying
the model.

8 Conclusions and Future Work

This report aims at developing a prototypical cost estimation model for the
ontology engineering area. The model is intended to predict cost arisen during
ontology engineering processes by analyzing the costs factors caused by the end
product, the process itself and the engineering team. Starting from an analysis of
general-purpose estimation methodologies and of the most prominent exponent
in the area of software engineering, COCOMO, we propose a methodology to
deduce ontology costs and examine costs factors implied by ontology building,
reuse and maintenance.

In order to establish a cost estimation model we apply a composite method-
ology starting with a top-level analysis of the engineering steps, whose costs are
at first predicted using a COCOMO-like parametric method and are to be em-
pirically validated using expert judgement. At present we defined a preliminary
parametric model, which is to be calibrated on the basis of real project data
and refined by engineering experts.

Acknowledgements This work is a result of the cooperation within the Seman-
tic Web PhD-Network Berlin-Brandenburg and has been partially supported by
the KnowledgeWeb - Network of Excellence, by the Project A Semantic Web
for Pathology” funded by the DFG (German Research Foundation) and by the
Knowledge Nets” project, which is part of the InterVal- Berlin Research Centre
for the Internet Economy, funded by the German Ministry of Research BMBF.

A Non-calibrated Values of the Cost Drivers in
ONTOCOM

The initial input values for the cost drivers in the ONTOCOM model are illus-
trated in Tables 22 and 23.

24

Cost Drivers Rating
Very Low Low Nominal High Very High

DATA 0,80 0,90 1 1,30 1,60
REUSE 0,70 0,85 1 1,15 1,30
DOCU 0,70 0,85 1 1,15 1,30
OCPLX 0,70 0,85 1 1,30 1,60
OCAP 1,30 1,15 1 0,85 0,70

DECAP 1,30 1,15 1 0,85 0,70
OEXP 1,30 1,15 1 0,85 0,70

DEEXP 1,30 1,15 1 0,85 0,70
LEXP 1,60 1,30 1 0,90 0,80
TEXP 1,50 1,25 1 0,90 0,80
PCON 1,30 1,15 1 0,85 0,70
TOOL 1,60 1,30 1 0,90 0,80
SITE 1,30 1,15 1 0,85 0,70
SCED 1,30 1,15 1 0,85 0,70

Table 22: Cost Drivers for Ontology Building and their ratings

Cost Drivers Rating
Very Low Low Nominal High Very High

OU 1,80 1,40 1 0,90 0,80
OE 0,70 0,85 1 1,30 1,60
OM 0,80 0,90 1 1,20 1,40
OT 0,70 0,85 1 1,30 1,60

Table 23: Cost Drivers for Ontology Reuse/Maintenance and their ratings

B Cost Model Validation - Questionnaire

B.1 Part 1 - General questions about the ontology engi-
neering process

• Which were the most challenging aspects of the ontology engineering
process according to your experiences and why? (Table 24)?

• Which phase of the ontology engineering process (domain analysis, con-
ceptualization, implementation, instantiation, evaluation & refinement or
maintenance) was the most complex and time and resource intensive?
Why?

25

Engineering Phase Difficulties encountered
Domain analysis
(requirements specification knowledge acquisition)
Conceptualization
(conceptual model)
Implementation
(specification of the conceptual model)
Instantiation

Evaluation & Refinement

Maintenance

Table 24: Challenging aspects

• Which cost factors (e.g. team experience and know-how in the ontology
representation language and tools) were relevant in each phase of ontology
engineering process (Table 25)?

Engineering Phase Cost factors
Domain analysis
(requirements specification knowledge acquisition)
Conceptualization
(conceptual model)
Implementation
(specification of the conceptual model)
Instantiation

Evaluation & Refinement

Maintenance

Table 25: Relevant factors

• When would you characterize an existing ontology as complex?

• Which factors affect the understandability of an existing ontology? In
your opinion when makes an existing ontology difficult to understand?

• The ontology engineering process requires the cooperation between ontol-
ogy and domain experts. What was the level of experience of the team
with respect to engineering ontologies in your case? Please mark the right
answer(s). Please mark the right answer(s) in the Table 26.

