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A b s t r a c t - - T h e  unsteady Stokes problem, i.e., the Stokes problem with a constant multiple of 
the velocity included in the velocity-pressure equation, is often central to methods used to solve the 
nonstationary Navier-Stokes equations and the equations governing viscoelastic flows. The Glowinski- 
Pironneau finite-element method for the Stokes problem decomposes the problem into a series of 
Poisson's equations, providing a potentially ei~icient approach for large problems in two or three 
dimensions. The goal of this paper is to present a complete development and analysis of the Glowinski- 
Pironneau method for the unsteady Stokes problem, along with numerical results which confirm the 
analytical estimates. ~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - S t o k e s  problem, Finite-element method, Glowinski-Pironneau method. 

1 .  I N T R O D U C T I O N  

The Stokes problem plays a fundamental role in the modeling of incompressible viscous flows. The 
equations are known to govern slow (low Reynolds number) flows, and perhaps more significantly 
they are central to the numerical solution of the Navier-Stokes equations [1,2]. The application 
motivating this work is viscoelastic flow associated with polymeric fiber and film processes. The 
0-method is a splitting technique, first developed for the unsteady Navier-Stokes equations [3], and 
more recently adapted to the equations governing unsteady viscoelastic flows. In the latter case, 
the nonlinear terms appear in the constitutive equation rather than the momentum equation, 
and the first and third steps of the three-step 0-method are Stokes solves [4]. In this case, the 
Stokes problem takes the form 

~?u - u A u  + V p  = f ,  in ~, 
V .  u = 0, in fl, (1) 

tl[F = Ub, 

with possible variation in the boundary condition. It is assumed that ~ is an open, bounded 
domain in ~ g ,  N = 2 or 3, with smooth boundary F, {7/, v} E ~, 77 > 0, u > 0, f E (L2(fl)) n, 
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and Ub E H1/2(F), satisfying 

rUb-  n d F  = 0. 

We shall refer subsequently to the ~ ~ 0 case as the unsteady Stokes problem [5]. 
A finite-element solution of a viscoelastic flow problem in two dimensions may involve O(106) 

variables, so for these problems and especially for problems in three dimensions, the development 
of efficient iterative solvers is essential [6]. The 0-method is gaining acceptance because of its 
attractive stability properties. The emphasis is then on developing an efficient parallel solver 
for (1). A promising candidate is the method of Glowinski and Pironneau, which is based on the 
simple observation 'that if u satisfies (1), then 

V-  ( r / u -  vV2u + Vp) = V2p = V .  f. 

If  an appropriate boundary pressure Pr = Plr can be found, then p and u are solutions of the 
Poisson problems 

- V 2 p  ---- - - V  - f, Vu - vV2u = f - Vp, 
(2) 

plr = Pr, U[r = ub. 

The constraint ~7. u = 0 is used to determine pr,  indirectly through the unique function 0, 
satisfying 

u = V 0 + V x ~ ,  
elf  = 0. (3) 

The Glowinski-Pironneau method is presented for the case r/ ~ 0 in [7], for the case r/ = 0 
in [8] and analyzed in more detail for the case 7? = 0 in [9]. Each of these papers refers to a 
subsequent paper for certain analytical and numerical details. To the best of our knowledge, that 
paper never appeared, though it is worth noting that  the method for the case with 7? = 0 is also 
presented in [1] and [10]. 

Because the Glowinski-Pironneau algorithm for (1) appears promising as a key component in 
solving viscoelastic flow problems, the intent of this paper is to present a complete analysis of 
the method, specifically for the ~ ~ 0 case, along with numerical confirmation of convergence 
estimates for errors in the finite-element approximation. Though this paper is focused on the 
two-dimensional problem, sufficient generality is included so that  the analysis also applies to the 
problem in three dimensions. 

The rest of the paper is outlined as follows. In Section 2, the reformulation of (1), which is 
fundamental to the Glowinski-Pironneau method, is presented along with necessary regularity 
properties. The continuous and discrete variational formulations are analyzed in Section 3. Error 
analysis and computational results are presented in Sections 4 and 5, respectively. In Section 6, 
conclusions and next steps in this research are discussed. 

2. B A S I C  E Q U A T I O N S  A N D  R E G U L A R I T Y  

As mentioned in Section 1, the potential function 8 in the curl-free part  of u plays a role 
in determining the pressure boundary function, PF, and also in imposing the divergence-free 
constraint on u. Taking the divergence of both sides of the differential equation in (3) leads to a 
Poisson problem for 8, 

-V20  = - V . u ,  (4) 
OIr = 0. 

