Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics

Tl 3: Operating Systems and Computer Networks

Freie Universitat G(LS

TI Ill: Operating Systems & Computer Networks

Memory

Prof. Dr.-Ing. Jochen Schiller
Computer Systems & Telematics
Freie Universitat Berlin, Germany

fork

l

Created
Preempted
return S enough not enough memor: Y
to user ry o memory, (swapping system only)
~
S
\\
User .
Running preempt .
swap out N
return reschedule Re.mim y to Run™ » Ready to Run
process oy swap in s
system call,
Interrupt Kernel
Running
interrupt seep wakeup wakeup
interrupt return exit
v
Asleep in swap out Sleep,
—_—b
Zomhbie Memory Swapped

Freie Universitit £

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls
3. Processes

4, Memory

5. Scheduling

6. 1/O and File System

7. Booting, Services, and Security

Tl 3: Operating Systems and Computer Networks 4.2

Freie Universitat

Motivation
To which location in memory should the process image be loaded? Memory
What happens to all the addresses contained in the process image? Operating

System

How does the OS know that no other process is using that memory?

How can the OS prevent a process from accessing memory that it doesn’t “own”?

001010111
010011010
101010101
011011010
1010100...

What's the best method to efficiently manage memory requests?

4.3

Tl 3: Operating Systems and Computer Networks

W

¥ i
&F o
e

7 ol 19 Berin

Freie Universitat g i)
e y=

Motivation

See course Computer Architecture!

« Here many pointers to this course »
» Lecture does not cover all slides A e
Y, P, Sy .
e'bo 4 &%“\\‘q
2 G
w¥
O’It‘b e{‘cov\
L SR
et
oggo'?ﬁ
Ote,, =
Sta'_a;::]e %M%‘\e

Figure 1.14 The Memory Hierarchy

Tl 3: Operating Systems and Computer Networks 4.4

Memory Management

Closely related to processes
-Memory management isolates processes from each other

Goals
- Subdividing memory to accommodate multiple processes

-Memory needs to be allocated to ensure a reasonable supply of
ready processes to consume available processor time

Requirements
-Relocation: Location in (physical) memory unknown or may change

-Protection: Disallow access to memory of other processes
-Sharing: Data for communication (IPC), program copy for memory reduction

Tl 3: Operating Systems and Computer Networks

Freie Universitat

Memory

Operating
System

Addressing
Physical Address

- The absolute address or actual location in main memory
- Used by the kernel (to implement logical addresses)

Relative Address

- Address expressed as a location relative to some known point
- Also commonly found in application programming (arrays)

Logical/Virtual Address

- Reference to memory location independent of current assignment of data to memory
- Translation must be made to physical address
- Requires hardware support

Address space
- Range of addresses that are (within the address space) unambiguously addressable

Tl 3: Operating Systems and Computer Networks

Freie Universitat ({18

Addressing

Tl 3: Operating Systems and Computer Networks

Relative address

Base Register |- ——————————————————————

Bounds Register l—b Comparator |- — — —

v
Interrupt to

operaling system

Process Control Block

Program

Data

Stack

Process image in
main memory

Freie Universitat (f

Y2 Berlin

Memory Access

Tl 3: Operating Systems and Computer Networks

~A

Word Transfer

Block Transfer

~A—

>]
CPU Cache Main Memory
Fast Slow
(a) Single cache
CPU Level 1 Level 2 Level3 |—» Main
(L1) cache (L2) cache (L3) cache | Lg | Memory
Fastest Fast
Less Slow
fast

(b) Threelevel cache orgamization

Figure 1.16 Cache and Main Memeory

Freie Universitat ({18

:IT-_' Berlin

LR,

S
=

Freie Universitat E(1.S

Questions & Tasks

-Can you imagine a computer system without memory management?
-What are pros and cons of having many/few processes in memory?

-Repeat relevant sections of Computer Architecture if you have to refresh your knowledge about caches,
memory access, memory hierarchy etc.

