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Building computers capable of automatically recognizing speech has been an old dream
in the �elds of electronics and computer science� Some experiments were conducted as
early as the ����s and in the ����s some systems were already capable of recognizing
vowels uttered by di	erent speakers� But until now all expectations have not been fully
met� We all know of several small
scale commercial applications of speech technology for
consumer electronics or for o�ce automation� Most of these systems work with a limited
vocabulary or are speaker dependent in some way� But current research has as its goal the
development of large vocabulary speaker independent continuous speech recognition� This
long chain of adjectives already underlines the di�culties which still hamper the large

scale commercial application of automatic speech recognition� We would like the user to
speak without arti�cial pauses we would like that the system could understand anybody
and this without necessarily knowing the context of a conversation or monologue�
Arti�cial neural networks have been proposed as one of the building blocks for speech
recognizers� Their function is to provide a statistical model capable of associating a vector
of speech features with the probability that the vector could represent any of a given
number of phonemes� Neural networks play the role of statistical machines as we discuss
in the second section� But we will see that our knowledge of the speech recognition process
is still very limited so that fully connectionist models are normally not used� Researchers
have become rather pragmatic and combine the best features of neural modeling with
traditional algorithms or with other statistical approaches like Hidden Markov Models
which we will brie�y review� Current state of the art systems combine di	erent approaches
and therefore they are called hybrid speech recognition systems�

� Feature extraction

The �rst problem for any automatic speech recognizer is �nding an appropriate repre

sentation of the speech signal� Assume that the speech is sampled at constant intervals
and denote the amplitude of the speech signal by x���� x���� � � � � x�n � ��� For a good
recognition the time between consecutive measurements should be kept small� The mi

crophone signal is thus a more or less good representation of speech but contains a lot of
redundancy� It would be better to reduce the number of data points but in such a way
as to preserve most of the information� this is the task of all feature extraction methods�
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Choosing an appropriate method implies considering the speech production process and
what kind of information is �encoded� in the acoustic signal�
Speech is produced in the vocal tract which can be thought as a tube of varying diameter
extending from the vocal chords to the lips� The vocal chords produce a periodic pressure
wave which travels along the vocal tract until the energy it contains is released through
the mouth and nose� The vocal tract behaves as a kind of resonator in which some fre

quencies are ampli�ed whereas others are eliminated from the �nal speech signal� Di	erent
con�gurations of the vocal organs produce di	erent resonating frequencies so that it is
safe to assume that detecting the mixture of frequencies present in the speech signal can
provide us with information about the particular con�guration of the vocal tract and
from this con�guration we can try to deduce what phoneme has been produced�
Many methods have been proposed to deal with the task of the spectral analysis of the
speech signal� Some of them have a psychophysical foundation that is they are based on
physiological research on human hearing� Others have arisen in other �elds of engineering
but have proved to be adequate for this task� Certainly one of the simplest but also more
powerful approaches is computing a short term Fourier spectrum of the speech signal�

��� Fourier analysis

Given a data set x � �x���� x���� � � � � x�n� ��� it is the task of Fourier analysis to reveal
its periodic structure� We can think of the data set as function X evaluated at the points
�� �� � � � � n��� The function X can be written as a linear combination of the basis functions
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where �n denotes the n
th complex root of unity wn � exp�����n�� Writing the data
set as a linear combination of these functions amounts to �nding which of the given
frequencies is present in the data� Denote by F�

n the n� n matrix whose columns are the
basis functions evaluated at t � �� �� � � � � n� � that is the element at row i and column
j of F�

n is ���

n�
ij for i� j � �� � � � � n� �� We are looking for a vector a of amplitudes such

that
F
�

na � x�

The n
dimensional vector a is the spectrum of the speech signal� The matrix Fn de�ned
as
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is the transpose conjugate of the matrix F
�

n� Since the basis functions f�� f�� fn�� are
mutually orthogonal this means that F�

n is unitary and in this case

FnF
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na � Fnx � a � Fnx�



The expression Fnx is the discrete Fourier transform of the vector x� The inverse Fourier
transform is given of course by

