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Abstract

An algorithm for the triangularization of a matrix whose graph is a directed acyclic graph, popularly known asdag, is
presented. One of the algorithms for obtaining this special form has been given by Sargent and Westerberg
approach is practically good but sequential in nature and cannot be parallelised easily. In this work we presen
allel algorithm which is based on the observation that, if we find the transitive closure matrix of a directed a
graph, count the number of entries in each row, sort them in the ascending order of their values and rank them
ingly, we get a lower triangular matrix. We show that all these operations can be done using 3-d CD-PARBS
plete Directed PARBS) in constant time. The same approach can be used for the block cases, producing th
relabelling as produced by Tarjan’s algorithm, in constant time. To the best of our knowledge, it is the first app
to solve such problems using directed PARBS.

Keywords: PARBS, CD-PARBS, dag.

Introduction: Sparse matrix is one in which majority of the coefficients are zero. The sp

matrix solution is the core of many scientific and engineering problems, as many of the real

lems include finding solution, which are sparse. Researchers have extensively studied the

matrix solution and presented many efficient algorithms. The process of obtaining the solut

a sparse linear system , whereA is a sparse matrix, consists of four phases: ord

ing, symbolic factorization, numerical factorization and solving triangular systems.

1. This work is supported by the German Academic Exchange Services (DAAD) under the “Sandwic
Model” fellowship with the author who is permanently working in the Department of Computer Science
North Maharashtra University, Jalgaon (MS), India.
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There are many sparse matrix forms which are used for ordering strategy, i.e. triangular, dia

random, banded etc.. The advantage of using block triangular form is that the set of equ

may be solved by the simple forward elimination and back substitution processes

lot of computational saving. There are two approaches for permuting sparse matrices in

block triangular form- traversal technique and symmetric permutation technique. Based o

symmetric permutation technique, one of the algorithms for ordering the sparse matrix into

gular form was proposed by Sargent and Westerberg [DER86]. Their algorithm is based o

observation that, if A is a symmetric permutation of a triangular matrix then there must be a

in its digraph from where no path leaves. This node is ordered first in the relabelled digraph.

inating this node and all edges pointing to it leaves the remaining sub graph which again

node from which no path leaves, continuing this way we get a lower triangular form. This

quite straight forward idea but sequential in nature. Sargent and Westerberg then generaliz

idea to the block case. They used the concept of the composite nodes, a group of nodes t

which a closed path can be found and proposed the algorithm which required relabe

Tarjan [DER86, Tar72] followed the same basic idea as proposed by Sargent and Westerbe

eliminated all such strong components with the use of the stack.

In this work we deal with the matrix whose graph is a directed acyclic graph. A directed ac

graph is one which does not contain a circuit. It is evident that it has no self loops also. Our

rithm is based on the known concept that, “a directed acyclic graph has at least one node wh

degree is zero and one node whose out degree is zero”. If we find the transitive closure of

matrix, we find at least a row whose all the entries are zero. We rank this node (row number

and find the next row with ascending order of entries, rank it next and so on. One important

to mention is that, if sorting is done in the descending order and nodes are ranked according

get the upper triangular matrix. The algorithm proposed in the next section is not only appli

for the dag,but can be used for the block case and produces the same relabeling as the T

algorithm. Our algorithm essentially consist of the following steps.

1. Find the transitive closure matrix A+ of thedag.

2. Perform the sort on A+, in the ascending order of the number of entries in the rows.

Ax b=

O n
2( )
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3. Relabel the digraph (perform row/column interchange).

The model of Computation: Ever since the introduction of the meshes with reconfigura

buses, the architecture gained a lot of popularity amongst the researchers and scientists for

performance computing with general purpose processors used. It is a powerful model of com

tion which was proposed in the conference on advanced research in VLSI technology in M

1988 by Miller, Kumaret al. [MKRS88]. They described their architecture as a VLSI array

processors overlaid with a reconfigurable bus system. Though the different organizations o

cessors have been proposed in the past such as pyramid computer, mesh of tree and mes

broadcast buses [Bok84], these organizations were static in nature and communication

between the processors could not be changed during the execution of the algorithm. The

proposed by Miller, Kumaret al.offers dynamic reconfigurability during the execution and allow

to make different configurations to fulfil the different computational needs. In their paper

described algorithms with better parallel time complexities than the existing best ones. They

shown how reconfigurable meshes can act as a universal chip, simulating other VLSI org

tions with equivalent chip area without a loss of time. They have also shown how reconfigu

mesh can be used to simulate certain fundamental techniques that have been developed

RAM and W-RAM model of computations.