TI 111 - Operating Systems and Computer Networks

2 \W s
3
[=
VBRI

Freie Universitat (| L)

FIXED AND DYNAMIC PARTITIONING

Tl 3: Operating Systems and Computer Networks 4.10

e
-

Freie Universitat

z@mg—nl)i? Berlin

P

Fixed Partitioning

(a) Equal-size partitions (b) Unequal-size partitions

Tl 3: Operating Systems and Computer Networks 4.11

Fixed Partitions

Memory partitioned into fixed pieces, each
partition can hold one process

Amount of processes in main memory is bounded

by the number of partitions

»Internal fragmentation

NEW PROCESSES P9

P8

P7

Tl 3: Operating Systems and Computer Networks

Freie Universitit [:

INTERNAL
FRAGMENTATION

FREE CELLS

-USED CELLS

4.12

Dynamic Partitions

Memory is divided into variable sized partitions on demand

(1) i

I'[! I'{i "

(2)

%%

(3)

Freie Universitit

V%

’s,\‘f el

FREE CELLS

-USED CELLS

Although there is enough space left for P5 it can not be allocated to the process because it is not

continuous
»External fragmentation

Tl 3: Operating Systems and Computer Networks

4.13

Dynamic Partitioning

System

Operating %. M

> 56M

(@)

Operating
System

Process 1 20M

14M

Process 3 18M

M

(e)

Tl 3: Operating Systems and Computer Networks

Operating
System
Process 1 l 20M
r\ 36M
(b)
Operating
System
Process 1 20M
Process 4 8M
6M
Process 3 18M
1M
0

Operating
System

Process 1

Process 2

(©)

Operating
System

Process 4

Process 3

20M

14M

22M

20M

8M
oM

18M

1M

Operating
System

Process 1

Process 2

Process 3

(d

Operating
System

Process 2

Process 4

Process 3

(k)

20M

14M

18M

1M

14M

6M

8M
oM

18M

M

Freie Universit'ait

E Berlin

4.14

Implementation

New
Processes

Tl 3: Operating Systems and Computer Networks

ITITT—>
I —

T —
I —

T —>

T —>

I —

Operating
System

New
Processes

(a) One process queue per partition

Operating
System

(b) Single queue

Freie Universitit

)&/ Berlin

4.15

Freie Universitit 18

Dynamic Placement Algorithms

M SM
12M First Fit 12M
First-fit algorithm: -
-Scans memory from the beginning L M
»Chooses first available block that is large enough as
:Hozatm 1M M
block (14M)
Next-fit algorithm: L
-Scans memory from the location of the last placement M M
»Tends to allocate block of memory at end of memory 6M ™
. I:I Allocated block
(where largest block is commonly found)
I:I Free block
14M I:I Possible new allocation 14M
Next Fit

20 M

(a) Belore (b) After

Tl 3: Operating Systems and Computer Networks 4.16

Buddy System

Combines advantages of fixed and dynamic allocation

Entire available space is treated as single block of size 2Y bytes
-U := number of bits in address

If memory of size s is requested (2Y1 < s <= 2Y), entire block is allocated
-Otherwise block is split into two equal buddies
-Process continues until smallest block greater than or equal to s is

generated

»Free blocks can easily be merged into bigger blocks

»Compactification eased by regularly sized blocks

Tl 3: Operating Systems and Computer Networks

4.17

Buddy System: Example

1 Mbyte block
Request 100 K
Request 240 K
Request 64 K
Request 256 K
Release B
Release A
Request 75 K
Release C
Release E

Release D

Tl 3: Operating Systems and Computer Networks

Freie Universitit (

1M
A=128K| 128K 256 K S12 K
A=128K| 12K B=256K S12 K
A=128K [c=ng6d K B=256K S12 K
A=128K c=ng6d4 K B=256K D=25 K 256 K
A=128K [c=ng6d4 K 256 K D=25 K 256 K
128 K [c=aK|6d K 256 K D=25 K 256 K
E=128K =164 K 256 K D=25 K 256 K
E=128K| 128K 256 K D=256 K 256 K
S12K D=256 K 256 K
1M

