
Prof. Dr.-Ing Jochen H. Schiller
Inst. of Computer Science
Freie Universität Berlin
Germany

4.1

Hierarchy
Types
Physical & Virtual Memory
Segmentation & Paging
Caches

TI II: Computer Architecture
Memories

TI II - Computer Architecture

address

data
taccess

tcycle

CPU Cache
MMU

Memory

data

logical address physical
address

2

Content

1. Introduction
- Single Processor Systems
- Historical overview
- Six-level computer architecture

2. Data representation and Computer arithmetic
- Data and number representation
- Basic arithmetic

3. Microarchitecture
- Microprocessor architecture
- Microprogramming
- Pipelining

4. Instruction Set Architecture
- CISC vs. RISC
- Data types, Addressing, Instructions
- Assembler

5. Memories
- Hierarchy, Types
- Physical & Virtual Memory
- Segmentation & Paging
- Caches

TI II - Computer Architecture

3

MEMORY HIERARCHY

TI II - Computer Architecture

4

Motivation for a memory hierarchy
A single memory with low latency AND large capacity is technologically feasible, but very expensive

Solutions
- Layered architecture of different types of memory and transfer of data between these different layers
- Cache memory: Relatively low access times  speed-up of load/store instructions
- Virtual memory: Increase of real memory size to support, e.g., simultaneous execution of multiple processes

TI II - Computer Architecture

Fast, but
small

Large, but slow

5

Memory hierarchy

TI II - Computer Architecture

Register

On-Chip-Cache

Secondary level Cache
(SRAM)

Main memory
(DRAM)

Secondary memory
(Hard disks)

Archive memory
(Tapes, disks)

Desktop

Desktop environment

Shelves

Archive

Remote
archive

6

Memory hierarchy

TI II - Computer Architecture

Increasing cost per
byte

Decreasing
capacity

Decreasing access
time

Register

On-Chip-Cache

Secondary level Cache
(SRAM)

Main memory
(DRAM)

Secondary memory
(Hard disks)

Archive memory
(Tapes, disks)

7

Memory hierarchy
Behavior: like a single, large and ultra-fast memory, if

- Locality of program execution
- Transfer of data happens fast/early enough (replacement and prefetching strategies)
- Non-homogeneous layers of memory are “invisible” to the user (virtual memory)

Performance of the whole hierarchy very much depends on the
- characteristics of the memory technology (access time),
- addressing of the memory cells (random, sequential) and
- organization by the operating system/virtual memory management

TI II - Computer Architecture

8

Memory hierarchy - parameters

TI II - Computer Architecture

Register

1st level Cache

Second/Third Level Cache
(SRAM)

Main Memory
(DRAM)

Secondary Memory
(harddisk, virtual disk, ...)

Archive
(disks, tapes, optical storage)

ps

ps

ns

ns

ms

min

256-1024 byte

16-512 kbyte

1-16 Mbyte

256 Mbyte - 64 Gbyte

200-8000 Gbyte

100-100000 Tbyte

128-1024 Gbyte SolidStateDisk <ms

9

Memory hierarchy
The system transfers data only between neighboring layers of the hierarchy.

TI II - Computer Architecture

Register L1- Cache L2- Cache Main
memory

µP

Single byte/word access Block/line access Page access

Secondary
storage

Program, compiler
(1-8 byte)

Cache controler
(8-128 byte)

Operating system
512 byte – 16 kbyte

10

MAIN MEMORY

TI II - Computer Architecture

11

Overview
Two different basic types of memory:

- Permanent storage of data
 long term memory

- Read Only Memory (ROM), used for e.g. firmware, operating system of controllers, system tables, boot
loaders…

- Temporary storage of data
 short term memory

- Random Access Memory (RAM), volatile, used for user programs, temporary data, …

TI II - Computer Architecture

12

Terminology
Memory cell

- Typically 1 bit – the fundamental building block of memory
- The bit is stored e.g. in a DRAM cell (one transistor/capacitor), SRAM cell (4 or 6 transistors) or flip-flop
- https://en.wikipedia.org/wiki/Memory_cell_(computing)

Byte
- Fixed number of memory cells accessible via a single address, typically 8 bit (smallest addressable unit)

Memory word
- Maximum number of memory elements transferred in a single bus cycle between processor and memory (e.g.,

32 bit, 64 bit, depending on the width of the data bus)

Random access
- Direct and individual access of each memory cell possible (without the need to address other cells before)
- Selection of a cell is based on an address decoder (address -> signals to address a cell).

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Memory_cell_(computing)

13

Terminology
Characterization of the performance of memories

- Access time
- Maximum latency between the availability of an address at the address bus of the memory until it outputs the

desired data on the data bus
- Cycle time

- Minimum waiting time between two consecutive memory accesses

TI II - Computer Architecture

address

data
taccess

tcycle

14

Access time vs. cycle time
Cycle time can be much larger than access time!

Reasons
- Memory cells must “recover” after access
- Reading out a memory cell destroys the stored data in some technologies and, thus, this data has to be written

back into the cell

Ideal case: cycle time = access time

Reality: cycle time > access time (up to 80%)

TI II - Computer Architecture

15

Classification of semi-conductor memory

TI II - Computer Architecture

Semi-conductor memory

Random access memoryRead only memory

Non-reversible Reversible Static RAM Dynamic RAM

pseudo-static
RAMROM PROM EEPROMEPROM

Non-volatile RAM

“Flash RAM”

RAM Random Access Memory
ROM Read-Only Memory
PROM Programmable ROM
EPROM Erasable PROM
EEPROM Electrically EPROM

16

Types of DRAM
No real revolutionary designs of new memories up to now. Integration density increases, DRAM stays as no. 1
type of memory.

August 12th, 1981
- First IBM PC (Model 5150 with Intel 8086 processor),

16 kbyte RAM on 8 single chips with 16 kbit capacity each.

Today
- The size of this historical RAM easily fits into a L1-cache of a wristwatch…

https://en.wikipedia.org/wiki/Dynamic_random-access_memory

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Dynamic_random-access_memory

17

Synchronous DRAM (SDRAM)
First generation RAM operated in an asynchronous fashion

- Output data not in sync with clock, delay depends on technology

SDRAM
- All I/O signals synchronous to the rising edge of a clock signal
- Today the dominating technology – comes in many different versions / enhancements
- CPU, chips-set on motherboard and memory communicate via a bus system in a synchronous fashion

determined by a clock

Typically, SDRAMs use 2 or more internal memory banks to overlap access
- This hides the access latency (keeps the data bus continuously busy)
- The internal memory controller automatically switches banks for subsequent addresses

TI II - Computer Architecture

18

Double Data Rate (DDR) SDRAM and more …
Next step in the SDRAM development early 2000: use both edges of the clock signal to transfer data

- System uses rising and falling edge of the clock to transfer data
- Requires more internal banks to keep the bus busy
- https://en.wikipedia.org/wiki/DDR_SDRAM

Performance
- Current dominating DDR4 standard: up to 25.6 Gbyte/s per 64 bit module
- New (2020) DDR5 standard: up to 67.2 Gbyte/s per 64 bit module (2 channels with up to 33.6 Gbyte/s)

including error correction
- But that pretty much depends on the workload and the overall system performance…

Versions
- Low Power (LPDDR) for e.g. smart phones
- Graphics (GDDR) for GPUs

- Typically faster due to shorter lines, optimized GPU/RAM configuration, no interconnects but soldered
- GDDR6 offers up to 64 Gbyte/s, GDDR6X about 84 Gbyte/s per chip (about 1 Tbyte/s for a system…)

TI II - Computer Architecture

https://en.wikipedia.org/wiki/DDR_SDRAM

19

Questions & Tasks
- What are disadvantages of a memory hierarchy? So, why do we do it at all?
- Why are SSDs that successful?
- Why is the cycle time of RAM typically higher than the access time?
- ROM is not flexible – are there still reasons for using it?
- What determines the speed of RAM?

TI II - Computer Architecture

20

ORGANIZATION OF MAIN MEMORY
Main memory

TI II - Computer Architecture

21

Organization of memory
Memory

- Linear list of memory words
- Consists of one ore more memory chips
- Access time depends on technology (latencies in the range of 5-15 ns)
- Memory width typically the same as width of data bus (e.g. 8, 16, 32, 64 bit, but also 384 bit in e.g. graphics

adapters). This typically equals the amount of bits transferred in a bus cycle.
- Depends on coding of memory bus etc.