To develop the algorithm for finding Pr, and the necessary regularity properties of the solution 
variables, we first consider p, u, and 0 as functions that  depend on a prescribed pressure boundary 



T he  Method of Glowinski and Pi ronneau  1193 

function g. First  decompose p, u, and 0 into g-independent and g-dependent  parts ,  i.e., 

P(g) = Po + Pl (g), u(g) ---~ U 0 -[- Ul (9), 
-V2po  = - V .  f, 7]u0 - uV2Uo = f - Vpo, 

Po[r -- 0, Uo[r ~--- Ub, 

- V 2 p l ( g )  = 0, f ] u l ( g )  - -  vV2ul (g )  = - V p l ( g ) ,  

P l [ r  = g, Ullr  = 0, 

o(g) = Oo + O~(g), (5) 
-V200  = - V  • Uo, (~) 

00It = 0, 
- - V 2 0 1 ( ~ )  = - - V '  U l ( g ) ,  (7) 

011r = 0. 

Now considering conditions so tha t  weak solutions of (6) and (7) are well defined, first it is 
assumed tha t  f~ is connected and elliptic regular. Tha t  is, if L(.) = [~? - uV2](.) with r/_> 0, g > 0 
and ¢ satisfies 

L ¢  = ~, 

e f t  = 7, 

then 

II¢llk,a -< C1 (ll~llk-2,a + 11711k-1/2,r) <-- 05 tlVllk,a, k e {1, 2}, 

and the map  # ~ ~n is continuous and surjective taking g2(f~) A H~(f~) --* HU2(Ft). 
An example  of such a domain is a connected bounded open domain of dimension two or three 

with either a Lipschitz continuous or a convex polyhedral  boundary. This condition will be  
denoted as F E 0% Note tha t  in this setting, H - t / 2 ( r )  = (H~/2(r)) '. 

2 . 1 .  R e g u l a r i t y  

The main  regulari ty properties and two related results are summarized in the following lemma. 
Though the results are most ly  contained in [1], a proof is included here so tha t  parts  of the proof 
may  be referenced in a subsequent section. 

LEMMA 2.1. Consider equations (5)-(7). ITF 6 C*, f 6 (L2(~))  N, and g 6 H-1/2(F)/N,  then 

Po E Hol(f~), uo E (H2(f~))N,  00 E H2( f~ )n  Ho 1 (f~), (8) 

Pl(g) E L2(fl),  u l (g)  E (Hol (f~)) g , 01(g) E H2(f~) N Hol(f~), (9) 

and therefore, 

p(g) E L2(f~), u(g) E (Hl(f~)) N , e(g) e u~(a) n Hi(a). 

Also, the linear functional defined by 

J~ O0o 
F(g) = - -~n gdI" 

is bounded on H-U2(F) /~ ,  and 

(10) 

IIpl(g) ][o,ft -~  [ I g I ] - I / 2 , F  " (11) 

PROOF. The  result (8) is a s tandard  result, following from (6) and F E C* [1]. Thus the inner 
product  in (10) is bounded. To assure p(g) E L2(f~), u(g) E Hl(f l)  N, and 0(g) E H2(f~)NH~(f~), 
it 'would suffice to have Pl(g) E L2(fl) because from (7) we would then have u l (g)  E H~(f~) N 
and 81(g) E H2(f~) N H~(~) .  
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To prove (11), consider the Green's formula 

q0-nn dr, (12) 
which holds for # E H2(~) A H01(gt), and q e L2(f/), such that V2q e L2(12). Specifically, we 
choose q --- Pl(g) and V2q = V2pl(g) -- 0 so that 

f r~ngdr=fapl (g)V2#df t ,  V# E H2(~) O Hol(~). (13) 

Result (11) follows because the map # --* V2# has a continuous extension from H2(fl) O HI(Ft) 
onto L2(~), and the map # -* °a-~n is continuous and surjective taking H2(12)O Ho 1 (~) ~ H1/2(~). 
See [1] for details. | 

2.2. Pressure Boundary Equations 
The result in the next theorem is fundamental to the Glowinski-Pironneau method. This result, 

proven for the case ~] = 0 in [10], is, essentially, that for u(g) and 9(g) solving (5)-(7), 

09(g)on r = 0  ~ V . u ( g ) = 0 .  

THEOREM 2.2. Consider u(g), 01(g), and 00 in Lemma 2.1. If F E C*, f E L2(~) N, and 
g e H-1/2(F),  then in the sense ofL 2 deriva•ves, 

091(g)0n r -  09o~nn r (14) 

iT and only if 
v .  u(g)  = 0. 

PRoof. If g e H-1/2(r), then 9(g) E H2(I'I) N Hol(~) and 

og(g) r V . u ( g ) = 0 ~ 9 ( g ) = 0 ~  = 0 .  