4.18

Freie Universitat (|8

Buddy System: Example

M
512K
256K
128K
64K
A 1B KE-ud6d K| 356 K | D= 256 K | 256K |

Tl 3: Operating Systems and Computer Networks 4.19

Fragmentation of main memory
Fragmentation: free cells in main memory are unusable because of the allocation scheme

-memory space is wasted

Internal fragmentation: the free memory cells are within the area allocated to a process
-occurs using fixed partitions

External fragmentation: the free memory cells are not in the area allocated to any process
-occurs using dynamic partitions

Tl 3: Operating Systems and Computer Networks

S
=

Freie Universitat G| Sy
e

LR,

4.20

Freie Universitét ({1

TS

Questions & Tasks

-What are the advantages and disadvantages of fixed and dynamic partitions, respectively?
-What happens if there is not enough memory available for placing a new block of memory?
-How does the size of partitions influence internal and external fragmentation, respectively?
-And how does this influence the management overhead?

TI 111 - Operating Systems and Computer Networks

4.21

PAGING

s
Freie Universitit [:

Paging

Memory divided into small fixed-sized pieces,
called (page-)frames

. Process images divided into pieces of the same
....__,“"_:““x..g,ize, called pages

A

.......
“rreead
,,,,,

PROCESS

LLLRY

One frame of the main memory is allocated to
one page of a process

MAIN MEMORY

Tl 3: Operating Systems and Computer Networks 4.23

Freie Universitat ([S Y2

Page Table

Operating system maintains page table for each
~ process
Pages are mapped to frames

EEE

.. PAGE | FRAME

19
038
18
07
17
pal BTl 06
R e ----------------- 7 05

...... e

............

02 -8 | 04
o1 -9 | 09
MAIN MEMORY PAGE TABLE

Tl 3: Operating Systems and Computer Networks 4.24

Freie Universitat ({18

Size of Frames/Pages

Paging creates no external fragmentation
-Since size of frames/pages is fixed

Internal fragmentation depends on frame size

-The smaller the frames the lower the internal fragmentation
-BUT: the smaller the frames the bigger the page tables

Tl 3: Operating Systems and Computer Networks 4.25

Freie Universitét (S) Berlin

Assignment of Pages to Frames

Frame

Main memory Main memory Main memory
. numheru 0 A0 0 A0
Example. 1 1 Al 1 Al
2 2 A2 2 A2
(a) — (d) Load processes A, B, and C 3 3 As 3 [_ag
4 1 4 &\\‘:\u.u&\ :
(e) Swap out process B : : : \\\\ 3;@
(f) Load process D : : ’
9 9 0
10 10 10
11 11 11
Page Tables 12 12 12
13 13 13
14 14 14
(a) Fifteen Available Frames (b)) Load Process A (c) Load Process B
.l] '1] .l] g Main memory Main memory Main memory
0 A0 0 A0 0 A0
.2‘ g LN 1 A.l 1 A.l 1 A.l
) Process B 2 A2 2 A2 2 A2
Process A page table 3 A3 3 A3 3 A3
page table NNNNTHN 4 4 D.0
5 ANNNELNNN 5 5 D.1
07 o3 B NN RN 6 6 D.2
0 04 1 1 1 7 1
21 9 21 6 Free frame 8% i'/// 4 s ////df:// 4 8% i'/// 4
3[10 31 . 0 V0 0 Va7 QAR
Process C 412 Ist W0 Y 0 L 0 Ve300
page table Process D 11 11 11 D3
page table :i :i :i D.4
14 14 14
(d) Load Process C (e) Swap out B (f) Load Process [}

Tl 3: Operating Systems and Computer Networks 4.26

Freie Universitat C(.8

Addresses

Memory address consists of a page number and offset within the page

16-bit logical address
6-bit page # v 10-bit offset

lolojo]olol{1]olal2]2]ol2l2]2]l1]0
\—_—-—-—--.,l,.-‘—'—-—-—-"'- —— A
|

o|oo0101
1[000110
2(011001

Process
page table

ojojoi]1fojol1]1f1o]1]1f1]1]0]