F
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The speech signal is analyzed as follows� a window of length n is used to select the data�
Such a window can cover for example �� milliseconds of speech� The Fourier transform
is computed and the magnitudes of the spectral amplitudes �the absolute values of the
elements of the vector a� are stored� The window is displaced to cover the next set of
n data points and the new Fourier transform is computed� In this way we get a short

term spectrum of the speech signal as a function of time as shown in Fig� �� Our speech
recognition algorithms should recover from this kind of information the correct sequence
of phonemes�
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Figure �� Temporal variation of the spectrum of the speech signal

��� Fast transformations

Since we are interested in analyzing the speech signal in real time it is important to reduce
the number of numerical operations needed� A Fourier transform computed as a matrix

vector multiplication requires around O�n�� multiplications� A better alternative is the
Fast Fourier transform which is just a rearrangement of the matrix
vector multiplication�
The left graphic in Fig� � shows the real part of the elements of the Fourier matrix Fn

�the shading is proportional to the numerical value�� The recursive structure of the matrix
is not immediately evident but if the even columns are permuted to the left side of the
matrix and the odd columns to the right the new matrix structure is the one shown on
the right graphic in Fig� �� Now the recursive structure is visible� The matrix Fn consists
of four submatrices of dimension n���n�� which are related to the matrix Fn�� through
a simple formula� In order for the reduction process to work n must be a power of two�
This rearrangement of the Fourier matrix is the basis of the Fast Fourier Transform which
we will discuss brie�y in the short course�
Many speech recognition systems use some kind of variation of the Fourier coe�cients�
The problem with the short
term spectra is that the base frequency of the speaker should
be separated from the medium term information about the shape of the vocal tract� We
will discuss two popular alternatives� cepstral coe�cients and linear predictive coding�



Figure �� The Fourier matrix and the permuted Fourier matrix

� Markov Models and Neural Networks

In speech recognition researchers postulate that the vocal tract shapes can be quantized
in a discrete set of states roughly associated with the phonemes which compose speech�
But when speech is recorded the exact transitions in the vocal tract cannot be observed
and only the produced sound can be measured at some prede�ned time intervals� These
are the emissions and the states of the system are the quantized con�gurations of the
vocal tract� From the measurements we want to infer the sequence of states of the vocal
tract i�e� the sequence of utterances which gave rise to the recorded sounds� In order to
make this problem manageable the set of states and the set of possible sound parameters
are quantized�
A Hidden Markov Model has the structure shown in Fig� �� The state transitions re

main invisble for the observer� The only data that is provided are the emissions �i�e� the
spectrum of the signal� at some points in time�
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Figure �� A hidden Markov model

The general problem when confronted with the recorded sequence of output values of a
HMM is to compute the most probable sequence of state transitions which could have
produced them� This is done with a recursive algorithm�

��� Hidden Markov Models

A �rst
order Markov model is any system capable of assuming one of n di	erent states
at time t� The system does not change its state at each time step deterministically but
according to a stochastic dynamic� The probability of transition from the i
th to the j
th



state at each step is given by � � aij � � and does not depend on the previous history
of transitions� These probabilities can be arranged in an n� n matrix A� We also assume
that at each step the model emits one of m possible output values� We call the probability
of emitting the k
th output value while in the i
th state bik� Starting from a de�nite state
at time t � � the system is allowed to run for T time units and the generated outputs are
recorded� Each new run of the system produces in general a di	erent sequence of output
values� The system is called a HMM because only the emitted values can be observed but
not the state transitions�
The state diagram of a HMM can be represented by a network made of n units �one
for each state� and with connections from each unit to each other� The weights of the
connections are the transition probabilities �Fig� ���

a33a32

a31

a23

a22

a21 a13

a12

a11

Figure ��

As in the case of backpropagation through time we can unfold the network in order to
observe it at each time step� At t � � only one of the n units say the i
th produces the
output � all others zero� State i is the the actual state of the system� The probability
that at time t � � the system reaches state j is given by aij �only some of these values are
shown in the diagram to avoid cluttering�� The probability of reaching state k at t � � is

nX
j��

aijajk

which is just the net input at the k
th node in the stage t � � of the network shown in
Fig� ��
Consider now what happens when we can only observe the output of the system but not
the state transitions �refer to Fig� ��� If the system starts at t � � in a state given by a
discrete probability distribution ��� ��� � � � � �n then the probability of observing the k
th
output at t � � is given by