Taking distributional derivatives, 
V2V'9(g) = V2 (V.  u(g)) = V.  (V2u(g)) 

= -1 -v .  (-~u(g) + f - Vp(g)) 
lJ 

= ~ - v .  u(g)  = -~v20(g).  
/2 // 

This means that if ~ Ir = 0, then 0(g) satisfies the biharmonic equation 

vV'V29(g )  - ~v~9(g)  = 0, 

9(g)lr = o, 
O0(g) I = O. 

On r 
The bilinear operator here is continuous and coercive on H2(fl) N H~(Ft), and so 0(g) = 0. 
Therefore, V29(g) = 0 and as a result, V .  u(g) = 0. | 

Note that  (14) provides a means of choosing Pr in (2) so that Vu(pr)  = 0. Defining the bilinear 
form a(. ,  .) and linear operator F(-), respectively, as 

[ 0t~l (gl) g2 dF, 
a(gl ,  g2) = Jr 

the function Pr E H-1/2(F)/~ must satisfy 

fr  8o f (g)=-  7 n g d r ,  

H-1/2(r) (15) a(pr,g) = F(g), Vg e 
The next theorem establishes two equivalent forms of (15), which are useful for developing ana- 
lytical properties of a(. ,  .) and also lead to a form more convenient for computing. 
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THEOREM 2.3. Let F E C*, f C L2(~/) N, and 13 = H-1/2(F)/N. If~(g) is any function that 
satisfies ~(g) E L2(~), Vu/~(g) E L2(~), and ~5(g)[r = g, then (15) is equivalent to the following 
two equations for pr ~ B: 

j f  /)(g)V • ul(pr) -- Ol(Pr)V2~(g) d~2 = - f ~(g)V . Uo - OoV2~(g) df~, 

/12'Ul(PF)" tll(g) -~- IAVUl(PF) : VUl(g)d~'~ = - /~pl (g)V"  uod~~, 

Vg e B, (16) 

Vget~,  (17) 

w.here ~" : ~r = ~ i , j  vijaij for second-order tensors ~" and er. 
PROOF. Because 01(g) e g2(f~) N H~(f~) and ul(g) e H01(f]), Green's second identity leads to 

JfF 0~I(PF)0n gdr = f~p(g)V%(pr)dn- f~ 0~(pr)V~(g)dn 

---- /l) p(g)V" Ul(PF)d~- /~ O, (pr)V215(g) d~t. 

Then choosing/3(g) = Pl(g), we have V2pl(g) = 0 and so 

f r  OOl (Pr ) 
On - - g d F  = fn  pl(g)V'  ul(pr)d~2 

---- - - ~  Vpl(g)" Ul(PF)d~ q- fF pl(g)ul(PF)" n dr 

= - f~ Vpl(g) • ul (pr) d~2 

---- ~ (7]Ul(g) -- b'V2Ul(g)) ' ul(PF) dfL 

Therefore, 
f r  OOl(pr) g dF f~  On = r]ul(g), ul(pr) + vVul(g) : VUl(pr)df~. (18) 

The right-hand sides of (16),(17) are established in the same fashion. II 
From (18) it is clear that a(-, .) is symmetric positive semidefinite on H-1/2(F). (Note that 

symmetry may be lost if boundary conditions other than Dirichlet-type are imposed.) The 
operator is positive definite provided g --* ul(g) is one-to-one, which is true on H-1/2(F)/N. But 
while it is clear that ~ ~ [[ul(g)[I 1,fl, recall that the needed continuity and coercivity are 
related to the H-1/2(F)/N norm. More specifically, it is required that 

v~(g,g) ~- inf IIg + cll_,/~,r, tEN 

which is established in the following theorem. 

THEOREM 2.4. I fF  E C*, f E L2(~) N, and B = H-1/2(F)/~,  the equation 

00o g dF, f r  OOl (Pr) g dF = - f r  vg e B, (19) 

has a unique solution Pr E 13 where (u(pr),p(pr)) ~ HI(~)) ! L2(~) is a weak solution to the 
unsteady Stokes problem (1). 

In addition, 
oo~(g) _~ i~f IIg + ~ll_~/~,~ • (20) IlV. u,(g)llo,n - ~  0~111/2 ,  r 
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PROOF. From (18) it follows that 

fF O01(g) gdr ~> HUl(g)[ io2f~+/][Ul  2 on - ,  , (g)h,a, (21) 

f r  °: g 
(Pr) dF -< (V + u)Hul(pr)[[1,a [[ux(g)[[1,n (22) 

and considering the weak form of the equation for ul in (7), 

£vul(a) v+.Vul(a):Vvda=£pm(g+c)V.vda, VveH0 (a) (23) 
for any c E ~. 