16-hit physical address

Tl 3: Operating Systems and Computer Networks 4.27

Freie Universitét Y Berlin

Translation of virtual to real addresses

—~— 15-bit Memory address ——
Virtl;e;lge 110000000010110fzj‘g’]tigt‘etr
—
Page 1 '
table
E_;esent/absent ;Jv l ;L
i
15>
14
13
12
11
10
9
8
7
6
5
e
3|1 1164
2
1
0
dddddddddddddddddddidddddddadgaadd mput
register

~———20-bit virtual page—+7 12-bit-offset—|

32-bit virtual address

TI 11 - Computer Architecture 4.28

Hardware Support (MMU)

Base register (starting address for the process)
Bounds register (ending location of the process)
Registers are set when process is loaded

Bounds register is used for security purpose

Tl 3: Operating Systems and Computer Networks

Freie Universitat (.Sl
NG
Ve

Relative address
Process Control Block
Base Register |- —————————————————————— >
h 4
» Adder Program

Absolute

address
b

Bounds Register l—b Comparator - — — — -

1

v Data
Interrupt to
operating system
M M U Stack
Process image in
Memory Management Unit main memory

4.29

Paging Address Translation

Virtual Address

Page # | Offset

Physical Address

Freie Universitat (1.8

n hits

Program

Tl 3: Operating Systems and Computer Networks

Register

Table Pir
Page Table

g

=il

=

O |2
| Frame #

Paging Mechanism

Frame#l Offset
r Y

m hits

"

Main Memory

1) Berlin

rame

4.30

Support Needed for Virtual Memory

Hardware Support
-Present bit: Page/segment is available in main memory
-Modified bit: Content of page/segment has been modified
-Implementation:

- Paging:

Virtual Address

| Page Number | Offset .

Page Table Entry

P ther Control Bits Frame Number

(a) Paging only

Freie Universitit

Other control bits:

Write enabled
Executable
Shared between processes

OS must be able to manage moving pages between primary and secondary memory

Tl 3: Operating Systems and Computer Networks

4.31

Freie Universitat C(| Sul
LS

Hierarchical Page Table

Page table itself may grow to considerable size

4-kbyte root
page table

4-Mbyte user - y
page table

Y

4-Gbyte user -
address space

Swap parts of page table to secondary storage

-Problem: One virtual memory reference may cause two physical memory accesses (one to fetch page table,
one to fetch data)

-Performance penalty due to disk I/O delays

Tl 3: Operating Systems and Computer Networks 4.32

Freie Universitat E(.

Translation Lookaside Buffer

Problem: How to know which pages are loaded and up to date?
« Translation Lookaside Buffer (TLB)

e Builtinto CPU
 Caches most recently used page table entries

Tl 3: Operating Systems and Computer Networks 4.33

Translation Lookaside Buffer

Basic steps:
1. Given a virtual address, processor examines TLB
- If page table entry is present (TLB hit)
» Retrieve frame number and form physical address
- If page table entry is not found in TLB (TLB miss)
> Fall back to process page table in main memory
- For hierarchical page tables, possibly start recursion

2. OS checks if page is present in main memory
- If not, issue page fault and fetch page from disk

3. Update TLB to include new page entry

Tl 3: Operating Systems and Computer Networks

4.34

Translation Lookaside Buffer

Tl 3: Operating Systems and Computer Networks

Virtual Address
Page # | Offset
Translation
Lookaside Buffer
—]
E—
—: TLB hit
L
EEE——
—
Page Table
TLB miss
e
¥ ¥
FramE#I Offset
Real Address
Page lault

Main Memory

\./"\

Freie Universitat (18

Looad
page

Secondary
Memory

\./"\

)&/ Berlin

4.35

Freie Universitat (1.8

Translation Lookaside Buffer
Operation of Paging and Translation Lookaside Buffer Foulind Itraction

CPU checks the TLB

Y

Page Table
Entry in
TLB?