26

Experience Ontology Domain
engineer expert

Theoretical knowledge about
ontologies and ontology
engineering process (they have not
built an ontology themselves yet)
Practical knowledge
(they have already worked with
/developed ontologies)
No experiences with ontologies
Domain knowledge

Table 26: Level of Experience

27

B.2 Part 2 - Questions to pre-selected costs factors

• 2.1. How do you judge the importance of the following factors with respect
to the costs (time and resources) arisen during the process of ontology
development? Please mark the right answer (Tab. 27, 28, 29).

Product Factors
Not Relevant Very No
relevant relevant opinion

Amount of instance data/ com-
plexity the instantiation (DATA)
Explanation: this factor concerns the form
of the instance data and the method used
for the extraction of ontology instances and
their integration to the ontology

Required reusability of the ontol-
ogy (REUSE)
Explanation: this factor attempts to cap-
ture the additional effort associated with
the development of a reusable ontology

Documentation match to lifecycle
needs (DOCU)
Explanation: this factor states the addi-
tional costs caused by detailed documen-
tation requirements

Ontology Complexity (OCPLX)
Explanation: this factor is intended to ac-
count for those ontology features which in-
crease the complexity of the engineering
outcome (e.g. large domain, large require-
ment list with many conflicting ones, exis-
tence of instances)

Table 27: Product Factors

28

Personnel Factors
Not Relevant Very No
relevant relevant opinion

Ontologist Expert Capability
(OCAP)
Explanation: this factor is related to the aver-
age level of technical of the ontology engineer
(ontologist).

Domain Expert Capability (DECAP)
Explanation: this factor is related to the aver-
age level of domain knowledge of domain ex-
pert.

Experience of the ontologist with
ontologies and their development
(OEXP)
Explanation: this factor takes into account the
experience of the team of ontologists w.r.t. the
ontology engineering process.

Experience of the domain expert
with ontologies and their develop-
ment (DEEXP)
Explanation: this factor takes into account
the previous experience of the domain experts’
team w.r.t. the ontology engineering process.

Experience of the team with ontology
representation languages (LEXP)
Explanation: this factor measures the level ex-
perience of the project team constructing the
ontology w.r.t. the ontology representation
language.

Experience of the team with ontology
engineering tools (TEXP)
Explanation: this factor measures the level
experience of the project team constructing
the ontology w.r.t ontology management tools
(e.g. editors, validators).

Continuity of the personnel (PCON)
Explanation: this factor expresses the addi-
tional costs caused by frequent changes in the
project team.

Table 28: Personnel Factors

29

Project Factors
Not Relevant Very No
relevant relevant opinion

Availability of the support tools
for ontology engineering (TOOL)
Explanation: this factor takes into account
the influence the usage of ontology man-
agement tools (editors, validators, tools
for ontology population or evaluation, etc.)
has on the overall costs.

Multi-site development(SITE)
Explanation: this factor involves the ad-
ditional costs arisen in a project in which
the engineering team is located at different
sites.

Required development schedule
with deadlines (SCED)
Explanation: this factor takes into account
the cost implied by particular time sched-
ule constraints. Schedule constraints influ-
ence the effort invested in single phases of
the engineering process.)

Table 29: Project Factors

30

• Which of the above listed cost factors (Tables 27, 28, 29) are in your
opinion overlapping?

• Which of the above listed cost factors (Tables 27, 28, 29) should be re-
named and how?

• Which other relevant cost factors do you miss in the lists above (Ta-
bles 27, 28, 29)?

• How do you judge the importance of the following factors with respect to
the costs (time and resources) arisen during the process of reusing existing
ontologies? Please mark the right answer (Table 30).

31

Reuse Factors
Not Relevant Very No
relevant relevant opinion

Ontology Understanding (OU)
Explanation: this factor expresses the abil-
ity of the ontologists and domain ex-
perts to understand the ontology (how
well a given ontology can be understood
by the engineering team re-using it). It
is influenced by two categories of fac-
tors: the complexity of the conceptual
model (which depends on existence of im-
ports, size of the ontology, expressivity of
used representation language) and the self-
descriptiveness or the clarity of the con-
ceptual model (which depends on read-
ability/meaningfulness of ontological prim-
itives, availability of metadata, etc.))