Since f~ is connected, the map v -* V .v  is a continuous surjection taking Hd(f~) N -~ L~(f~). So 
given g choose v c H~(f~) N so that V.v  = p(g)+Cv = p(g+cv) and [Iv]j1, ~ _< C1 [[Pl(g + c~)[10,w 
Using this with (23) and (11), and noting that ul(g) = ul(g + c,,) we have 

C1 max(w, u)IlUl(g)[ll,f~ ~ IIPl(g q- Cv)[10,fl ~-- C2 [Ig -t- CvII_I/2,  F 
_> C2 in[ [[g+ c11_1/2 r"  

Now, i f  V .  u1(9) = 0, then choose v so that V -  v = 0, and from (23) 

VUl(g) • v + : V v d a  = £ + c )V .  v d a  = 0. 

I f  V -  u~(g) ¢ 0, then choose v = ux(g), so that equation (23) leads to 

Using this with (11) results in 

u Ilul(g)[ll,n < inf C3 lipl(g + c)[[0,n < ca inf Ilg + cH-1/2,r • 
- -  tEN - -  cE~ 

That is, 
Ilul(g)lll,a - [Ig + c l [ - 1 / 2 , r  - (24) 

Thus a(-, .) is a symmetric, continuous, and coercive bilinear form on B x B. So using Lemma 2.1 
and the Lax-Milgram theorem, the existence and uniqueness of a solution follows. 

Now to establish (20), using Theorem 2.3 and Lemma 2.1, and noting that  V .  ul(g) E L2(f~), 
gives 

) - l  fr OOl(g) qdP = (tlql[w2,r)-l ~ pl(q)V, ul(g)dfl (llqlll/2,r On 
~_C4(t]pl(q)Ho,~)-l~pl(q)~'ul(g) d~ 
_< c4 Ilv '  u~(g)llo, 

which holds Vq E H -1/2. Using this and (24) gives 

001(g)  1/2,V . 2 < C4 ][V" u~(g)tto,a < cs []u~(g)ll~,a < Cs ~ f  llg + cl[-~/2, r" 

Finally, as at( . ,  .) is coercive, we have 
2 [ °°Kg)gdr > c7 inf Ilg + ~ll-1/2,r Jr  ~ - ~e~ 

O01(g) >_ Cv inf Ilg + cll_~/2,r. ! 

Note that while Theorem 2.4 establishes that the boundary pressure is uniquely determined, 
it also demonstrates how perturbations of pr affect V .  u(pr) = V • (u0 + ul(pr)) .  Specifically, 
small changes in the boundary pressure pr result in small changes in V • u(pr).  
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3. V A R I A T I O N A L  F O R M U L A T I O N  

Solving either (16) or (17) in their current form would be awkward, at the least, for several 
reasons. The choice of (17) would require that for each pair of boundary functions (gi, gj), ul (gi) 
and ul(gj)  must be used simultaneously. The use of (16) with (01(9),0o} C H2(f~)fq H~(Y/) 
implies an especially large linear system. However, working in the subspace 13 = H1/2(F)/N 
of B provides the benefit of increasing the regularity of Pl (g) and relaxing the regularity required 
of 01(g) and 00. Also, like (16), the boundary pressure equation does not explicitly require 
using Pa(g), as illustrated in the following lemma. 

LEMMA 3.1. I fF  E C* and g E t3 = H1/2(I~)/~ then Pl(g) is in Hi(Y~) and is characterized by 

~ V p l  (9) • Vtz  df~ = 0, Vp E Hol(f~), Pl(g)Ir = 9, (25) 

and (16) can be written as 

~(g)V "ul (pr) + V01 (pr).  V~5(g) dy /=  - /~ /~ (g )V - uo + V0o. V~5(g) dO, (26) 

where ~(g) is any function in Hl(f~) that satisfies/~(g)lr = g- 

PROOF. The equivalence of boundary pressure equation (26) is clear from Green's first identity 
provided Pl (g) E H i (f~), and this condition is established by considering the variational form (13) 
as a map taking g -* Pl(g). Because F E C*, for a given g we know that (25) has a unique solution 
P1(9) E HI(y/). Because (25) holds for all p E H01(f/), it also holds for all # E H2(O) 71Hl(f~). 
Thus the unique solution to (25) corresponds to the unique solution to (13). II 

3.1. Variat ional  Formulat ion  in Inf in i te -Dimensional  Spaces  

Lemma 3.1 shows that when seeking a solution Pr in the closed subspace B of B, it is only 
necessary to require that {01(pr), 00} c H01(O). This allows for the approximation of 0x(g), 00, 
Pl(g), and Po using the same finite-element subspaces. Lemma 3.1 also implies that/5(g) can be 
chosen to be nonzero only in the vicinity of the boundary. 