Many problems in science and engineering can be formulated in terms of directed and undi

graphs. Designing a parallel graph algorithm is both theoretically and practically important. M

researchers are extensively engaged in finding graph formulations and parallelisation of imp

problems. Wang and Chen [WC90] proposed a constant time algorithm for computing tran

closure of an undirected graph. They designed two algorithms, one on a PARBS

other on a 2-D PARBS. In their work, they presented constant time parallel algorithm

many problems including recognizing bipartite graph, finding connected components, articu

point, bi-connected components, bridges and minimum spanning tree, for undirected graph

Since PARBS cannot control the direction of the signal flow, for many directed graph proble

not possible to find correct connections on PARBS. Hence a new modified model calle

n n× n×

n
2

n
2×
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PARBS (directed PARBS) has been proposed to solve these directed graph problems by Ku

et al. [KHF99]. They proposed constant time algorithms with O(N3) CD-PARBS to solve topo-

logical sort, transitive closure, cyclic graph checking and strongly connected problem, on dir

graphs.

In order to get the correct direction control in D-PARBS, the vertices in the 2-d D-PARBS

numbered in a slightly different way. The lower/upper triangle of D-PARBS is obtained by ro

ing upper/lower D-PARBS by 180 degree. Figure 2 shows that a Complete Directed PARBS

PARBS) can be obtained by combining these two to get a D-PARBS. On a 2-d

PARBS, a matrix , for , is stored in processors of the upper triangular part,

, for , is stored in processors of the lower triangular part. Processors on 2-d

PARBS are connected according to the following basic connection rules (Figure 1 a & b).

1. On the upper triangle of the CD-PARBS, the diagonal processor , for , es

lishes connection , calledfork connection. Processor , for ,

establishes connection if , calledjoin connection, other-

wise  establishes , calledcross connection.

2. On the lower triangle of the CD-PARBS, the diagonal processor , for

establishes connection , calledfork connection. Processor , for

, establishes connection if , calledjoin

connection, otherwise  establishes , calledcross connection.

Three dimensional CD-PARBS can be constructed similarly by adding U(upper) and D(d

ports. Only two kinds of connections are allowed in a 3-d CD-PARBS, {U, D} connected or

connected, which is used to send data to the other planes.

n 1+( ) n×

Ai j, i j≤ Pi j,

Ai j, i j≥ Pi∗ j∗,

Pi i, 1 i n≤ ≤

N E S1, ,〈 〉 Pi j, 1 i j n≤<≤

N S1,〈 〉 W E S2, ,〈 〉,{ } Ai j, 1=

Pi j, N S1,〈 〉 W E,〈 〉,{ }

Pi∗ i∗, 1 i n≤ ≤

S W N1, ,〈 〉 Pi∗ j∗,

1 j∗ i∗ n≤<≤ S N1,〈 〉 E W N2, ,〈 〉,{ } Ai∗ j∗, 1=

Pi∗ j∗, S N1,〈 〉 E W,〈 〉,{ }
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Algorithm for triangularization:

The algorithm for triangularization of a sparse matrix can be built using these theorems:
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(a) Upper triangular D-PARBS (b) Lower triangular D-PARBS

Figure 1 Processors and switches in D-PARBS
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(c) Corresponding 6 x 5 CD-PARBS for G

Figure 2 Embedding the directed acyclic graph in to a 6 x 5 CD-PARBS
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Theorem 1:The transitive closure matrix of a directed graph withn vertices can be computed in

O(1) time on a 3-d  CD-PARBS [KHF99].

Theorem 2:The topological sort of a directed graph withn vertices can be solved in O(1) time o

a 3-d  CD-PARBS [KHF99].

The transitive closure matrixA+of a directed graph G is a matrix whereA+
i,j = 0, if there is a path

of length > 0 from i to j, otherwiseA+
i,j = 1. In this work we will reproduce the portion of the

algorithms for the transitive closure matrix and modify topological sort algorithm, given

[KHF99], according to our need. Due to the directional flow of the CD-PARBS, the architec

proposed by Kuo, Hsu and Fang does not support the operation like column interchange

proposed this architecture to perform some directed graph problems. We here propose few m

cations in to the architecture so that the special column interchange operations can be per

and it does not destroy the directional flow of the original model. Initially, we assume tha

adjacency matrixA are stored in a CD-PARBS. The entry of a boolean matrix A is

to 0, if sparse matrix  or 1, otherwise.

.

n n 1+( )× n×

n n 1+( )× n×

n 1+( ) n×

Si j, 0=

1*

1*

2*

3*

4*

5*

2* 3* 4* 5*

1 2 3 4 5

2

3

4

5

0 1 1 1 0

Figure 3  The first row of the transitive closure matrix A+ on the first plane
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Algorithm:

I. Obtain transitive closure matrix of a sparse matrix whose graph is adag.

Step 1: Input the adjacency matrix A into the first 2-d CD-PARBS plane.