Ontologist/Domain Expert Unfa-
miliarity (UNFM)
Explanation: this factor increments the
impact of the OU cost driver and it ex-
presses the level of unfamiliarity of the
engineering team w.r.t. the ontology to
be reused (did the team build themselves?
does the team work with it every day? does
the team have only little experience with
this ontology?

Ontology Evaluation (OE)
Explanation: this factor expresses the real
effort needed to evaluate the ontology for
reuse purposes including different level of
documentation and different level of test-
ing required to assess its relevance in a cer-
tain context.

Ontology Modification (OM)
Explanation: this factor accounts for the
complexity of the modifications required
by the reuse process after the evaluation
phase has been completed (e.g. simple
modification, excessive modification)

Ontology Translation (OT)
Explanation: this factor expresses the ef-
fort invested in the translation between
knowledge representation languages of the
source and target ontology.

Table 30: Reuse Factors

32

• Which of the above listed cost factors (Table 30) are, in your opinion,
overlapping?

• Which of the above listed cost factors (Table 30) should be renamed and
how?

• In your opinion, which other relevant cost factors (Table 30) have not been
listed above?

• How do you judge the importance of the following factors with respect to
the complexity of an ontology? (Table 31)?

Factors Not Relevant Very No
relevant relevant opinion

Size of the ontology/
Number of ontological
primitives
Expressivity of
the used representation
language
Structure of
the import graph
of an ontology
(i.e. the graph consisting
of external ontologies,
which are imported
in the first one)

Table 31: Importance of factors

• In your opinion, which other relevant factors have not been listed in Ta-
ble 31?

33

Cost Driver Rating (Value)
DATA High (1,30)
REUSE Nominal (1)
DOCU Low (0,85)
OCPLX High/Very High (1,40)
OCAP High (0,85)

DECAP Low (1,15)
OEXP High (0,85)

DEEXP Very Low (1,30)
LEXP Nominal (1)
TEXP Nominal (1)
PCON Very High (0,70)
TOOL Very Low (1,60)
SITE Nominal (1)
SCED Nominal (1)

C Using ONTOCOM: An Example

In this section we give a brief example on the usage of the ontology cost model
described in this report. Starting from a typical ontology building scenario, in
which a domain ontology is created from scratch by the engineering team, we
simulate the cost estimation process according to the parametric method under-
lying ONTOCOM. Given the top-down nature of our approach this estimation
can be realized in the early phases of a project, in particular after the domain
analysis has been accomplished and an initial prediction of the size of the target
ontology is available.

The first step of the cost estimation is the specification of the size of the on-
tology to be build, expressed in thousands of ontological primitives. Ontological
primitives are concepts, relations (including is-a), axioms and instances. Note
that we do not consider the size of the data set which will be used to populate
the ontology, but only the instances which are to be conceptualized manually
during the conceptualization phase. For example, if we consider an ontology
with 1000 concepts, 200 relations and 100 axioms, the size parameter of the
estimation formula will be 1,3

The next step is the specification of the cost driver ratings, corresponding
to the information available at this point to the engineering team and to the
decision criteria assigned to each rating (Section 4). Assuming that the ratings
of the cost drivers are those depicted in Table C these ratings are replaced by
numerical values (as illustrated in Table 22 in Appendix A).

According to formula 10 the estimated effort in person months would be
2,43PMs:

PM = 1, 3 ∗ 1, 3 ∗ 1 ∗ 0, 852 ∗ 1, 15 ∗ 0, 85 ∗ 1, 3 ∗ 1 ∗ 1 ∗ 0, 7 ∗ 1, 6 ∗ 12(15)

34

The value of the OCPLX cost driver was computed as an equally weighted,
averaged sum of a high-valued rating for the domain analysis (1,3) , a very
high rating for the conceptualization (1,6) and a high effort multiplier for the
instantiation phase, respectively:

OCPLX = 1 ∗ 1, 3 + 1 ∗ 1, 6 + 1 ∗ 1, 31 + 1 + 1 (16)

35

References

[1] A. Advani, S. Tu, and M. Musen. Domain Modeling with Integrated On-
tologies: Principles for Reconciliation and Reuse. Technical Report SMI-
97-0681, Stanford Medical Informatics, 1997.