The variational formulation is as follows. 

PROBLEM 3.2. Given F E C*, B = H-1/z(F),  and f E L2(Y/), find a weak solution (u(pr) ,p(pr))  
for (1) along with auxiliary variables pr and 0(pr), as follows: determine Po, uo, and Oo so that 
P0lr = 0, u0[r = b, 00It = 0, and 

f Vp0. V#dO = f~ f .  V#dO, 

/ n r / u ° ' v  + VVUo:Vvdf~ = f~ ( f -  Vpo).vdf~,  

f f lVOo. V#dy/  = f ( - V .  Uo)#df~, 

v ,  e HI(O), (27) 

Vv e H0 (O) N, (28) 

V,  e Hi(a).  (29) 

Determine Pc E B so that 

f pl(g)V" ul(pr)  + ~701(pr). Vpl(g)dO 

= - / p x ( g ) V .  u0 + V0o. Vpl(g) d~2, Vg E B, 
(30) 



1198 L . K .  WATERS et al. 

where, given g E B, the functions Pl(g), ul(g), and 01(g) axe determined so that Pl(g)lr  = g, 
ul(g) l r  -- 0, 01(g)lr = 0, and 

f Vpl(g) • V/~d~ = 0, 

/ f ~ , U l ( g ) ' v  + / ] V U l ( g ) :  V v d ~ ' ~ =  f - V p 1 ( g ) ' v d ~ ' ~ ,  

/,, = ( - v  

The solution is given by 

Vv E H~(fl) N, (32) 

V ,  e H0~(n). (33) 

u(pr)  = Uo + ux(Pr), 
p(pr) = P0 + Pl(Pr). 

(34) 
(35) 

THEOREM 3.3. f f F  E C*, f E L2(~) N, and B = H-U2(F)/~, then the variational formulation 
given in (27)-(35) has a unique solution (pr,p(pr),u(pr)) E B x Hi(f~) x Hl(f~) N. 
PROOF. By Lemma 2.1, each of the Poisson problems has a unique solution. From Theorem 2.4 
we know that  (30) has a unique solution. So Theorem 3.3 follows immediately. | 
REMARK 3.4. When working within a closed subspace of H-U2(F) ,  note that  u(pr)  may not 
be the same as u, the standard weak solution of (1) because the divergence free condition, 
V-  u(pr)  = 0, is imposed differently. 

3.2. V a r i a t i o n a l  F o r m u l a t i o n  in Finite-Dimensional Spaces 

Assume that  ~ is a convex planar region and that  T is a triangulation of f~ with interior 
nodes area and boundary nodes an,r. Set the pressure at node a0,r so that  the pressure solution 
is uniquely determined. This will not interfere with using the same space to estimate 01 and 0o 
because they are defined as zero on F. Finally, since it is necessary to solve for the boundary 
pressure, the pressure space is decomposed by separating the basis functions along the boundary 
from those that  are strictly interior. The Taylor-Hood finite-element spaces--continuous piece- 
wise quadratic functions for velocity and continuous piecewise linear functions for pressure iwi l l  
be used. In light of the above conditions, define the following finite-element spaces: 

x h :  {v co( )2 :vl  P#, Ve 
yh = z h  n g ~ ( ~ ) ,  

w h  = ( x h  - vh) u {0} ,  

Qh= {qh EC°(C~)2:q[~EP1, V e E T h  and q(ao,r) = 0} ,  

Gh = {q E Qh : q(an,n) = O, Vn},  
• . = Qh n H~(~) .  

For Qh in particular, and for Gh or (I)h as applicable, the norm IIq[lo/~ = infee~ Hq + clio will be 
used. For the sake of notation, the basis functions associated with these spaces are as follows: 

Vh = span {vl, v2, V3,.  • • } ,  

Wh = span {wl, w2, W3, • . • } ,  

Q h  = span (ql, q2, q3,. • • }, 
Gh = span {gl, g2, g3, • • • }, 
(I)h = span {¢1,  ¢2,  ¢3,  • " • } '  



The Method of Glowinski and Pironneau 1199 

Note that  the functions in Gh are defined on ~, and they have support limited closely along 
the boundary. Also note that  gi • Gh C HI (~)  ~ gdr • H1/2(F) • So to represent the pressure 
on the boundary, let Bh = span{giir : gi • Gh}. This gives Bh C 13 as required by Lemma 3.1, 
so (26) may be used with 15(gdr ) = g~ along with appropriate choices for 01(gdr) and 0o. 