TI II - Computer Architecture

Memory

Address 0 1 2 2n-1

22

History: What is a byte?
… or why a byte/smallest addressable unit has not always equaled 8 bits

TI II - Computer Architecture

Computer bit/cell
Burroughs B1700 1
IBM PC 8
DEC PDP-8 12
IBM 1130 16
DEC PDP-15 18
XDS 940 24
Electrologica X8 27
XDS Sigma 9 32
Honeywell 6180 36
CDC 3600 48
CDC Cyber 60https://en.wikipedia.org/wiki/Byte

https://en.wikipedia.org/wiki/Byte

23

Address AddressBig endian

Byte

00

(a)

44

88

1212

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

32-bit word

Little endian

Byte

3

(b)

7

11

15

2

6

10

14

1

5

9

13

0

4

8

12

32-bit word

Byte Ordering – Endianness: Big endian vs. little endian

TI II - Computer Architecture

SPARC, IBM mainframes,
Internet, ARM, RISC-V

Intel (thus the PC world), ARM,
RISC-V

0xAF3E47C1 AF3E47C1 C1473EAF

Address
0
1
2
3

AF
3E
47
C1

C1
47
3E
AF

Bi-endianness:
Switchable
endianness

24

Organization of Memory
Processors with data bus width > 8 bit can quite often still access or manipulate single bytes

- Often data fetched as word, then byte selected
- Memory capacity still measured in bytes

The width n of the address bus typically determines the maximum capacity of the memory 2n

Typical maximum memory capacities:
- 8-bit processor with 16-bit address bus: 64 KiB

- note: this equals 216 = 65536 byte, thus kibibyte according to the IEC standard instead of the former KB or
kbyte or kByte or Kbyte as kilo means 1000, https://en.wikipedia.org/wiki/Kilobyte

- In the networking world kilo is used (e.g. kbit/s) meaning 103 bit
- 16-bit processor with 24-bit address bus: 16 MiB (mebibyte)
- 32-bit processor with 32-bit address bus: 4 GiB (gibibyte)
- 64-bit processor with 64-bit address bus: 16 EiB (exbibyte)

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Kilobyte

25

Memory Map
Indicates which type of memory is used for which address range, where I/Os are, or which component is
responsible for a certain address range

TI II - Computer Architecture

I/O

RAM
(2 K)

Bootloader

Infomem

Interrupts (FFE0)

Flash ROM
(60 K)

0xFE00

0x1100

0x1000

0x09FF

0x0200

0x0000

0xFFFF

Firmware Data
PROG1 Data

Stack

Firmware Text

PROG2 Data

PROG1 Text PROG2 Text

Data bus

8, 16, or 32 bit

0

2n-1

1-
of

-(n
-2

) d
ec

od
er

address

bit 31 0

…

…

R/W

…

n-2 bits
an … a2

1-of-4 decoder
2 address bits a1, a0

ROM

I/O

DRAM

SRAM

address

26

Example Memory Map
Here

- Higher addresses
- ROM, e.g. as FLASH for the non-volatile parts of the operating system (bootstrap, BIOS)

- Followed by
- I/O assuming a processor with memory-mapped I/O

- Lower addresses
- RAM, typically DRAM due to the low cost and large capacity
- Disadvantage: DRAMs are relatively slow (require e.g. refresh)
- Thus, parts of the addresses could be mapped onto SRAM that does not require wait cycles

- Or: hide delay via caches – covered later

TI II - Computer Architecture

27

Questions & Tasks
- How long does it take to transfer the content of a 16 Gbyte RAM via a 1 Gbit/s connection? Why is Gbyte

misleading? (And what should we know about communication overhead etc. …)
- When is the endianness of importance?
- What is a memory map needed for?

TI II - Computer Architecture

28

CACHE MEMORY

TI II - Computer Architecture

29

Cache Memory
Problem

- Clock cycles of fast processors are much shorter than cycle times of large and cheap DRAMs
- Additionally, DRAMs require refresh cycles (e.g. every row in DRAM every 64 ms)

- This requires wait cycles
- SRAM does not require wait cycles, but requires more space per bit (4 or 6 transistors instead of 1) and, thus is

more expensive and has a higher power dissipation
- Therefore, SRAMs typically have less capacity

Solution
- Insert a fast, but smaller memory consisting of SRAM between the registers of the processor the relative slow,

but larger DRAM
- This is called a cache memory

In general, a cache is a small, but fast buffer in front of a larger, but slower memory to enhance access
performance (read and/or write).

TI II - Computer Architecture

30

Cache Application
Application

- Hiding the access time of the main memory (DRAM) of a computer by avoiding wait cycles
- Between CPU registers and DRAM, can be separated as data and instruction cache (or unified)
- This is common today as level 1, level 2, level 3 cache on-chip

- Lowering the access time of disk drives by integrating RAM (disk cache)

In this lecture we focus on the first: How to avoid wait cycles when accessing the main memory?

https://en.wikipedia.org/wiki/CPU_cache

TI II - Computer Architecture

https://en.wikipedia.org/wiki/CPU_cache

31

Cache Architecture (high level)
The cache comprises a (relatively) small but fast memory plus a controller.

It stores with a high probability copies of those parts of the main memory the CPU will access in the near future.

In the ideal case the controller swaps these copies into the cache before the CPU wants to read them to avoid
wait cycles.

TI II - Computer Architecture

µP Memory

Cache
memory

C
ontroller

Address bus

Data bus

Control bus

Read/write Swap in/out

32

Basic questions for cache design
Where to place a block of data (cache line)?

- Cache placement policies
- Fully associative, set associative, direct-mapped

How to find a block of data?
- Block identification
- Tags per block

Which block to replace in case of a cache miss?
- Cache replacement policies
- Random, FIFO, LRU

What happens in case of a cache write?
- Write policies
- Write back or write through (w/o write buffer)

TI II - Computer Architecture

33

Cache Location I
The cache memory is located between CPU (registers) and main memory.

The CPU should be able to access the cache memory (almost) as fast as the registers.

The cache memory can be on-chip (i.e. integrated on the die of the processor) or off-chip using fast SRAM
technology.

Example: Today’s processor comprise level 1, 2 and 3 cache on-chip
- E.g. each core has its own L1 as separated data and instruction cache (Harvard), a unified L2 (v. Neumann)

and a single L3 for all cores of the CPU
- Sometimes even level 4 on-chip…

Specialized caches exist, e.g., branch target cache, trace cache…

TI II - Computer Architecture

34

Cache Location II
On-Chip-Cache

- Integrated on the processor die
- Very low access times (similar to registers)
- Depending on the die size quite limited capacity

Off-Chip-Cache
- External to the CPU
- Higher access times due to e.g. power level conversion, distance

Example (be aware: L2, L3, … can be on-chip as well!)

TI II - Computer Architecture

Register L1- Cache L2- Cache Main
memory

µP

Background memory (HD)

Single word access Block / line access Page access

35

Cache Controller
The controller of the cache has to make sure that the data needed by the CPU is most likely stored in the cache
 With a high probability, the CPU can fetch required data from the fast cache and does not have to access the

much slower main memory.

How to achieve this behavior?
- The cache controller has to copy all required data into the cache from main memory
- In an ideal operation this happens before the CPU accesses the data
- Otherwise, this happens at the time of accessing the data

In case of size restrictions (the cache is much smaller than the main memory) the cache controller has to replace
cache content.

- In an ideal setting this is content the processor does not need anymore.
- Otherwise, the content the processor does not need in the near future.

TI II - Computer Architecture

36

Cache – Why does it work?
The efficiency of a cache mainly depends on the locality of the cached data (locality of reference). This means
that the CPU repeatedly accesses the same/neighboring data (e.g. in loops, sequential access)

https://en.wikipedia.org/wiki/Locality_of_reference

Temporal locality
- Data that will be accessed in the near future has

already been accessed with high probability (e.g. in loops).

Spatial locality
- A future access to data happens within close storage

locations with a high probability (e.g. sequential access).

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Locality_of_reference

37

Operation of a cache: read
Read access

- Before accessing the main memory the cache controller checks if the data is available in the cache memory.

If available: Cache Hit
- The CPU can read the data without wait cycles directly from cache memory.

If not available: Cache Miss
- The CPU must read the data from main memory with wait cycles plus the cache controller inserts the data into

cache memory.

TI II - Computer Architecture

38

Operation of a cache: read

TI II - Computer Architecture

µP DRAMCache

adress

data

Hit

µP DRAMCache

address

data

Miss

39

Definitions
Cache Hit Ratio: Ratio of successful cache accesses

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝑖𝑖𝑖𝑖 𝑟𝑟𝐶𝐶𝑖𝑖𝑖𝑖𝑟𝑟 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝑟𝑟 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝑟𝑟 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝑟𝑟 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝑖𝑖𝑖𝑖𝑖𝑖

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝑟𝑟 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝑟𝑟 𝑟𝑟𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖)

The average access time is calculated as follows:

tAccess = (hit ratio) × tHit + (1 – hit ratio) × tMiss

- tHit : cache access time
- tMiss: memory access time

TI II - Computer Architecture

40

Operation of a cache: write
Write access

- In case of a cache miss the CPU writes the data into the cache memory and the main memory.
- This may require a cache replacement strategy.