Step 2: TransmitA from the first plane to other 2-d CD-PARBS planes.

Step 3: for all k CD-PARBS planes, ,in parallel do

begin

3.1: Construct CD-PARBS planes according to the basic connection rules (Figur

3.2:  sends signal to its east and south port.

3.3: Every processor on the upper triangle constructs and every process

the lower triangle constructs (Figure 3).

3.4: If the diagonal processor on the upper triangle receives the signal, sent by

then it sends signal to S port (Figure 3).
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0

0

0

0

0

0

0
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0

0

0

0
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0 1
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Figure 4  Each plane sends it transive closure value to the first plane

1 k n≤ ≤

Pk k k, ,

N S1,〈 〉

S N1,〈 〉

Pk k k, ,
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3.5: If the processor on the kth row on the upper triangle receives the sign

then setsA+
k,j = 1, otherwiseA+

k,j = 0 (Figure 3).

3.6: If the processor on the kth row of the lower triangle receives the signa

then setsA+
k*,j*  = 1, otherwiseA+

k*,j*  = 0 (Figure 3).
end.

Step 4: Each 2-d CD-PARBS sends A to the first plane (Figure 4).

II. Obtain the number of entries in each row of the transitive closure matrix and rank them

in the ascending order of their values.

Once the transitive closure matrix has been obtained and available at the first plane o

PARBS, we count number of entries in each row and sort them in ascending order of their v

Here we make few changes in the topological sort algorithm proposed in [KHF99].

Each processor establishes the connection, processor if and if

on the first plane, transmits the values ofA+ to the other planes. Next, except the kth row on the kth

plane, all processors make cross connection and diagonal processors make fork connectio

cessors on the kth row and kth plane set the join or cross connections depending on the valu

A+.

The algorithm for sorting and labeling consists of two steps: Counting and Ranking.

Pk j k, ,

Pk∗ j∗ k, ,

U D,〈 〉 Pi j 1, , i j≤ Pi∗ j∗ 1, , i j≥
Page 8 A constant time parallel algorithm for the triangularization of a sparse matrix using CD-PARBS
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Counting Phase:In this phase the number of entries of a particular row are counted. This p

of the algorithm is similar to one proposed in [KHF99].

Step 1:  sends signal to E and S ports (Figure 2 (c)).

Step 2: Every processor on the lower triangle constructs  (Figure 5).

Step 3:If the diagonal processors on the upper triangle have received signal sent from

send signal to S port (Figure 5).

Step 4: constructs connection. Except , if the processor on the low

triangle receives signal then constructs , otherwise construct

(Figure 6).

Step 5: If the last diagonal processor on the lower triangle , has received signal th

sends 1 to W port, otherwise, sends 0 to W port (Figure 6).

Step 6: If the processor in the first column of the lower triangle, , receives a value t

compute thecount = n - i + value (Sent in the step 5) (Figure 6).

1 2 3 4 5

2

3

4

5

1

1*

1*

2*

3*

4*

5*

2* 3* 4* 5*
Figure 5  For the first plane P2,2   , P3,3 ,  P4,4   sends signal to S port

Pk k k, ,

S N1,〈 〉

Pk k k, ,

Pn∗ n∗ k, , E W,〈 〉 Pn∗ n∗ k, ,

E N2,〈 〉 S W,〈 〉,{ } E W,〈 〉

Pn∗ n∗ k, ,

Pi∗ 1∗ k, ,
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Step 7:  sendscount to  (Figure 7).

Step 8:  sendscount to the other planes along the U and D directions (Figure 8).

Pi∗ 1∗ k, , Pk k k, ,

Pk k k, ,

1 2 3 4 5

2

3

4

5

1

1*

1*

2*

3*

4*

5*

2* 3* 4* 5*

6

5-2+0=3

0

Figure 6  Counting the number of entries in a row
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Figure 7 Count result is sent to P1,1
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0

3

2

0

1

4

Figure 8 Each 2-d CD-PARBS sendcount result to first plane
Page 10 A constant time parallel algorithm for the triangularization of a sparse matrix using CD-PARBS



we

join

e

t

then

e 1,

e k
Ranking Phase:This phase of the algorithm is different from one proposed in [KHF99],

make few modifications according to our need.

Step 9: Each processor and , establishes fork connection and others

connection.

Step 10: Diagonal processor broadcastscount to the other diagonal processors on th

upper triangle (Figure 9).

Step 11: Every processor on the lower triangle constructs connection.

Step 12:For the diagonal processor of the upper triangle, (except ) “if (count <

countat ) or ((count= countat ) and ( ))” then send signal to S por

(Figure 10).

Step 13: If the processor on the lower triangle receives a signal then construct

, otherwise construct .

Step 14: If the last diagonal processor on the lower triangle has received a signal

send 1 to W port, else send 0 to W port (Figure 11).