nX
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�ibik�

The probability of observing the k
th output at t � � and the m
th output at t � � is

nX
j��

nX
i��

�ibikaijbjm�

The rest of the stages of the network compute the corresponding probabilities in a similar
manner�
How can we �nd the unknown transition and emission probabilities for such an HMM� If
we are given a sequence of T observed outputs with indices k�� k�� � � � � kT we would like to
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Figure �� Unfolded Hidden Markov Model

maximize the likelihood of this sequence i�e� the product of the probabilities that each of
them occurs� This can be done by transforming the unfolded network as shown in Fig� � for
T � �� Notice that at each stage h we introduced an additional edge from the node i with
the weight bi�kh� In this way the �nal node which collects the sum of the whole computation
e	ectively computes the likelihood of the observed sequence� Since this unfolded network
contains only di	erentiable functions at its nodes �in fact only addition and the identity
function� it can be trained using the backpropagation algorithm� However care must be
taken to avoid updating the probabilities in such a way that they could become negative
or greater than �� Also the transition probabilities starting from the same node must
always add to �� These conditions can be enforced by an additional transformation of
the network �introducing for example a �softmax� function� or by using the method of
Lagrange multipliers� We give only a hint of how this last technique can be implemented
so that the reader completes the network by himself�
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Figure �� Computation of the likelihood of a sequence of observations

Assume that a function F of n parameters x�� x�� � � � � xn must be minimized subject to
the constraint C�x�� x�� � � � � xn� � �� We introduce a Lagrange multiplier � and de�ne the
new function

L�x�� � � � � xn� �� � F �x�� � � � � xn� � �C�x�� � � � � xn��

To minimize L we compute its gradient and set it to zero� To do this numerically we



follow the negative gradient direction to �nd the minimum� Note that since

	L

	�
� C�x�� � � � � xn�

the iteration process does not �nish as long as C�x�� � � � � xn� �� � because in that case
the partial derivative of L with respect to � is nonzero� If the iteration process converges
we can be sure that the constraint C is satis�ed� Care must be taken when the minimum
of F is reached at a saddle point of L� In this case some modi�cations of the basic
gradient descent algorithm are needed� Fig� � shows a diagram of the network �a Lagrange

neural network� adapted to include a constraint� Since all functions in the network are
di	erentiable the partial derivatives needed can be computed with the backpropagation
algorithm�
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Figure �� Lagrange neural network

��� Classi�er networks

It is now well known that neural networks trained to classify an n
dimensional input x in
one out of M classes can actually learn to compute the Bayesian a posteriori probabilities
that the input x belongs to each class� Several proofs of this fact di	ering only in the
details have been published ��� ��� but they can be simpli�ed� In this section we o	er a
shorter proof of the probability property of classi�er neural networks�

y(v)

Error = (1 – y(v))2

if input in class A

Error = y(v)2

if input not in class A

(a) (b)

F1 = p(v) (1 – y(v))

F2 =  (1 – p(v)) y(v)

Figure �� The output y�v� in a di	erential volume

Part �a� of Fig� � shows the main idea of the proof� Points in an input space are classi�ed
as belonging to a class A or its complement� This is the �rst simpli�cation� we do not
have to deal with more than one class� In classi�er networks there is one output line for



each class Ci i � �� � � � �M � Each output Ci is trained to produce a � when the input
belongs to class i and otherwise a �� Since the expected total error is the sum of the
expected individual errors of each output we can minimize the expected individual errors
independently� This means that we need to consider only one output line and when it
should produce a � or a ��

feature space

class 1
class 2

class 3

Figure �� Probability distribution of several classes on input space

Assume that input space is divided into a lattice of di	erential volumes of size dv each one
centered at the n
dimensional point v� If at the output representing class A the network
computes the value y�v� � ��� �� for any point x in the di	erential volume V �v� centered at
v and denoting by p�v� the probability p�Ajx � V �v�� then the total expected quadratic
error is

EA �
X
V

fp�v���� y�v��� � ��� p�v��y�v��gdv�

where the sum runs over all di	erential volumes in the lattice� Assume that the values
y�v� can be computed independently for each di	erential volume� This means that we can
independently minimize each of the terms of the sum� This is done by di	erentiating each
term with respect to the output y�v� and equating the result to zero