- In case of a cache hit, i.e., writing into the cache may change the stored data, several policies exist.

TI II - Computer Architecture

41

Write through policy
- The CPU always writes data into cache and main memory.

Advantage
- Guaranteed consistency between cache memory and main memory.

Disadvantage
- A write access always requires wait cycles and blocks the data bus.

TI II - Computer Architecture

DRAMCache

address

data

µP

42

Buffered write through policy
- Modification of the write through policy.
- A small write buffer for temporary storage of data mitigates the disadvantage of the write through policy.
- The cache controller transfers the data from this small buffer to main memory while the processor continues

with its operation.

TI II - Computer Architecture

43

Write back policy
- The CPU writes data in the cache memory only and marks it with a special bit (altered / modified / dirty bit).
- The cache controller writes back data into main memory only if altered data has to be replaced.

TI II - Computer Architecture

µP DRAMCache

µP DRAMCache

address

address

data

data

CPU write

Write back

44

Write back policy – pros and cons
Advantage

- Write access can happen without wait cycles at cache memory speed

Disadvantage
- Consistency issues between cache and main memory
- Examples

- Other components of the computer system (e.g. DMA controller) may read outdated data from the main
memory, i.e., data the CPU has changed in the cache but not yet transferred to the main memory

- Other components of the computer system may have changed data in main memory, while the CPU still
operates on old data stored in the cache

- Relatively complex mechanisms needed to avoid inconsistencies, e.g., by informing the cache controller about
changes in main memory – see end of this chapter!

TI II - Computer Architecture

45

Questions & Tasks
- Where can you find caches? Also outside of computers?
- What is an ideal cache?
- Why using Harvard or v. Neumann for caches?
- Why having caches on-chip?
- What is the role of a cache controller?
- What makes caches efficient?
- Write back seems to be more complex – why using this scheme?

TI II - Computer Architecture

46

ARCHITECTURE OF CACHE MEMORY
Cache

TI II - Computer Architecture

47

General architecture of cache memory

TI II - Computer Architecture

Address Data

Comparator

Address memory

Data memory

Data bus

Address bus

48

Components of cache memory 1
A cache memory consists of (at least) two memory units

- Data memory
- Contains all data stored in the cache

- Address memory
- Contains the addresses in main memory of the stored data in the cache

Typically,
- each entry in the cache memory consists of a block of data, the so-called cache line (e.g. 64 byte)
- with each word the CPU accesses, the cache controller loads a larger part of the main memory comprising this

word to benefit from spatial locality
- the address stored in the address memory is the base address of this larger copy of the main memory

TI II - Computer Architecture

49

Components of cache memory 2
A comparator checks, if the data belonging to an address on the address bus is stored in the cache memory
 this requires a comparison of the address on the address bus with the base address plus the range of the

memory it represents

This comparison must be very fast (within a cycle) – otherwise the cache would not be efficient.

Associative memory (also known as content addressable memory) plays an important role (for smaller caches).

TI II - Computer Architecture

50

Blocks, lines, sets, frames …
Block frame

- Memory in the cache for data plus address tag and status bits.
- The address tag contains the memory address (physical or virtual) of the currently stored copy of data from the

main memory.
- The status bits indicate if the entry is valid.

Block size or line size
- Number of bytes within a block frame

Block or cache line
- The data that fits into a block frame,

e.g., 32, 64 or 128 byte

All the block frames can be subdivided into sets.

TI II - Computer Architecture

cache line

cache line

cache line

adr

adr

adr

s

s

s

s

s

s

line size

setsframes

51

Associativity
Number of block frames per set

The total number c of block frames in a cache is the product of the number
s of sets and the associativity n, thus c = s * n.

A cache is called
- fully associative, if it consists of a single set only (s = 1, n = c)
- direct mapped, if each set consists of a single frame only (n = 1, s = c)
- n-way set associative, otherwise (s = c / n)

TI II - Computer Architecture

n

n

n

Cache memory

Set 1

Set 2

Set s

52

Replacement policies
In case of a cache miss the controller may have to evict a cache line to make room for the new entry.

- May require a write back into main memory if changed.

The replacement policy determines which entry to evict.

Only fully or n-way set associative caches need a replacement policy.

Typically, caches use simple policies
- Least Recently Used (LRU)
- Least Frequently Used (LFU)
- Optimum: evict the entry that will not be needed for the longest time in the future
- https://en.wikipedia.org/wiki/Cache_replacement_policies

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Cache_replacement_policies

53

Fully associative cache

TI II - Computer Architecture

Tag Block 0
Tag Block 1

Tag Block 63
Cache

Block 0

Block 1023

Main memory

Associative
mapping

≈ ≈

≈≈

54

Fully associative cache

TI II - Computer Architecture

Capacity: 256 byte

Block = 4 words = 16 byte

≈≈ ≈ ≈

=
=
=

=

AND

0

2
1

15

Tag Frame

Word selection

Byte selection

Valid hit

Tag

Address 031

28 2 2

32 32 32 32

32Tag hit

Data bus

V D

55

Fully associative cache
Comparison with all addresses in the address memory of the cache in parallel in a single cycle

Advantage
- A cache line can be placed in an arbitrary frame
- Optimal usage of the cache, choice of replacement policies

Disadvantage
- Requires more hardware (one comparator per frame)
 feasible only for small caches

- The large flexibility for the mapping requires additional hardware for the replacement policy (which entry to evict
if the cache if full)

TI II - Computer Architecture

56

Direct mapped cache
Each block of the main memory is directly mapped
to a certain frame in the cache.

Simple mapping using, e.g., n out of m
bits to determine the frame (m bit addresses).

TI II - Computer Architecture

Index Block 0
Index Block 1

Index Block 63
Cache

Main memory

Block 0

Block 1023

≈≈

Block 1

Block 64

Block 128

≈≈

≈≈

≈≈

57

Direct mapped cache

TI II - Computer Architecture

Capacity: 256 byte

Block = 4 words = 16 byte

≈≈ ≈ ≈

AND

V DTag Frame

Word selection

Byte selection

Valid hit

Tag

Address
031

24 2
2

32 32 32 32

32Tag hit
Data bus

≈≈

=

Index

4

Frame selection

0
1
2

15

58

Characteristics of direct mapped caches
Advantages

- Very simple hardware implementation
- A single comparator plus a tag memory

- No replacement policy needed as the mapping is fully determined by a selection of address bits.

Disadvantages
- Eviction of cache entries may be needed even if the cache is not full!

- Thrashing
- If the CPU alternately reads parts of the memory with identical index, those parts evict each other

- E.g. calling subroutines at C000, D600, A200, C000, D700 etc. using bits 4 to 7 as index

TI II - Computer Architecture

59

N-way set associative cache
N frames together for a set.

Compromise between direct mapped and fully associative cache.

TI II - Computer Architecture

Index Block
Index Block

Index Block

Cache

Main memory

Block 0

Block 1023

≈≈

Block 1

Block 32

Block 64

Index Block

Index Block
Index Block

≈≈

≈≈

≈≈
Set 0

Set 1

Set 31

60

2-way set associative cache

TI II - Computer Architecture

Capacity: 256 byte

Block = 4 words = 16 byte

≈≈ ≈ ≈

AND

V DTag Frame

Word selection

Byte selection

Valid hit

Tag

Address
031

25 2
2

32 32 32 32

32Tag hit
Data bus

≈≈

=

Index

3

Set selection

Set 0

Set 1

Set 7

=

61

Characteristics of n-way set associative caches
Increased hit ratio due to the possibility to select an entry

- A replacement policy can selected the entry to evict out of n entries

Replacement policies
- Similar to fully associative caches
- Could also be FIFO or random instead of LRU

To find an entry a check of all n tags in parallel having the same index is necessary
- The effort increases with n, for larger n the behavior is similar to an fully associative cache
- Thus, this is a compromise between direct mapped and fully associative caches

TI II - Computer Architecture

62

Example: Organization of a cache with 8 cache lines capacity
Direct mapped 2-way set associative Fully associative

search search search
only one place for two possible places cache line 12
cache line 12 for cache line 12 can be anywhere

TI II - Computer Architecture

Block # 0 1 2 3 4 5 6 7

Data

Tag 1
2

Set # 0 1 2 3

1
2

Data

Tag
1
2

Data

Tag

63

Example: cache hit ratios

TI II - Computer Architecture

Miss rate versus cache size on the Integer portion of SPEC CPU2000
https://www.cs.mcgill.ca/

https://www.cs.mcgill.ca/

64

Some more examples
According to Agarwal, Hennessy and Horowitz:

- A cache hit ratio of 94% can already be achieved with a 64 KiB cache (however, the larger the cache the higher
the hit ratio)

- Harvard architecture is helpful for small caches, however do not show big benefits for caches 8 KiB or larger
- For caches 64 KiB or larger direct mapped caches perform similar to 2- or 4-way set associative caches

 Only relatively small caches with 32-128 entries are fully associative. Larger caches use direct mapped or 2-/4-
way set associative organization.