Page Fault
Handling Routine

Access Page Table

OS Instructs CPU
to Read the Page
from Disk

CPU Activates

1I/O Hardware Update TLB

|

Page Transferred
! CPU Generates
Main Memory Physical Address

4

I
I

:

I

No Perform Page :
A Replacement I
4 I

Page Tables I |
Updated 1

1

1

Tl 3: Operating Systems and Computer Networks 4.36

1
1
1
1
1
1
1
I
I
I
I
I
I
I
I
I
1
I
1
1
: from Disk to
1
1
1
1
I
I
I
I
I
I
I
I
I
I
1
1
1
1
1

Translation Lookaside Buffer

TLB Operation

Tl 3: Operating Systems and Computer Networks

1
: Virtual Address

Page # | Offset |

Page Table

—»é—-—ﬂ Tag | Re

Cache Operation

1
1 Real Address
:
1

mainder |

Y

Hit E Value
\/\ Mai

Memory

Value

Freie Universitat ({18

¥ Berlin

4.37

Freie Universitét ({1

TS

Questions & Tasks

-Does it “hurt” (in terms of performance) if a process is distributed over several non-continuous pages?
-i.e. Is memory defragmentation necessary? Explain difference to hard disk!

-Who calls the operating system if a page is not present in main memory? What happens to the process?

-Who “informs” the process if the needed page is available?

-How can the operating system speed-up the page table look-ups?

-What is the role of an MMU?

TI 111 - Operating Systems and Computer Networks

4.38

Paging

PAGE SIZE

Tl 3: Operating Systems and Computer Networks 4.39

Freie Universiti :

Page Size

Smaller page size ...
-less amount of internal fragmentation
-more pages required per process
-large number of pages will be found in main memory

More pages per process means larger page tables
-large portion of page tables in virtual memory

-secondary memory is designed to efficiently transfer large blocks of data so a large page size is better

With time pages in memory will contain portions of the process near recent references
-Page faults low

Increased page size causes pages to contain locations further from any recent reference
-Page faults rise

Tl 3: Operating Systems and Computer Networks 4.40

Freie Universitat (.S V2 Berlin

Page Size

Page Fault Rate
Page Fault Rate

Y

v
X
2

(a) Page Size (b) Number of Page Frames Allocated

P =size of entire process
W = working set size
N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

4.41

Tl 3: Operating Systems and Computer Networks

Example Page Sizes

Architecture

x86 (classical 32 bit)
x86-64 (64 bit)

IA-64 (Itanium, VLIW)
SPARC v8
UltraSPARC

ARMvV7

Power

Tl 3: Operating Systems and Computer Networks

Smallest page size Larger page sizes

4 kbyte
4 kbyte
4 kbyte
4 kbyte
8 kbyte
4 Kbyte
4 kbyte

2 Mbyte, 4 Mbyte

2 Mbyte, 1 Gbyte

8 /64 /256 kbyte, 1 /4 /16 / 256 Mbyte

256 kbyte, 16 Mbyte

64 / 512 kbyte, 4 / 32 / 256 Mbyte, 2 / 16 Gbyte
64 kbyte, 1 / 16 Mbyte

64 kbyte, 16 Mbyte, 1 Gbyte

4.42

Freie Universitat ﬁk

Paging

PAGE REPLACEMENT

Tl 3: Operating Systems and Computer Networks 4.43

Freie Universitat (.Sl
NG
Ve

Problem: Thrashing

VM Thrashing
Page/segment of process is swapped out just before its needed
-Happens under memory pressure, i.e., too many resource-hungry processes running on too little main memory
Processor spends most of its time swapping pages/segments rather than executing user instructions
»Computer stalls with heavy disk 1/0

» Solution: “Good” page replacement policies
-Principle of Locality:
- Program and data references within a process tend to cluster
- Possible to make intelligent guesses about which pieces will be needed in the future