Step 15:For the processor in the first column of the lower triangle, if receives a valu

then sends k to N port, which is received and stored at , otherwis

is stored at (Figure 11).

Pi i k, , Pi∗ i∗ k, , 1 i n≤ ≤

Pk k k, ,

S N1,〈 〉

Pi i k, , Pk k k, ,

Pi i k, , Pi i k, , k i>

E N2,〈 〉 S W,〈 〉,{ } E W,〈 〉

Pn∗ n∗ k, ,

Pi∗ 1∗ k, ,

Pi∗ 1∗ k, , Pi∗ 1– 1∗ k, ,

Pi∗ 1∗ k, ,
A constant time parallel algorithm for the triangularization of a sparse matrix using CD-PARBS Page 11
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Figure 9  P1,1 broadcast thecount
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Figure 10  P5,5 send signal to S port.
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Figure 11 Calulating therank of node 1
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Figure 12  Sending therank of node 1 to P1,1
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Step 16: On all the planes, all processors on the first column of the lower triangle constr

connection.

Step 17:The processor on the first column, containingk, broadcasts the value of therank = row

index of the processor at the lower triangle,to the diagonal processor (Figure 12

Step 18:Each diagonal processor and establishes fork connection, other pro

sors establish join connection, andrank is broadcasted from (Figure 13).

III. Perform the row/column interchange operation:

In this phase of the algorithm, depending on the result of the Step II, rows and columns o

sparse matrixSare interchanged. For this phase of the algorithm we make a modification in

existing model of the CD-PARBS. We allow horizontal wrap around connections.

We assume that the sparse matrixS is available at the first plane (Figure 14). It is broadcast

from the first plane to all other planes, using  bus.

S N1,〈 〉

P1 1 k, ,

Pi i k, , Pi∗ i∗ k, ,

P1 1 k, ,

1 2 3 4 5

2

3

4

5

1

1*

1*

2*

3*

4*

5*

2* 3* 4* 5*

4

Figure 13 Broadcasting therank of the node 1
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Figure 14  Sparse Matrix A is available at the first plane

U D,〈 〉
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Row interchange:

Step 1:On every plane, all processors on the lower triangle construct and all proce

on the upper triangle construct .

Step 2: Except the diagonal processor , all processors and ,

broadcast row values, which are received by all processors on the kth plane and stored inS

(Figure 15).

Step 3: Depending on the value ofrank (here denoted by index r), the processor , in the

upper triangular part and , in the lower triangular part broadcasts va

on bus which overwrites the value ofS. This makes the row interchange and th

modified valueS is available at every processor (Figure 16).

Column interchange:

Processor makes wrap around connections in a way that the E port of the right most column

upper triangle is connected to the E port of the diagonal processor of the lower triangle i.e

S N1,〈 〉

N S1,〈 〉

1*

1*

2*

3*

4*

5*

2* 3* 4* 5*

1 2 3 4 5

2

3

4

5

6

1 24

Figure 15On the first plane, first row is broadcasted
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Figure 16 After row interchange

0 0

Pi∗ i∗ k, , Pk j k, , Pk∗ j∗ k, , 1 j n≤ ≤

Pr j k, ,

Pr∗ j∗ k, , 1 j n≤ ≤

U D,〈 〉
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processor is connected to . In the same way, the W port of the left most colum

the lower triangle is connected to the diagonal processor of the upper triangle i.e., proc

is connected to the . We assume that the vertical connections are disabled

the horizontal connections are established (Figure 17).

Step 4: Every processor on the upper and lower triangle construct  connection.

Step 5: Except the diagonal processor , all processors and ,

broadcast column values ofS, which are received by all processors on the kth plane and

stored inS (Figure 17).

Step 6: Depending on the value of therank, processors , in the upper triangular part an

in the lower triangular part broadcast values on bus which overwr

the value ofS. This makes the column interchange and lower triangularize the matrS

(Figure 18).

Pi n k, , Pi∗ i∗ k, ,

Pi∗ 1∗ k, , Pi i k, ,

W E,〈 〉
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Figure 17  First column on the first plane broadcast values
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Figure 18  Lower triangularization

Pi i k, , Pi k k, , Pi∗ k∗ k, , 1 i n≤ ≤

Pi r k, ,

Pi∗ r∗ k, , U D,〈 〉
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Conclusion: In this technical report we have presented a constant time parallel algorithm fo

angularization of a linear system of equations, where the system is sparse and the graph o

directed acyclic graph, using the complete directed PARBS. The same algorithm can be us

producing the block form. It can be observed that the relabelling of the graph produces the

numbering as produced by Tarjan’s algorithm [Ste73, Tar72]. To the best of our knowledge, t

the first approach for the design of these algorithms using the CD-PARBS model.
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