Be aware: it very much depends on the working set!

TI II - Computer Architecture

65

Questions & Tasks
- What makes fully associative caches more complex? Why using them at all?
- How could systems avoid thrashing of direct mapped caches?
- What is a typical replacement policy of direct mapped caches?
- What would be the optimal replacement policy?
- What is the trade-off between different n-way set associative caches?

TI II - Computer Architecture

66

VIRTUAL MEMORY

TI II - Computer Architecture

67

Virtual Memory: Motivation
Applications typically need more memory than available as physical RAM

- Especially multi-user, multi-tasking operating systems running many processes in parallel

The operating system has to be able to relocate processes in memory, i.e., fixed physical base
addresses are not practical.

Therefore, memory references in instructions of the object code use so-called virtual or logical
addresses. Typically, a memory management unit (MMU) translates these addresses into physical
addresses during program execution.

- A single process sees a single large address space independent of the other processes.
- This supports memory protection among the processes (one process is not allowed to directly access the

memory space of another process; simpler systems come with such a MPU, Memory Protection Unit, only).
- https://en.wikipedia.org/wiki/Memory_management_unit

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Memory_management_unit

68

Basic idea of virtual memory management

TI II - Computer Architecture

CPU Main memory Background memory

Working sets

Programs and dataProcess 2

swapping,
paging

Process 1

69

Virtual memory management 1
Operating system

- Manages all free and used fragments of the memory
- Swaps changed fragments of the main memory to the background memory in case of scarce free memory,

deletes unchanged fragments to free memory otherwise
- Swaps required fragments of the background memory into main memory on demand.

Translation tables
- Store all the required address mappings

The whole process is transparent to users
- i.e., the working memory appears to be much larger to a user (process) than the RAM is in reality (thus virtual

memory)

MMU (Memory Management Unit)
- Supports the OS management of virtual memory by dedicated hardware
- Fast translation of virtual (logical) addresses to physical addresses

TI II - Computer Architecture

70

Virtual memory management 2
Efficiency is based on the principle of locality of programs (instructions) and data (operands)

- Programs typically used only a small part of the address space during a short time interval.
- This locality during program execution ensures with high probability that data requested by the CPU is stored in

the main memory.

Temporal locality
- Data that will be accessed in the near future has

already been accessed with high probability (e.g. in loops).

Spatial locality
- A future access to data happens within close storage

locations with a high probability (e.g. sequential access).

That’s basically the same already discussed in the context of caches - but now with a larger granularity!

TI II - Computer Architecture

71

Mapping of addresses

TI II - Computer Architecture

User: identifies all objects programs, subroutines, variables, … by
names

Name space of
a process

Name

Virtual
address space

Virtual
address

Compiler

Compiler: translates all names into virtual (logical) addresses

Physical
address space

Physical
addressOperating

system and
MMU

Virtual memory management: translates virtual addresses into
physical addresses during runtime depending on the current memory
mapping (current real location of the object in the physical memory)

72

Mapping of virtual addresses

TI II - Computer Architecture

Mapping

Address space

Address

8191
4096
0

4095
0

4K Main
memory

16 bit addresses,
e.g. 216 addressable
memory places.

Real memory only
212 byte = 4KiB,
12 bit addresses are
enough!

73

Example

TI II - Computer Architecture

Name JMP somewhere

JMP -128

Logical address 4583

Physical address 23112

Compiler/Assembler

Dynamic address calculation
((PC) - 128)

Virtual memory
management (MMU)

74

Questions & Tasks
- Considering the memory hierarchy – what does a virtual memory hide?
- What is the role of the OS and the MMU in the context of virtual memory? What else is the MMU good for?
- Compare cache and virtual memory – what do they have in common?

TI II - Computer Architecture

75

PAGING
Virtual memory

TI II - Computer Architecture

76

Segmentation and paging
There are two basic mechanisms for virtual memory management:

- Paging
- Segmentation – considered legacy (https://en.wikipedia.org/wiki/Memory_segmentation)

Subdivision of the memory into pages
- Subdivide the logical (virtual) and physical address space into segments of fixed length, the so-called pages.
- The pages are relatively small (e.g. 4 KiB, 64 KiB, …) or sometimes large (1 GiB, 16 GiB, …)
- The OS splits a process across several pages without any special context (i.e., a page contains data, no matter

what this data represents)
- For more details see OS course!

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Memory_segmentation

77

Pages in virtual and real memory

TI II - Computer Architecture

(b)

7

6

5

4

3

2

1

0

Page
frame

Bottom 32K of
main memory

Physical addresses

28672 - 32767

24576 - 28671

20480 - 24575

16384 - 20479

12288 - 16383

8192 - 12287

4096 - 8191

0 - 4095

(a)

Page Virtual addresses

15

14

13

12

11

10

9
8

7

6

5

4

3

2

1

0

61440 - 65535

57344 - 61439

53248 - 57343

49152 - 53247

45056 - 49151

40960 - 45055

36864 - 40959
32768 - 36863

28672 - 32767

24576 - 28671

20480 - 24575

16384 - 20479

12288 - 16383

8192 - 12287

4096 - 8191

0 - 4095

Mapping of the
virtual

addresses onto
physical

addresses!

78

Translation of virtual to real addresses

TI II - Computer Architecture

Present/absent
bit

Virtual
page

Page
table

15-bit

1

Memory address
Output
register

1 110

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 Input
register

20-bit virtual page 12-bit offset

32-bit virtual address

79

Possible mapping of virtual pages

TI II - Computer Architecture

Page table

Page
frame

0

1
0

0

1

0
0
1

0
1

1

0
1

0
1

1

0
4

0
0

5

0
0

3
0

7

6
0

2
0

0

1

Main memory Page
frame

1 = Present in main memory
0 = Absent from main memory

7
6

5
4

3

2

1

0

Virtual page 6
Virtual page 5

Virtual page 11
Virtual page 14

Virtual page 8

Virtual page 3
Virtual page 0

Virtual page 1

Virtual
page

15

14
13

12

11

10

9
8

7
6

5

4
3

2
1

0

80

Paging
Advantages

- Small pages allow for a better use of memory (the OS swaps only those parts of a program that are really
needed into RAM)

- Less management overhead compared to segmentation

Disadvantages
- More frequent data transfers compared to segmentation

TI II - Computer Architecture

81

CHALLENGES
Virtual Memory

TI II - Computer Architecture

82

Challenges for the virtual memory management
Two main challenges for the swapping of data between main memory and background memory

1. When to swap a page?
- When is the best point in time to swap a page into main memory?

- Common approach
- On demand paging

- Swap a page into main memory as soon as a process tries to access data stored on this page
- The access to data located on a page that is currently not stored in the main memory is called a page

fault.
- Page faults cause an interrupt that triggers the OS to suspend the faulting process and to swap the

required page into main memory.

TI II - Computer Architecture

83

Challenges for the virtual memory management
2. Which page to replace?

- In case of a full main memory, which page should the OS replace to free some space for a new page?

- The most common approaches:
- FIFO (first-in-first-out): Replace the oldest page
- LIFO (last-in-first-out): Replace the newest page
- LRU (least recently used): Replace the page that has not been referenced for the longest time
- LFU (least frequently used): Replace the page with the lowest number of references
- LRD (least reference density): Mixture of LRU and LFU – replace the page with the lowest ratio of

references / age of page in main memory
- Random: As the name indicates – replace an arbitrary page
- https://en.wikipedia.org/wiki/Page_replacement_algorithm

- Additionally, favor unchanged pages
- No writing back required!

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Page_replacement_algorithm

84

Internal fragmentation
Pages always fit into main memory if there is free space (assuming a fixed page size)

However, depending on the page size and typical size of a process or block of data internal fragmentation may
happen.