Tl 3: Operating Systems and Computer Networks 4.44

Freie Universitat (.Sl
Ve

Algorithms / Policies

Fetch Policy Replacement Policy
Which page should be swapped in? When? Which page should be swapped out / replaced?
Alternatives Approaches
-Demand paging: - Remove page that is least likely to be referenced in near
future

- only brings pages into main memory when reference is o _ _ _
made to address on page - Most policies predict future behavior on basis of past

behavior, e.g.
_ - First-In, First Out (FIFO)
- Prepaging: - Not Recently Used (NRU)
- brings in more pages than needed - Least Recently Used (LRU)
- anticipates future requests

Tl 3: Operating Systems and Computer Networks 4.45

Some Basic Replacement Algorithms

Optimal policy (for reference only)
-Selects page for which time to next reference is longest
»Impossible to have perfect knowledge of future events

Least Recently Used (LRU)
-Replaces page that has not been referenced for longest time
-By principle of locality, least likely to be referenced in near future

First-in, First-out (FIFO)

-Treats page frames allocated to a process as circular buffer

-Pages are removed in round-robin style

-Page that has been in memory the longest is replaced (but may be needed soon)

Clock Policy
-When a page is first loaded in memory, use bit is setto 1
-When page is referenced, use bit is setto 1
-During search for replacement, each use bit is changed to 0
-When replacing pages, first frame with use bit set to O is replaced

Tl 3: Operating Systems and Computer Networks

4.46

Freie Universitat G(LS

Page Replacement Example

Page address
stream 2 3 2 1 5 2 4 5 3 2 5 2
2 2 2 2 2 2 4 4 4 2 2 2
OPT 3 3 3 3 3 3 3 3 3 3 3
1 3 3 3 3 3 3 3 3
F F F
2 2 2 2 2 2 2 2 3 3 3 3
LRU 3 3 3 3 3 3 3 3 3 3 3
1 1 1 4 4 4 2 2 2
F F F F
2 2 2 2 3 3 3 5 3 3 3 3
FIFO 3 3 3 3 2 2 2 2 2 3 3
1 1 1 4 4 4 4 4 2
F F F F F F
[2%] [2%] [2*}+[2* 5¥] [S* e[S} 5%] [3*] [3*] »[3% |+ 3%
CLOCK —» 3= 3= ¥ L» 3 2+ 2* 2% | 2 |» 2% 2
e T T | o 1 7| [4® 1 q 5| [5%
F F F F F

F = page fault occurring after the frame allocation is initially filled

Tl 3: Operating Systems and Computer Networks 4.47

Page Replacement Example

First frame in

circular buffer of
n-=-1 0 frames that are
candidates for replacement

next frame page 45 2
pointer use =1

{a) State of buffer just prior to a page replacement

Tl 3: Operating Systems and Computer Networks

Freie Universitit .

(b} State of buffer just after the next page replacement

1 Berlin

4.48

Freie Universitit (

Comparison of Placement Algorithms

40 A

35
30| CLOCK

FIFO

235 LRU
20

15
10

OPT

Page Faults per 1000 References

6 8 10 12 14

Number of Frames Allocated

Tl 3: Operating Systems and Computer Networks 4.49

fod

S i
Freie Universitat @& -)
g;‘_- 745

Paging

RESIDENT SIZE

Tl 3: Operating Systems and Computer Networks 4.50

e,
i
&
A

Freie Universitat G| Sy
e

Resident Set Size

Fixed-allocation
-Gives a process a fixed number of pages
-When a page fault occurs, one of the pages of that process must be replaced

Variable-allocation
-Number of pages varies over the lifetime of the process

Page Fault Rate

Y

(b) Number of Page Frames Allocated

4.51

Tl 3: Operating Systems and Computer Networks

Freie Universitit £

Resident Set Size

Decide ahead of time the amount of allocation to give a process
« |f allocation is too small, there will be a high page fault rate
« |f allocation is too large there will be too few programs in main memory

Tl 3: Operating Systems and Computer Networks 4.52

Freie Universitit E’F@;.nl)?g Berlin
oo

Resident Set Size

Working Set of a process: set of pages of the process that have been referenced in the last t time units

J L 1

Waorking set siae

= Time

.\-'lu-'- " - e’ e e - o -

Transient Transient Transient Transient
.