[2] M. Annamalai and L. Sterling. Guidelines for Constructing Reusable Do-
main Ontologies. In Proceedings of the OAS, pages 71–74, 2003.

[3] B. W. Boehm, C. Abts, B. Clark and S. Devnani-Chulani. COCOMO II
Model Definition Manual, 1997.

[4] A. Bernaras, I. Laresgoiti, and J. Corera. Building and Reusing Ontolo-
gies for Electrical Network Applications. In Proceedings of the European
Conference on Artificial Intelligence ECAI96, 1996.

[5] B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[6] W. N. Borst. Construction of Engineering Ontologies. Technical report,
University of Tweenty, Eschede, 1997.

[7] P. Buitelaar, D. Olejnik, and M. Sintek. A Protege Plug-In for Ontology
Extraction from Text Based on Linguisitc Analysis. In Proceedings of the
European Semantic Web Symposium ESWS04, 2004.

[8] S. Chulani. Incorporating Bayesian Analysis to Improve the Accuracy of
COCOMO II and Its Quality Model Extension. PhD thesis, University of
Southern California, 1998.

[9] S. Cranefield. UML and the Semantic Web. In Proceedings of the 1st
Semantic Web Working Symposium SWWS01, pages 113–130, 2001.

[10] M. Dittenbach, H. Berger, and D. Merll. Improving domain ontologies
by mining semantics from text. In Proceedings of the 1st Asian-Pacific
Conference on Conceptual Modelling, pages 91–100, 2004.

[11] M. J. Eppler. The Concept of Information Quality: An Interdisciplinary
Evaluation of Recent Information Quality Frameworks. Studies in Com-
munication Sciences, 1:167–182, 2001.

[12] D. Faure and Poibeau T. First experiments of using semantic knowledge
learned by ASIUM for information extraction task using INTEX. In Pro-
ceedings of the Ontology Learning Workshop at the ECAI00, 2000.

[13] M. Fernandez, A. Gomez-Perez, and N. Juristo. Methontology: From onto-
logical art towards ontological engineering. In Proceedings of the AAAI’97
Spring Symposium on Ontological Engineering, 1997.

[14] A. Fernndez-Lpez, M.and Gmez-Prez, A. Pazos-Sierra, and J. Pazos-Sierra.
Building a Chemical Ontology Using METHONTOLOGY and the Ontol-
ogy Design Environment. IEEE Intelligent Systems and their Applications,
pages 37–46, January/February 1999.

36

[15] M. Fernndez-Lpez and A. Gmez-Prez. Overview and analysis of methodolo-
gies for building ontologies. Knowledge Engineering Review, 17(2):129–156,
2002.

[16] M. Grüninger and M. Fox. Methodology for the Design and Evaluation of
Ontologies. In Proceedings of the IJCAI’95, Workshop on Basic Ontological
Issues in Knowledge Sharing, 1995.

[17] N. Guarino. Formal Ontology and Information Systems. In Proceedings of
the International Conference on Formal Ontology and Information Systems
FOIS98, pages 3–15, 1998.

[18] U. Hahn, M. Romacker, and K. Schnattinger. Automatic knowledge ac-
quisition from medical text. In Proceedings of the 1996 AMIA Annual
Symposium, pages 383 – 387, 1996.

[19] K. T. Huang, Y. W. Lee, and R. Y. Wang. Quality Information and Knowl-
edge. Prentice Hall, 1999.

[20] M. Sabou K. Falkovych and H. Stuckenschmidt. UML for the Semantic
Web: Transformation-Based Approaches, volume Knowledge Transforma-
tion for the Semantic Web. IOS Press, 2003.