- The OS distributes a process or data in general over several pages
- Assuming a fixed page size the last page of a process will most likely contain unused space

Using different page sizes can give more flexibility but comes with higher complexity.

TI II - Computer Architecture

Process A File B

85

Questions & Tasks
- What are the pros and cons of small vs. large page sizes?
- What are the two main challenges of paging?
- Who detects a page fault and what happens in case of a page fault?
- In which situations could random replacement be better than LRU?
- Pages can be “pinned”, i.e. never swapped to secondary storage. Which type of content could be a candidate

for such non-swappable (or locked/fixed/wired) pages?

TI II - Computer Architecture

86

VIRTUAL MEMORY AND CACHES

TI II - Computer Architecture

87

Location of cache and memory management unit
Two possible ways for the integration of a cache using virtual memory management:

1. Virtual cache
- The cache is located between the CPU and the MMU and operates on virtual addresses, i.e., the cache uses

the more significand bits of the virtual address as tags.

TI II - Computer Architecture

CPU Cache
MMU Main

memory
Data

Virtual address Physical
address

88

Location of cache and memory management unit
2. Physical cache

- The cache is located between MMU and memory and operates on physical addresses, i.e., the cache uses the
more significand bits of the physical address as tags

TI II - Computer Architecture

CPU Cache
MMU Main

memory
Data

Virtual address Physical
address

89

Virtual vs. physical cache
Advantages of a virtual cache

- Cache hits do not require the MMU and, thus, are faster

Advantages of a physical cache
- Often, the physical address uses less bits compared to a virtual address. Therefore, the cache needs to store

fewer bits as tag.
- If the MMU is integrated on the CPU chip, only physical cache can be extended.

TI II - Computer Architecture

90

Memory protection
Many processors offer protection mechanisms to block illegal memory accesses caused by processes during
runtime

- integrated features of an MMU or a simplified MPU (Memory Protection Unit)
- The MMU supports the OS for all time-critical functions (fast look-up and translation of addresses, checking

legal/illegal memory accesses)

How to protect the memory?
- The MMU knows which process is allowed to access which addresses
- Separation of system software (OS, I/O-system etc.) from user processes
- Separation of different user processes with clear interfaces and controlled methods for data exchange (e.g. via

the OS)
- Several protection layers with dedicated access rights.
- More information given in the OS course!

TI II - Computer Architecture

91

Questions & Tasks
- Many different processes can operate in their respective virtual address spaces in parallel. The OS and MMU

separate these address spaces. But what happens with a virtual cache in case of a process (context) switch?
- What is the idea of an MPU and why should even the simplest “thing” in the Internet of Things have one?

TI II - Computer Architecture

92

MEMORY IN MULTI PROCESSOR SYSTEMS

TI II - Computer Architecture

93

Basics
Multiprocessor systems or multiprocessor computers belonging to the MIMD class according to Flynn’s
classification.

Shared memory multiprocessor systems
- Shared address space between all processors
- Communication and synchronization via shared variables
- Symmetric multiprocessor system

- Common address space, single global memory
- Distributed shared memory system

- Common address space, physically distributed memory

Message passing multiprocessor systems
- Physically distributed memory only plus local address spaces for all processors
- Communication and synchronization done via message passing between the processors

N.B.: “memory” here references to the main memory of a system, not caches

TI II - Computer Architecture

94

Configurations

TI II - Computer Architecture

Processor Processor

Interconnect

Shared memory

Global memory Physically distributed memory

D
is

tri
bu

te
d

ad
dr

es
s

sp
ac

e
Sh

ar
ed

ad
dr

es
s

sp
ac

e

Empty

Processor Processor

Interconnect

Local
memory

Local
memory

Symmetric multiprocessor Distributed shared memory multiprocessor

Prozessor Prozessor

Interconnect

Local
memory

Local
memory

send receive

Message passing (shared nothing)
multiprocessor

95

Shared memory multiprocessor systems
Uniform memory access (UMA)

- All processors access the same common memory.
- Particularly, the access time to the common memory is the same for all processors
- Each processor may additionally have a local cache.
- Typical example: symmetric multiprocessing (SMP, https://en.wikipedia.org/wiki/Symmetric_multiprocessing)
- https://en.wikipedia.org/wiki/Uniform_memory_access

Non-uniform memory access (NUMA)
- The memory access time depends on the memory location relative to the processor.

- Access time to local memory lower compared to remote memory access.
- The different memory modules are physically distributed over the computer system.
- Typical example: distributed shared memory systems (DSM)
- https://en.wikipedia.org/wiki/Non-uniform_memory_access

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Uniform_memory_access
https://en.wikipedia.org/wiki/Non-uniform_memory_access

96

Message passing multiprocessor systems

Similar to shared memory one can distinguish
between

- Uniform communication architecture / uniform
message passing

- The transmit time of equal sized messages is the same
between all processors

- Non-uniform communication architecture / non-
uniform message passing

- The transmit time of equal sized messages depends on the
sending and receiving processor

TI II - Computer Architecture

97

Performance metrics for parallel systems
- The overall execution time T of a parallel program is the time between the start of the program on one of the

processors Pi until the final execution of the program on the last processor running that program.
- During program execution all processors are in one of the three states: computing, communicating or idle.

TI II - Computer Architecture

timeT

P1

P2

P3

P4

98

Execution time T
The execution time T of a parallel program on a dedicated computer (i.e., we do not consider the OS, multi user,
interrupts etc. here) comprises:

- Computation time Tcomp

- Time for the “real” operations needed for the problem
- Communication time Tcomm

- Time for sending and receiving messages including overheads
- Idle time Tidle

- Waiting time (waiting for sending, receiving, synchronization)

Overall execution time: T = Tcomp + Tcomm + Tidle

TI II - Computer Architecture

99

Transmission time of a message Tmsg

The time required for sending a message of a certain size between two (or more) processors.

Each message is comprised of several words or data packets of typically equal size.

The communication time of a message comprises

- Message startup time ts

- Initialization of the communication

- Transfer time tw for each transmitted word or data packet
- Depends on the data rate of the communication medium

TI II - Computer Architecture

100

Transmission time of a message Tmsg

The overall transmission time of a message consisting of L words: Tmsg = ts + tw L

L

tim
e

ts

tw

TI II - Computer Architecture

101

Some definitions
P(1): Number of executed operations of a program on a single processor system.

P(n): Number of executed operations of a program on a multiprocessor system with n processors.

- Both programs, the one on the single processor system and the one on the multiprocessor system have the
identical functionality.

- Furthermore, for simplification we assume operations of equal duration.

T(1): Execution time on a single processor system in cycles or time units.

T(n): Execution time on a multi processor system with n processors in cycles or time units.

TI II - Computer Architecture

102

Basic findings
T(1) = P(1)

- Assuming a simple single processor system (not super scalar etc.) a single operation requires on cycle.

T(n) ≤ P(n)
- A multi processor system with n processors (n ≥ 2) can execute in a single cycle more than one operation.

This is all simplified: assuming an average operation, no super scalar processors etc.

TI II - Computer Architecture

103

Speed-up and efficiency
Speed-up

Efficiency

T(1): Execution time on a single processor system in cycles or time units.

T(n): Execution time on a multi processor system with n processors in cycles or time units.

S n() =
T 1()
T n()

E n() =
S n()

n

Normal case: 1 ≤ S(n) ≤ n
Degradation: S(n) < 1
Synergy: S(n) > n

Typically: 1/n ≤ E(n) ≤ 1

TI II - Computer Architecture

104

The speed-up depends on the algorithm
The definition of the terms speed-up and efficiency can be independent of the algorithm or dependent of the
algorithm.

Absolute speed-up / absolute efficiency
- Compare the best known sequential algorithm on a single processor system with the best known parallel

algorithm on a multiprocessor system

Relative speed-up / relative efficiency
- Use the best known parallel algorithm in a sequential fashion and measure the run-time on a single processor

system.
- This includes the required overhead for parallelization such as communication and synchronization (although

not needed on a single processor system).

TI II - Computer Architecture

105

Scalability of parallel computer systems
Adding more computing resources (cores, processors) leads to reduced execution time without changing the

program.

Ideal: Linear increase of the speed-up with an efficiency close to 1.
- Example: double the number of processors to half the execution time

Important for the scalability is the problem size.
- If the problem is too small it will not scale.

If the number of processors increases and the problem size is fixed, the system will go into saturation at a certain
number of processors.
- Scalability is limited – even worse, after saturation performance degradation may take place.
- If the problem can be scaled with the number of processors this effect should not happen

TI II - Computer Architecture

106

Definitions
Overhead for the parallelization:

Always some overhead for parallel programming:

Parallel index I(n) (How “parallel” is my program?)