Stable Stable Stable Stable
Figure 8.20 Typical Graph of Working Set Size [MAEKRT]

Tl 3: Operating Systems and Computer Networks 4.53

Freie Universitat (.S V2 Berlin

Working Set

Rd':g:@ Window Size, A

2 3 4 5
24 24 24 24 24
15 24 15 24 15 24 15 24 15
18 1518 24 1518 241518 241518
23 18 23 1518 23 24151823 241518 23
24 2324 18 23 24 . .
17 24 17 2324 17 182324 17 1518232417
18 17 18 2417 18 . 18232417
24 18 24 . 2417 18 .
18 . 18 24 . 2417 18
17 18 17 24 18 17 . .
17 17 1817 - -
15 17 15 17 15 1817 15 241817 15
24 1524 17 15 24 171524 .
17 24 17 . . 17 1524
24 . 2417 . .
18 24 18 1724 18 1724 18 151724 18

Figure 8.19 Working Set of Process as Defined by Window Size

Tl 3: Operating Systems and Computer Networks 4.54

Freie Universitat

Load Control

Determines the number of processes that will be resident in
main memory

Too few processes, many occasions when all processes will be
blocked and much time will be spent in swapping

Too many processes will lead to thrashing

Processor Utili zation

Multiprogramming Level

Figure 8.21 Multiprogramming Effects

Tl 3: Operating Systems and Computer Networks 4.55

Segmentation

All segments of all programs do not have to be of the same length
There is a maximum segment length
Addressing consist of two parts - a segment number and an offset

Since segments are not equal, segmentation is similar to dynamic partitioning

Freie Universitit :

TS

4.56

Freie Universitat (.Sl 1\
TR

Questions & Tasks

-Where else do you know the “Principle of Locality” from? Which elements of a computer do also benefit from
this principle?

-How do you as a user recognize VM thrashing?

-Can the OS swap out all pages?

-Is the replacement algorithm relevant for larger number of allocated frames in memory processes? Why?

TI 111 - Operating Systems and Computer Networks 4.57

Example: Linux VM Implementation

Yirtual address

Freie Universitit

Global Directory Middle Directory Page Table Offset
>4 kB
Page table
Page middle { + -
directory Page frame
- in physical
Page memory
directory
>
crd >
register
>
\) — _
~
Fixed in Possibly swapped to disk

main memory

Tl 3: Operating Systems and Computer Networks

Ry,

4.58

{')QE Berlin

Example: Linux Memory Utilization

4 Memory - KinfoCenter

Eile Settings Help

searchs] Memon @

Total physical memory: 1 061 527 552 bytes = 1 012,35 MB

> CD-ROM Information

- Devices Free physical memory: 36 945 920 bytes = 35,23 MB
wp DMA-Channels

“s* |EEE 1304 Devices Shared memory: 0 bytes = 0,00 KB
wp Interrupts

i 10-Ports Disk buffers: 193 921 024 bytes = 184,94 MB

@/ Network Interfaces

&+ OpenGL

i3 Partitions Total swap memery: 2 064 375 808 bytes = 1,02 GB
= PCI
& PCMCIA Free swap memory: 1 864 093 696 bytes = 1,74 GB
m@ Processor

() Protacols
¥ Samba Status Total Memory Physical Memory Swap Space

& scsl
& sound

@ sStorage Devices
™ USB Devices Total Free Memory 60%
W x-Server

Disk cache: 262 926 335 bytes = 250,75 MB

Free Swap 90%

1,77 GB free 35,23 MB free 1,74 GB free

Tl 3: Operating Systems and Computer Networks 4.59

Freie Universitét 4 Berlin

Example: Windows Paging (perfmon)