[21] C. F. Kemerer. An Empirical Validation of Software Cost Estimation Mod-
els. C-ACM, 30(5), 1987.

[22] J. Krogstie, O. I. Lindland, and G. Sindre. Defining Quality Aspects for
Conceptual Models. In Proceedings of the IFIP8.1 working conference on
Information Systems Concepts ISCO03: Towards a Consolidation of Views,
1995.

[23] D. B. Lenat and R. V. Guha. Building large knowledge-based systems.
Addison-Wesley Publising Company, 1990.

[24] A. Maedche and S. Staab. Measuring Similarity between Ontologies. In Pro-
ceedings of the European Conference on Knowledge Acquisition and Man-
agement EKAW02, 2002.

[25] D. L. Moody, G. Sindre, T. Brasethvik, and A. Solvberg. Evaluating the
quality of information models: empirical testing of a conceptual model
quality framework. In Proceedings of the 25th International Conference on
Software Engineering ICSE03, 2003.

[26] National Aeronautics and Space Administration (NASA). NASA Cost Es-
timating Handbook 2004, 2004.

[27] E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies in Ontology
Reuse. In Proceedings of the 5th International Conference on Knowledge
Management IKNOW05, 2005.

37

[28] E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Towards a methodol-
ogy for ontology reuse. In Proceedings of the International Conference on
Terminology and Knowledge Engineering TKE05(to be published), 2005.

[29] B. J. Peterson, W. A. Andersen, and J. Engel. Knowledge Bus: Generating
Application-focused Databases from Large Ontologies. In Proceedings of the
KRDB, 1998.

[30] H. S. Pinto and J. P. Martins. A methodology for ontology integration.
In Proceedings of the International Conference on Knowledge Capture K-
CAP2001, pages 131–138. ACM Press, 2001.

[31] R. Price and G. Shanks. A Semiotic Information Quality Framework. In
Proceedings of the International Conference on Decision Support Systems
DSS04, 2004.

[32] R.D. Stewart (Editor) and R.M. Wyskida (Editor) and J.D. Johannes (Ed-
itor). Cost Estimator’s Reference Manual. Wiley, 2 edition, 1995.

[33] T. Russ, A. Valente, R. MacGregor, and W. Swartout. Practical Experi-
ences in Trading Off Ontology Usability and Reusability. In Proceedings of
the Knowledge Acquisition Workshop KAW99, 1999.

[34] D. Schlangen, M. Stede, and E. Paslaru Bontas. Feeding OWL: Extracting
and Representing the Content of Pathology Reports. In Proceedings of the
NLPXML04, 2004.

[35] F. Sowa, A. Bremen, and S. Apke. Entwicklung der Kompetenz-Ontologie
fr die Deutsche Montan Technologie GmbH. http://www.kowien.uni-
essen.de/workshop/DMT 01102003.pdf, 2003.

[36] Y. Sure, S. Staab, and R. Studer. On-To-Knowledge Methodology
(OTKM). In Handbook on Ontologies, pages 117–132. 2004.

[37] B. Swartout, R. Patil, K. Knight, and T. Russ. Toward Distributed Use of
Large-Scale Ontologies. In Proceedings of the 10th Knowledge Acquisition
for Knowledge-Based Systems Workshop, 1996.

[38] M. Uschold, P. Clark, M. Healy, K. Williamson, and S. Woods. An Experi-
ment in Ontology Reuse. In Proceedings of the 11th Knowledge Acquisition
Workshop KAW98, 1998.

[39] M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology
Reuse and Application. In Proceedings of the International Conference on
Formal Ontology and Information Systems FOIS98, pages 179–192, 1998.

[40] M. Uschold and M. King. Towards a Methodology for Building Ontologies.
In Proceedings of the IJCAI’95, Workshop on Basic Ontological Issues in
Knowledge Sharing, 1995.

38

[41] M. Uschold, M. King, S. Moralee, and Y. Zorgios. The Enterprise Ontology.
The Knowledge Engineering Review, 13, 1998.

39