)1(
)()(

P
nPnR =

)(1 nR≤

)(
)()(

nT
nPnI =

TI II - Computer Architecture

107

Definitions
Utilization

- Normalized parallel index
- Describes how many operations each

Processor executed on average per time unit

- R(n): Overhead for parallelization
- E(n): Efficiency
- P(n): Number of executed operations of a program on a multiprocessor system with n processors
- T(n): Execution time on a multi processor system with n processors in cycles or time units.

)(
)()()(

)()(

nTn
nPnEnR

n
nInU

⋅
=⋅=

=

TI II - Computer Architecture

108

Conclusions
All expressions equal 1 for a single processor (n = 1).

The parallel index gives an upper limit for the speed-up

The utilization gives an upper limit for the efficiency:

nnInS ≤≤≤)()(1

1)()(1
≤≤≤ nUnE

n

TI II - Computer Architecture

109

Example I
A (simplified) single processor system requires for the execution of 1000 operations 1000 cycles.

A multiprocessor system with 4 processors may require 1200 operations, but needs only 400 cycles to execute.

Therefore
- P(1) = T (1) = 1000, P(4) = 1200 and T(4) = 400

This results in
- S(4) = 2.5 und E(4) = 0.625

This means that each processor contributes with 62.5% to the speed-up.
- Again, assuming a problem and algorithm that distributed equally over all processors.

TI II - Computer Architecture

110

Example II
I(4) = 3 und U(4) = 0.75

- That means, that on average only 3 processors compute at the same time or each processor is active only 75%
of the time.

R(4) = 1.2

- The overhead using the parallel computer is 20%, i.e., the computation on the parallel computer requires 20%
more operations compared to the computation on the single processor system.

TI II - Computer Architecture

111

T n() = T 1()⋅ 1 − a
n

+ T 1()⋅ a

S n() = T 1()
T n()

= T 1()
T 1() ⋅1 − a

n
+ T 1() ⋅a

= 1
1− a

n
+ a

= n
1− a() + n ⋅ a

S n() ≤
1
a

a = Portion of the program that can only be executed sequentially

Amdahl’s Law (1967, Gene Amdahl)

Remark: Synchronization and communication ignored!
https://en.wikipedia.org/wiki/Amdahl%27s_law

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Amdahl%27s_law

112

Discussion of Amdahl’s Law

Following Amdahl’s Law a small portion of sequential
operations can limit the speed-up of a parallel computer
significantly.

Example:
- a = 1/10, i.e. the computer can execute 10% of the program

only in a sequential fashion

 The maximum speed-up of the program can be 10
compared to a purely sequential program.

This can bee seen as an argument against
multiprocessor systems

However:
• Many parallel programs have only a very small

sequential portion
• Caches not considered

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Amdahl%27s_law#/media/File:AmdahlsLaw.svg

https://en.wikipedia.org/wiki/Amdahl%27s_law#/media/File:AmdahlsLaw.svg

113

Synergetic effects or super linear speed-up (S>n, E>1)
Theory: a super linear speed-up is impossible

- A single processor system can simulate every parallel algorithm by emulating all the operations of the parallel
processors in a loop.

However, a super linear speed-up can be observed in real systems, e.g.,
- A single processor computer can not keep all data in the main memory thus requiring frequent paging.
- Using a multiprocessor system the data is distributed over different main memories and may even fit into the

caches thus paging is not necessary and sometimes even fewer main memory accesses.

TI II - Computer Architecture

114

Consequences
It is difficult to directly compare single and multi processor systems as the latter quite often come with n times the
memory for n processors.

If the problem scales, more processors can compute the same problem in less time plus due to higher memory
capacity larger problems can be computed.

Quite often theory assumes an infinite memory, but real systems may show a super linear behavior!

TI II - Computer Architecture

115

Potential problems of multiprocessor systems
Management overhead with an increasing number of processors

Deadlocks due to resource conflicts

Bottlenecks, effects of saturation due to limited resources

TI II - Computer Architecture

116

Questions & Tasks
- From a programmer’s perspective, what are the main differences between shared memory and message

passing multiprocessor systems?
- What are the pros and cons of a single global memory compared to a distributed memory?
- What about scalability when you compare shared memory vs. message passing systems?
- How does the “ideal” problem look like when executed via a highly distributed parallel computer system? Which

parameters of the execution time should be optimized?
- Why is there a saturation effect – or sometimes even performance degradation in parallel systems?
- What is a scalable problem?

TI II - Computer Architecture

117

INTERCONNECTS
Memory in multi processor systems

TI II - Computer Architecture

118

Interconnects
Connection between processors and/or memories

Static networks
- Hard-wired interconnects between different pairs of nodes (processor, memory) of a network

Dynamic networks
- Contain some switching component that interconnects all nodes
- There is no hard-wired connection between two components

TI II - Computer Architecture

119

Classification of interconnects

static

Interconnect

dynamic

One
dimensional

Two
dimensional

Bus Crossbar
switch

Banyan
network

Three
dimensional

N-
dimensional

TI II - Computer Architecture

… …

120

A classical dynamic interconnect: bus
Shared memory multiprocessor with a single bus and local caches

Pro -
cessor

Pro -
cessor...

Bus

Shared memory

Cache Cache

Cache Cache

TI II - Computer Architecture

121

Dynamic high performance interconnect: crossbar switch
A crossbar switch

- Hardware that enables the communication between disjoint pairs of components (processors and/or memories)
to communicate simultaneously without blocking.

- A single switch in the switching matrix connects dynamically two components for a certain time.
- An n x n crossbar switch allows for the simultaneous, non-blocking communication of n disjoint sender/receiver

pairs.

P P PM PM

PM

PM

M

M

TI II - Computer Architecture

122

CACHE COHERENCE
Memory in multi processor systems

TI II - Computer Architecture

123

The cache coherence problem
What happens if several components read and write the content of the same addresses in main memory and/or
caches?

-Which write is valid? What to read after several writes? Does this depend on the memory or cache?

Coherence
-Defines the behavior of reads and writes to a single address (word, variable, memory location)
-The computer system has to proceed in a deterministic way by guaranteeing that each read operation always
fetches the most current update of the content at a single address location.

-Outdated content, eventually stored in a cache or main memory, must not be used!
-However, the content of a single address location stored at several caches and the main memory may be
inconsistent (as long as no processor reads this data…)

-https://en.wikipedia.org/wiki/Cache_coherence

Consistency
- A memory system is consistent if all copies of the content of a single address are identical at all locations (i.e.

all caches and the main memory)
- This guarantees coherence, but at a high effort …

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Cache_coherence

124

Why differentiating between consistency and coherence?
As soon as a processor updates a variable in the cache only and not in main memory a data inconsistency occurs
between main memory (old data) and cache (updated data).

- This is caused by the more efficient write-back cache policy that tries to minimize main memory access.
- The alternative write through policy avoids this problem, but puts a heavy load on the data bus and main

memory.

In order to keep all copies of a variable/memory word consistent (in all caches and main memory) the system
would require many (potentially useless) update operations!

Trick
- Allow inconsistencies in a limited fashion.
- Use a dedicated so-called cache coherence protocol to ensure cache coherence.
- This protocol has to ensure that the system always reads the newest content of a variable and never outdated

content.

TI II - Computer Architecture

125

Cache coherence protocols
Write update protocol

- As soon as one processor updates a copy of the content of single address location (e.g. a variable) in a cache
the system has to update all copies in all other memories

- The system may delay this updating up to an access to the content of this address
- This requires sending the data over an interconnect to the other memory location

Write invalidate protocol
- Before changing the copy of data in a cache memory the system declares all other copies in caches as invalid
- No direct updates, but … see MESI!

Symmetric multiprocessor systems quite often use a write invalidate cache coherence protocol with write back
caches. This puts only minimal load on the system interconnect.