��p�v��� � y�v�� � ���� p�v��y�v� � ��

From this expression we deduce p�v� � y�v� that is the output y�v� which minimizes the
error in the di	erential region centered at v is the a posteriori probability p�v�� In this
case the expected error is

p�v���� p�v��� � �� � p�v��y�v�� � p�v��� � p�v��

and EA becomes the expected variance of the output line for class A�
Note that extending the above analysis to other kinds of error functions is straightforward�
For example if the error at the output is measured by log�� � y�v�� when the desired
output is � and log�y�v�� when it is � then the terms in the sum of expected di	erential
errors have the form

p�v� log��� y�v�� � �� � p�v�� log�y�v���

Di	erentiating and equating to zero we again �nd y�v� � p�v��
This short proof also strongly underlines the two conditions needed for neural networks
to produce a posteriori probabilities namely perfect training and enough plasticity of the
network so as to be able to approximate the patch of probabilities given by the lattice of
di	erential volumes and the values y�v� which we optimize independently of each other�



It is still possible to o	er a simpler visual proof �without words� of the Bayesian property
of classi�er networks as is done in part �b� of Fig� �� When training to produce � for the
classA and � forAc we subject the function produced by the network to an �upward force�
proportional to the derivative of the error function i�e� �� � y�v�� and the probability
p�v� and a downward force proportional to y�v� and the probability �� � p�v��� Both
forces are in equilibrium when p�v� � y�v��
This result can be visualized with the help of Fig� �� Several non
disjoint clusters represent
di	erent classes de�ned on an input space� The correspondence of each input vector to
a class is given only probabilistically� Such an input space could consist for example of
n
dimensional vectors in which each component is the numerical value assigned to each of
n possible symptoms� The classes de�ned over this input space are the di	erent illnesses�
A vector of symptoms corresponds to an illness with some probability� This is illustrated
in Fig� � with the help of Gaussian shaped probability distributions� The clusters overlap
because sometimes the same symptoms can correspond to di	erent ailments� Such an
overlap could only be suppressed by acquiring more information�
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Figure ��� Network for the classi�cation of feature vectors

This is a nice example of the kind of applications that such classi�cation networks can
have namely in medical diagnosis� The existent data banks can be used als training set
for a network and to compute the margin of error associated with the classi�cations� The
network can compute a �rst diagnosis which is then given to a physician which decides
if he takes this information into account or overrides the system�

��� Statistical networks

Neural networks are used as classi�er networks to compute the probability that any of
a given set of phonemes could correspond to a given spectrum and the context of the
spectrum� The speech signal is divided in windows of for example ��ms length� For each
window the short term spectrum is computed and quantized using for example �� coe�

cients� We can train a network to associate spectra with the probability of each phoneme
of occurring in a speech segment� A network like the one shown in Fig� �� is used� The
coe�cients of the six previous and also of the six following windows are used together
with the coe�cients of the window we are evaluating� The dimension of the input vector
is thus ���� If we consider �� possible phonemes we end with the network of Fig� ���
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Figure ��� Computation of the most probable path

The network is trained with labeled speech data� There are several data bases which can be
used for this purpose but we will also discuss semiautomatic methods for speech labeling�
Once the network has been trained it can be used to compute the emission probabilities
of phonemes�
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Figure ��� Markov model for the word �and�

Once a set of emission probabilities has been computed for several time frames �� � � � � �m
it is necessary to compute the most probable path of transitions of the vocal tract and
emissions� This can be done using dynamic programming methods of the same type as
those generically known as time warping� Fig� �� shows a matrix of phoneme probabilities
for which we want to compute such a most probable path� The result could be the set of
shaded nodes�
Finally we will discuss how to integrate HMMs and neural networks in speech recognition
tasks� The role of the neural network is to provide probabilities of emission� The role of
the Markov model is to reduce the number of alternatives that we want to consider�



Fig� �� shows an example of a Markov model for the word �and�� The model contains so
many possibilities because this is a very common word and we want to consider several
possible variations� Other words which are not so common can be modelled in a more
simple manner�
I will provide a more extensive list of references at HeKoNN
���
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