Given these spaces, the discrete variational formulation is as follows. 

PROBLEM 3.5. Given f • L2(~t), find an approximate solution (uh(Pr),Ph(Pr)) for (1) along 
with auxiliary variables Pr and O h (Pr), as follows. 

Determine Pho E ¢bh, Uho E Xh, and OhO C q~h so that Pho[r = O, uhO[r = b, Oho[r = O, STEP 1. 
and 

STEP 2. 

aVph0.  V¢ d~ = / a  

fa ,Uho " V + VVUho : V v  d~ = /a  

~ V OhO " V ¢ d~ = ~ 

Determine Pr = ~ ajgj C Gh so that 

fng V-Uhl (Pr )  + 

f .  V¢ dl2, 

(f - VPh0) " V d~t, 

( - V "  uh0) ¢ d~, 

VOhl (Pr)" Vg dl2 

v¢  • Ch, (36) 

Vv e y~, (37) 

v¢  • ch. (38) 

(39) 

Ph(Pr) = Pho + Phl(Pr), (43) 
Uh(Pr) = Uh0 + Uhl(Pr), (44) 
Oh (Pr) = Oho + Oh1 (Pr). (45) 

REMARK 3.6. In implementing the algorithm, Step 2 solves for the coefficients a j ,  j = 1 , . . . ,  
using the system of equations 

. . . . .  

3 

Depending upon storage capabilites, Phl(Pr), Uhl(Pr), and Ohl(Pr) might be formed as linear 
combinations of stored vectors Phl(gj), uM(gj), and Ohl(gj), j = 1 , . . . .  As storage becomes 
an issue, these vectors can be discarded after use, and PM(PF), uM(pr) ,  and OM(pr) can be 
calculated as in Step 2.1 using g = Pr. 

Furthermore, the stiffness matrices associated with (36) and (40) are identical, as is the case 
with (37) and (41), and (38) and (42). 

Note that  in the discrete variational formulation the boundary equation as given in Lemma 3.1 
has been imposed, and substituting g E Gh for •(g) does satisfy the constraints of that  lemma. 
However, Po, Pl(g), 0o, and 01(g) are variational solutions in closed subspaces of HI (~ ) ,  so it is 
necessary to verify that  the pressure boundary equation is equivalent to (17). 

STEP 3. The solution is given by 

= -- / 9V" uho + VOho " Vgd~ ,  [or g = gi E Gh, i =  1 , . . . .  

STEP 2.1. As needed, for g E Gh, determinephl(g) E Qh, Uhl(g) • Vh, and Ohl(g) • Oh SO that 
Phl(g)Ir = glr, Uhl(g)ir = 0, Ohl(g)]r = 0, and 

/ Vphl(g)" V¢ d~t -- 0, V ¢ • Oh, (40) 

£ ,uhl(g) • ,, + ~vuhl(g): v v  da = £ -vp~,(~) .  v da, V v c Vh, (41) 

£VO, l(g).V~da= f (-V.u~l(g))~da, v o • ¢ . .  (45) 
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LEMMA 3.7. The boundary equation (39) is equivalent to 

/~  ?~Uhl(9)' Uhl(PF) -{- /]VUhl(9) : VUhI(PF)da.-= /12 PhI(g)V" Uhoda. (46) 

PROOF. Using (40) with the fact that Ohl(Pr) E Oh, (42) with 9 - Phl(g) E Oh, and (41) with 
Uhl(pr) E Vh, it follows that 

a g V '  uhl (Pr) + VOhl(PI') . V9 df~ 

= / a  9V" Uhl (PF) -t- VOhl(Pp)" (V9 -- VPhl(g))df~ 

= fa  gV.  uh~(pr) + uhl (pr)" (Vg - Vph~(g))da 

= - f a  um(pr)  • VPhl(g) da  

-- £ rlUhl(9) " Uhl(PF) -t- ~'VUhl(g) : VUhl(PP) d•. 

Similarly, 

f 
- -  _ / o  9 V  ' Uh0 -t- V0h0 • Vg df~ 

= - f o g V .  uu0 + V0u0. (Vg - Vph~(g)) df~ 

= - _/ogV" Uh0 + Uh0' (Vg - Vpm(g)) df~ 

/ou 0 
---- ]gtPhl(g)V. Uho da, 

and the result follows. | 
Now it is shown that the discretization has a unique solution. 