TI II - Computer Architecture

126

The MESI protocol: basics
Snooping

- All caches monitor all read and write accesses
on a common bus (or other type of broadcasting interconnect)

The snooping logic monitors all addresses other processors put on the common bus

If the snooped address matches with an address stored in the cache
- In case of a snooped write and the cache entry is unmodified (only read so far)

- Declare cache entry as invalid
- In case of a snooped read or write and the cache entry is modified

- Snoop logic takes over bus control, writes back the cache entry to main memory and then allows the
snooped transaction to proceed

MESI – the foundation of the most prominent write invalidate protocols (comes in many flavors)
- https://en.wikipedia.org/wiki/MESI_protocol

TI II - Computer Architecture

https://en.wikipedia.org/wiki/MESI_protocol

127

The MESI protocol: states
The following states of a cache line form the acronym MESI:

- (Exclusive) Modified
- A write modified the cache line from the content in main memory (i.e. the line is dirty)
- The cache line is present in this cache only
- A write back to main memory is required before any other cache reads the cache line from main memory

- Exclusive unmodified
- The cache line is present in this cache only and matches the content in main memory (i.e. it is clean)
- A read access transferred the cache line from main memory

- Shared (unmodified)
- Copies of the cache line are in more than one cache for read access
- But all copies of the cache line still match the content in main memory (i.e. they are all clean)

- Invalid
- The cache line is invalid or unused

TI II - Computer Architecture

128

The MESI state diagram – two bits per cache line in each cache

TI II - Computer Architecture

Dirty line copyback

+

Invalidate transaction

Read-with-intent-to-modify

Cache line fill

Read hit
Read miss, shared
Read miss, exclusive
Write hit
Write miss
Snoop hit on a read
Snoop hit on a write or
read-with-intent-to modify

RH
RMS
RME
WH
WM
SHR
SHW

Invalid

Exclusive

modified

Exclusive
unmodified

RH

WH

RH
WH

RH

SHR

SH
R

SHW

RMS

SH
W

W
M

+

Shared
unmodified

129

MESI example

TI II - Computer Architecture

Exclusive
unmodified
Shared
unmodified

P1 P2

Main memory

ld 4711

5

4711

5

ld 4711

Shared
unmodified

5

RME RMSSHR

st 4711

WH SHW

InvalidExclusive
modified

1

ld 4711

RMSSHR

1

4711

Shared
unmodified

1 Shared
unmodified

Read hit
Read miss, shared
Read miss, exclusive
Write hit
Write miss
Snoop hit on a read
Snoop hit on a write or
read-with-intent-to modify

RH
RMS
RME
WH
WM
SHR
SHW

130

Yet another MESI example I

TI II - Computer Architecture

A

CPU1 CPU2 CPU3 CPU4 CPU5
I

Exclusive

CPU 1 reads block A
into cache

A

CPU1

A

CPU2 CPU3 CPU4 CPU5
II

Shared

CPU 2 reads block A
⇒ CPU 1 broadcasts on bus
that it holds a copy of A

Shared

CPU1

A

CPU2 CPU3 CPU4 CPU5
III

CPU 2 writes block A
(only in cache, not in main memory!)
⇒ CPU 2 broadcasts an invalid signal

Modified

131

Yet another MESI example II

TI II - Computer Architecture

CPU1

A

CPU2

A

CPU3 CPU4 CPU5
IV

CPU 3 reads block A
⇒ CPU2 snoops write access
⇒ CPU2 stops CPU3 via a signal
⇒ CPU2 writes back to main memory,

CPU3 reads from main memoryShared Shared

CPU1

A

CPU2 CPU3 CPU4 CPU5
V

CPU 2 writes block A

Modified

CPU1

A

CPU2 CPU3 CPU4 CPU5
VI

CPU 1 writes block A
⇒ CPU2 stops CPU1 via a signal
⇒ CPU2 writes back to main memory
⇒ CPU1 reads from main memory

with intend to modifyModified Invalid

132

Questions & Tasks
- What are the pros and cons of static vs. dynamic interconnects?
- What would cache consistency mean for the system?
- Why is a write invalidate protocol so efficient?
- What is a prerequisite for snooping to be effective?
- Why is there no shared modified state in MESI? What would this mean?
- Why to distinguish between shared and exclusive unmodified? Why not simply a state unmodified?
- MESI has no problems if two consecutive writes take place on the same cache line done by two different

processors. What can happen? Who has to solve potential problems?

TI II - Computer Architecture

133

Configurations

TI II - Computer Architecture

Processor Processor

Interconnect

Shared memory

Global memory Physically distributed memory

D
is

tri
bu

te
d

ad
dr

es
s

sp
ac

e
Sh

ar
ed

ad
dr

es
s

sp
ac

e

Empty

Processor Processor

Interconnect

Local
memory

Local
memory

Symmetric multiprocessor Distributed shared memory multiprocessor

Prozessor Prozessor

Interconnect

Local
memory

Local
memory

send receive

Message passing (shared nothing)
multiprocessor

134

Distributed shared memory multiprocessor systems
DSM (Distributed shared memory)

- All processors share a single address space, i.e. the same physical address on two different processors belong
to the same location in memory

- However, the systems distributes the memory modules over all processors
- https://en.wikipedia.org/wiki/Distributed_shared_memory

Consequence
- The access to local memory is typically much faster than the access to remote memory (i.e. the local memory

of another processor) ⇒ Belongs to the NUMA class
- https://en.wikipedia.org/wiki/Non-uniform_memory_access

Typically, the processors have one or more levels of cache memory (plus sometimes a non-shared private
memory).

- It is quite common to have cache coherent NUMA systems (ccNUMA)
- Cache coherence via explicit communication between cache controllers or versions of MESI

- Non cache coherent NUMA (nccNUMA) is simpler to build, but more difficult to program

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Distributed_shared_memory
https://en.wikipedia.org/wiki/Non-uniform_memory_access

135

ccNUMA, COMA, nccNUMA (I)
ccNUMA (cache coherent Non-Uniform Memory Access):

- All caches of the system are coherent
- If the access to remote data causes a local cache miss the system transfers the remote data to the local cache
- MESI-type cache coherence protocols / directory-based protocols required
- See, e.g., SCI (scalable coherent interface) and several processor architectures (often historical)

COMA (Cache-Only Memory Architecture):
- Special case of ccNUMA: no more (distributed) main memory with copies of data in caches and address space

allocated to main memory
- If needed, the system migrates data to the cache of the processor requesting the data (i.e. the initial placement

of data changes over time)
- See experimental computers like Data Diffusion Machine, KSR-2 in the 80s/90s

TI II - Computer Architecture

136

ccNUMA, COMA, nccNUMA (II)
nccNUMA (non cache coherent Non-Uniform Memory Access)

- No system-wide cache coherence, no cache coherence protocol
- I.e. no cache coherence protocol between different processors
- However, local cache coherence between local cache and main memory

- Much simpler hardware, no snooping or directory-based protocols

- Different commands for access to local data (in the cache) and remote data (in other caches or main memory)

- Requests for remote data bypass the local cache

- Coherence of a program must be ensured by software (e.g. mutexes)!

TI II - Computer Architecture

137

Two types of distributed shared memory multiprocessor systems
Access to memory is transparent from a program’s point of view

- Common for ccNUMA systems
- Specialized hardware must distinguish between local

memory access and remote memory access

Remote access to memory requires special commands
- Common for nccNUMA systems
- Requires the extension of the instruction set of a processor

TI II - Computer Architecture

138

Configurations

TI II - Computer Architecture

Processor Processor

Interconnect

Shared memory

Global memory Physically distributed memory

D
is

tri
bu

te
d

ad
dr

es
s

sp
ac

e
Sh

ar
ed

ad
dr

es
s

sp
ac

e

Empty

Processor Processor

Interconnect

Local
memory

Local
memory

Symmetric multiprocessor Distributed shared memory multiprocessor

Prozessor Prozessor

Interconnect

Local
memory

Local
memory

send receive

Message passing (shared nothing)
multiprocessor

139

Message passing multiprocessor systems
There are no shared memories or common address spaces in message passing systems.

Communication happens via message exchange over an interconnect and/or other processors.

All processors have a local memory only.

Processor nodes typically connect to other nodes via point-to-point connections.

Scalability is (in theory) unlimited.

Efficient support of parallel computing is on program/process level.

Parallel computing on thread or instruction level is not efficient due to the large overheads.

TI II - Computer Architecture

140

Distributed Systems / distributed computing
One step further away from the concrete hardware system and network topology.

A distributed system is a set of networked computers which communicate and coordinate via message passing to
achieve a common goal.

- Distributed program / distributed programming

Much looser coupled system compared to parallel computers.

Often Internet technology used for communication.
- TCP/IP protocol family

Different architectures possible
- Client-server, peer-to-peer, n-tier

https://en.wikipedia.org/wiki/Distributed_computing

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Distributed_computing

141

Advantages of distributed systems
Reuse of unused/underutilized computers (huge potential!)
Better use of existing resources (large, distributed memory)
Use of heterogeneous hardware possible (even specialized components possible)

- Sub-programs can be placed on dedicated, specialized computers (e.g. graphics, data bases etc.)

It is relatively easy to extend a virtual parallel computer based on several servers/workstations/computers in
general by more and more other computers.

Standard computers can be used for program development.