@ Performance E]@
@ File Action Wiew Favorites window Help - | H
@ m| @
(3 Console oot 0 QD REE +Xs 206 @0 @
aﬁ Sysbem Monitor — —
+ ﬁ Performance Logs and Alerts 100
an
a0
70
&0
S0
40
30
20
R
10
o
Last 145,001 Awerage 50,391 Minimum 0,000 Maximum &30,562 Dwration 1:40
|Cu:u||:ur |Scale |C0unter Inskance Parent | Chiject |Cumputer |
1,000 Pages/sec —- - Memorsy VIRIGA
100,... Awvg. Disk Queue Length _Tokal - PheysicalDisk VIRIGA
1,000 % Processor Time _Tokal - Processor VRIGA
0,01... Inkterrupts/sec _Tokal - Processor VRIGA
0,10... Page Faults)sec - - Mmooty RIGA
1,000 Page Reads/sec - - Memory VRIGA
1,000 Page Writesfser - - Mernory VIRIGA

Tl 3: Operating Systems and Computer Networks

4.60

Freie Universitt £

Related System Calls (Linux)

int brk(void *end data segment)
-Sets end of data segment of process to end_data_segment

voild *sbrk(intptr_t increment)
-Increments the program’s data space by 1ncrement bytes

void *mmap(void *start, size t length, Int
prot, Int flags, Int fd, off_t offset)
-Maps Iength bytes of file descriptor ¥d to address start

-With flag MAP_ ANONYMOUS no actual file is needed

int munmap(void *start, size t length)
-Deletes mapping to specified address

Tl 3: Operating Systems and Computer Networks 4.61

Related Library Wrappers

Freie Universitat E(1.S :
L

void *malloc(size_t size)

-Allocates S1Z€ bytes and returns pointer
-Returns NULL if no memory is available

void free(void *ptr)
-Frees memory pointed to by Ptr

voild *calloc(size t nmemb, size t size)

-Allocates and zeroes memory for nmemb elements of size S1Ze bytes

void *realloc(void *ptr, size t size)

-Changes size of previously allocated memory at Ptr to S1ze bytes

Tl 3: Operating Systems and Computer Networks

4.62

Freie Universitit £

Content

1. Introduction and Motivation

2. Subsystems, Interrupts and System Calls
3. Processes

4, Memory

5. Scheduling

6. 1/O and File System

7. Booting, Services, and Security

Tl 3: Operating Systems and Computer Networks 4.63

	TI III: Operating Systems & Computer Networks �Memory
	Content
	Motivation
	Motivation
	Memory Management
	Addressing
	Addressing
	Memory Access
	Questions & Tasks
	Fixed and Dynamic Partitioning�
	Fixed Partitioning
	�Fixed Partitions
	Dynamic Partitions
	Dynamic Partitioning
	Implementation
	Dynamic Placement Algorithms
	Buddy System
	Buddy System: Example
	Buddy System: Example
	�Fragmentation of main memory
	Questions & Tasks
	Paging
	Paging
	Page Table
	Size of Frames/Pages
	Assignment of Pages to Frames
	Addresses
	Translation of virtual to real addresses
	Hardware Support (MMU)
	Paging Address Translation
	Support Needed for Virtual Memory
	Hierarchical Page Table
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Translation Lookaside Buffer
	Questions & Tasks
	Page Size
	Page Size
	Page Size
	Example Page Sizes
	Page Replacement
	Problem: Thrashing
	Algorithms / Policies
	Some Basic Replacement Algorithms
	Page Replacement Example
	Page Replacement Example
	Comparison of Placement Algorithms
	Resident Size
	Resident Set Size
	Resident Set Size
	Resident Set Size
	Working Set
	Load Control
	Segmentation
	Questions & Tasks
	Example: Linux VM Implementation
	Example: Linux Memory Utilization
	Example: Windows Paging (perfmon)
	Related System Calls (Linux)
	Related Library Wrappers
	Content