THEOREM 3.8. The bilinear form in the boundary equation (39) is symmetric positive definite 
on Gu ! Gh, and Problem 3.5 has a unique solution 

(Pr,Ph(Pr), Uh(Pr), Oh(Pr)) ~ Gh x Qh x Xh x Oh. (47) 

PROOF. It is clear that the Poisson problems have a unique solution and that  the pressure 
and velocity discrete operators are symmetric positive definite. The discrete boundary pressure 
equation operator is at least symmetric positive indefinite by Lemma 3.7. Now it is shown that 
this operator is positive definite. Note that 

a g V '  um (Pr) + V 0 h l ( P F )  • Vg df~ 

= ./~ rlUhl(g) ' Uhl(g) + b'VUhl(g) : VUhl(g) df~ 

> .luhl(a)l ~. 

If urn(g) = 0, then (40) implies 

/ Vpal(g) .  v d f / =  0, Vv ~ vh. (as) 
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This implies that Phl (g) = 0 and so (as will be shown) g - 0. That  is, the variational form is 
positive definite. To establish that Phl (g) = O, note that the Taylor-Hood element satisfies the 
inf-sup condition [2] 

/f V~. v d~ 
sup > w 114110,~, V4 e Qh. (49) 

v~v~ Ivl~,a - 

The pressure space is denoted Qh instead of Qh because the uniqueness condition is enforced 
here by insisting fa  q dft = 0 as opposed to setting the pressure at one node on the boundary. 
This condition suffices in this case because for each q E Qh there exists some constant cq, such 
that q + cq E Qh, and 

V q . v d ~  f a V ( q + c q ) ' v d ~  
s u p  - s u p  > w IIq + cqllo,a > w Ilqllo/~" 

v ~ V h  I v l l , a  v ~ V ~  I V l l , a  - - 

;So choosing q = Phl(9), (48) implies [[Phx(g)[[o/~ = 0, and so g = 0. That  is, the map 
g ---+ Uhl (g) taking Gh --~ Vh is one to one, and the proof is complete. II 

REMARK 3.9. The discussion following equation (48) establishes the equivalence of imposing a 
zero-mean condition and setting the pressure at a point in order to have a unique solution. The 
former condition is often used in analysis while the latter is imposed on the computed solution. 

x'--IG~,l Returning to the specifics of the discretization, pr is approximated as par =/--~j=o a~g~, where 
the o~j satisfy 

For each gj, let 

IG~,I 
a~ fn  V01(gjlr) • Vgi + g~V. ul(gj[r)  dFt 

j=0 

= - [ V00. Vgi + g~V. u0 dfl, V i e  {1 . . .  IGhl}. 3a 

(50) 

I~,I IVhl 

ra= l rn=l 
1¢,1 

o (gjl ) oL = Z 
m = l  

where the Z j , 3 ,y, (J are obtained by considering the definitions of Pl (gilt), Ul(gj It), and 01 (gj It), 
and insisting that the following hold: 

IChl 

m=l  
IVh~ 

m------i f~ 

lChl 
(: ~ (V'm" VCn)dO =-/• CnV" u;6 dO, 

vn=l 

The values of Po, Uo, and Oo are determined similarly. Let 
I(bhl IVhl 

E: ° Z ° PO ~ PhO = ]~rnCrn, U0 ~-" Uh0 = ~[rnVm + bh, 
m = l  m = l  

Vn e {1. . .  IOhl}, (51) 

V n  ~ { 1 . . - I Y h l } ,  (52) 

V n e  {1--.l@ht}. (53) 

IChl 
O0 ~ 0h 0 ~ 0 = ( ~ ¢ m ,  

m=l  
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where bh = ~rkW]l ~Wk  e Wh and the 50 are selected so that bh[r interpolates b. Then the 
following equations must hold: 

~o [ (Veto" VCn) d~ -- ~ f '  VCn d~, V n c  {1..- J hl}, (54) 
m~l  

IYh~ 
 o/( vm + .Vv : Vv ) da 

m~l  

= ./o (f - Vpho -- ~bh) (55) 

• vn -- vVbh : Vvnd~,  Vn E {1. . .  IVht}, 
Ichl 

¢ = -  u 0d , 
m~l  

Note that the process of determining pr involves three discrete linear operators. For notation, 
call these Abp, A~p, and A,, for boundary pressure (50), interior pressure (51), (53), (54), (56), 
and velocity (52),(55). It is important to note that none of these operators depend upon f or b. 

Note also that Av can be permuted to the form ( ~ ~ ) through judicious selection/ordering of 
basis functions. So the effective size of Av is IYhl/2, 

The size of Abp depends upon the number of nodes along the boundary and so the system 
is relatively small. However, the calculation of each entry of Abp requires solving two systems 
involving Aip, and one system involving Av. So if one should use this approach in an iterative 
scheme such as the 0-method, it is fortunate that AbB need only be recalculated after changes in 
the mesh. That is, f and b may be changed without effecting Abp. 