Standardized interfaces for message passing exist for distributed systems and parallel computers providing
source code compatibility

- Started with PVM: parallel virtual machine, https://en.wikipedia.org/wiki/Parallel_Virtual_Machine
- then MPI: message-passing interface, https://en.wikipedia.org/wiki/Message_Passing_Interface

Fault tolerance: faulting machines will/should not bring down the whole distributed system

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Parallel_Virtual_Machine
https://en.wikipedia.org/wiki/Message_Passing_Interface

142

Disadvantages of distributed systems
More difficult to ensure security

- Difficult to operate on distributed, encrypted data using different OS, hardware, operators, …

Difficult to give certain QoS (Quality of Service) guarantees (delays, computation time etc.) due to heterogeneous
networks and computing hardware

Use of (relatively) high-level interfaces (e.g. socket interfaces using UDP/TCP)

Relatively slow communication over the network
- Supports only coarse grained parallelism with little communication
- Specialized communication hardware exists, but often replaced by Ethernet

Newer technologies/interfaces exist (sometimes for dedicated purposes)
- E.g. Hadoop (https://en.wikipedia.org/wiki/Apache_Hadoop),

Spark (https://en.wikipedia.org/wiki/Apache_Spark), Flink (https://en.wikipedia.org/wiki/Apache_Flink)

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Apache_Flink

143

Grid computing
Widely distributed computers used for a common task.

- Computing resources as easy to access as electrical power (“power grid”)
- (Autonomous) resources loosely coupled via the Internet (or dedicated high performance connections)
- Different (international, public/private) organizations (or individuals) form a virtual organization for the common

task
- Typically consists of many super-computer centers interconnected
- Examples: grand challenge problems such as earthquake predictions, protein folding, search for

extraterrestrials… but also CERN, Bitcoin
- https://en.wikipedia.org/wiki/Grid_computing

Cloud computing
- Also widely distributed data centers, but they typically belong to one organization
- Used for storage and computation
- https://en.wikipedia.org/wiki/Cloud_computing

Edge computing
- The cloud comes closer to the customer to reduce latency
- https://en.wikipedia.org/wiki/Edge_computing

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Edge_computing

144

…and some more computer systems
Embedded Systems

- Hardware and Software are components of a bigger system, e.g. plant and process control, robotics, dish
washer, ventilator ...

ICT (Information and Communications Technology)
- Hardware and Software are main components of communication networks, multimedia equipment, mobile

phones, ...
- https://en.wikipedia.org/wiki/Information_and_communications_technology

Operational Technology
- Use of Hardware and Software for process and asset monitoring in industry
- Industrial control systems like PLC (Programmable Logic Controller), SCADA (Supervisory control and data

acquisition), Building Automation Systems…
- https://en.wikipedia.org/wiki/Operational_technology

TI II - Computer Architecture

https://en.wikipedia.org/wiki/Information_and_communications_technology
https://en.wikipedia.org/wiki/Operational_technology

145

The Internet of Things

TI II - Computer Architecture

Source: The Telecare Blog, thetelecareblog.blogspot.de, 24.10.14

Cars, animals, people,
monitoring

Machine-to-machine com.,
Sensor networks

Embedded
systems

Everyday things Smart Home / City Health care

Agriculture Energy Security,
surveillance

Building
automation

One common technology for everything! Source: RIOT OS, www.riot-os.org
1,5 kByte RAM, 5 kByte ROM,
real-time, multi-threaded

http://www.riot-os.org/

146

Questions & Tasks
- What is the difference between a symmetric multiprocessor and a distributed shared multiprocessor? What do

they have in common? Pros and cons?
- What are the advantages and disadvantages of cache coherence?
- How to really scale computer systems?
- What type of problems are well suited for distributed systems and when to use a super computer?
- What are pros and cons of distributed systems?
- The terms are somewhat fuzzy, but what distinguishes grid from cloud and edge computing?
- What is specific about embedded systems?

TI II - Computer Architecture

147

Summary
Memory hierarchy

Main memory

Cache memory

Virtual memory

Multiprocessor systems

Distributed systems

TI II - Computer Architecture

148

Content

1. Introduction
- Single Processor Systems
- Historical overview
- Six-level computer architecture

2. Data representation and Computer arithmetic
- Data and number representation
- Basic arithmetic

3. Microarchitecture
- Microprocessor architecture
- Microprogramming
- Pipelining

4. Instruction Set Architecture
- CISC vs. RISC
- Data types, Addressing, Instructions
- Assembler

5. Memories
- Hierarchy, Types
- Physical & Virtual Memory
- Segmentation & Paging
- Caches

TI II - Computer Architecture

	TI II: Computer Architecture�Memories
	Content
	Memory Hierarchy
	Motivation for a memory hierarchy
	Memory hierarchy
	Memory hierarchy
	Memory hierarchy
	Memory hierarchy - parameters
	Memory hierarchy
	Main memory
	Overview
	Terminology
	Terminology
	Access time vs. cycle time
	Classification of semi-conductor memory
	Types of DRAM
	Synchronous DRAM (SDRAM)
	Double Data Rate (DDR) SDRAM and more …
	Questions & Tasks
	Organization of main memory
	Organization of memory
	History: What is a byte?
	Byte Ordering – Endianness: Big endian vs. little endian
	Organization of Memory
	Memory Map
	Example Memory Map
	Questions & Tasks
	Cache memory�
	Cache Memory
	Cache Application
	Cache Architecture (high level)
	Basic questions for cache design
	Cache Location I
	Cache Location II
	Cache Controller
	Cache – Why does it work?
	Operation of a cache: read
	Operation of a cache: read
	Definitions
	Operation of a cache: write
	Write through policy
	Buffered write through policy
	Write back policy
	Write back policy – pros and cons
	Questions & Tasks
	Architecture of cache memory
	General architecture of cache memory
	Components of cache memory 1
	Components of cache memory 2
	Blocks, lines, sets, frames …
	Associativity
	Replacement policies
	Fully associative cache
	Fully associative cache
	Fully associative cache
	Direct mapped cache
	Direct mapped cache
	Characteristics of direct mapped caches
	N-way set associative cache
	2-way set associative cache
	Characteristics of n-way set associative caches
	Example: Organization of a cache with 8 cache lines capacity
	Example: cache hit ratios
	Some more examples
	Questions & Tasks
	Virtual Memory�
	Virtual Memory: Motivation
	Basic idea of virtual memory management
	Virtual memory management 1
	Virtual memory management 2
	Mapping of addresses
	Mapping of virtual addresses
	Example
	Questions & Tasks
	Paging
	Segmentation and paging
	Pages in virtual and real memory
	Translation of virtual to real addresses
	Possible mapping of virtual pages
	Paging
	Challenges
	Challenges for the virtual memory management
	Challenges for the virtual memory management
	Internal fragmentation
	Questions & Tasks
	Virtual Memory and Caches
	Location of cache and memory management unit
	Location of cache and memory management unit
	Virtual vs. physical cache
	Memory protection
	Questions & Tasks
	Memory in multi processor systems�
	Basics
	Configurations
	Shared memory multiprocessor systems
	Message passing multiprocessor systems
	Performance metrics for parallel systems
	Execution time T
	Transmission time of a message Tmsg
	Transmission time of a message Tmsg
	Some definitions
	Basic findings
	Speed-up and efficiency
	The speed-up depends on the algorithm
	Scalability of parallel computer systems
	Definitions
	Definitions
	Conclusions
	Example I
	Example II
	Amdahl’s Law (1967, Gene Amdahl)
	Discussion of Amdahl’s Law
	Synergetic effects or super linear speed-up (S>n, E>1)
	Consequences
	Potential problems of multiprocessor systems
	Questions & Tasks
	Interconnects�
	Interconnects
	Classification of interconnects
	A classical dynamic interconnect: bus
	Dynamic high performance interconnect: crossbar switch
	Cache coherence�
	The cache coherence problem
	Why differentiating between consistency and coherence?
	Cache coherence protocols
	The MESI protocol: basics
	The MESI protocol: states
	The MESI state diagram – two bits per cache line in each cache
	MESI example
	Yet another MESI example I
	Yet another MESI example II
	Questions & Tasks
	Configurations
	Distributed shared memory multiprocessor systems
	ccNUMA, COMA, nccNUMA (I)
	ccNUMA, COMA, nccNUMA (II)
	Two types of distributed shared memory multiprocessor systems
	Configurations
	Message passing multiprocessor systems
	Distributed Systems / distributed computing
	Advantages of distributed systems
	Disadvantages of distributed systems
	Grid computing
	…and some more computer systems
	The Internet of Things
	Questions & Tasks
	Summary
	Content