Finally, note that all entries of Abp are independent of each other, and so they can be calculated 
in a parallel fashion. 

4 .  E R R O R  A N A L Y S I S  

THEOREM 4.1. Suppose that p(mod ~) and u comprise the true solution to the unsteady Stokes 
problem (1) with b = O, and ~ a convex polygon with a regular triangulation. I f  (p, u) E 
Hk+ 1 (~) 2 x H k (f~) (mod N) for k E { 1,2 } then the unique solution (Ph, Uh, Oh) = (Ph (Pr), Uh (Pr), 
Oh(Pr)) E Qh x Xh x Oh of Problem 3.5 satisfies the following error bounds: 

]tu - uhl l l  -< Chk (lul,~+l + Iplk), 
IOhll -< I lu- uhllo, 

lip -ph l l o /~  -< Chk ([ulk+l + IPlk), 
Ilu - uh + VOhll0 < Ch k+l (lulk+x + Iplk). 

PROOF. The proof of the error bounds will make use of the two equalities 

(u - uh, vh) + v ( V ( u  - uh), Vvh)  
+ (V(p-  p~), vh - v ¢ ~ )  = o, V(vh, ¢h) e Yh ! oh, 

(V0h, Vqh) ---- (Uh, Vqh), Vqh E Qh. 

To establish (57) and (58), note that the following equalities hold by construction: 

(57) 
(58) 

(Vph, VCh) = (f, VCh), 
~? (Uh, Vh) + v (VUh, VVh) ---- (f -- Vph, Vh), 

(voh, vCh) = (uh, vCh), 

V Ch E ~h ,  

VVh E Vh, 
(59) 
(60) 
(61) 
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Equation (57) follows from (59)-(61) by observing that p, u, and 0 also satisfy (59)-(61). Also, 
(58) holds by extending (61) to hold on Qh. With this in mind, given qh E Qh, note that  there 
is a unique gh E Gh, such that  qu]r= gh]r, so qh has a unique representation qh =- Phl(gh) + Ch 
with Ch E Ch and Phl(gh) satisfying (40). Uniqueness of this representation follows from the 
uniqueness of Phi as a function of gh. This gives 

(Uh, Vqh) = (Uh, Vphl(gh) + VCh) = (Uh, Vphl(gh)) + (Uh, VCh), 
(VOh, Vqh) = (VOh, Vphl (gh) + VCh) = (VOh, Vphl (gh) ) + (V0h, VCh). 

Noting (38) and (42) gives (VOh, VCh) = (Uh, VCh). Also, Oh e Ch, which means (40) gives 
(VOh,VPhl(gh)) = 0. So to show (Uh, Vqh) = (VOh, Vqh), it will suffice to show (uu, 
~Phl(gh)) : O. To do this, recall that  Uh is the approximation, so Uh = Uh(Pr) e Vh. This 
means using uh(Pr) as v in (41) gives 

(uh(g),  VPhl(gh))  = - ,  (uhl(g) ,  uh0 + uhl (pr) )  - v (Vuh , (9 ) ,  Vuh0 + V u h l ( p r ) )  

= - 7  (uhl(g) ,  uh0) - ~ (Vuh~(g),  Vuh0) 

- ~/(Uhl(9), uhl (pr)) - v (Vuhl (g), VUhl (pr)) 
= --r/(Uhl(g), Uh0) -- V (VUhl(g), VUh0) + (V.  Uho,Phl(9)) 
= --7/(uhl(g), Uh0) -- V (VUhl (9), VUh0) -- (Uh0, Vphl(g)) 
= (uho, Vph~(g)) - (uh0, vph~(9) )  
~ 0 .  

(62) 

(63) 

Equality at (62) follows from the equivalence of the boundary equations established in Lemma 3.7, 
and using (41) once more shows equality at (63). Therefore, (57) and (58) hold, and may be used 
to produce the error bounds. 

BOUNDS FOR U -- Uh. To produce error estimates for velocity, it is convenient to introduce the 
space 

Dh = {(V,¢h) E Vh ! ~ h  : ( V h  - -  VCh,Vqh) = 0, Vqh E Qh}. 

Note that  D h • ~, because (Uh, Oh) E Dh. Now restricting the pair (vh, Ch) in (57) to Dh, it 
follows that  

7/(u - Uh, Vh) + V (V(U -- Uh), ~'Vh) + (V(p -- qh), Vh -- VCh) = 0, 
V((Vh,¢h),qh) E Dh ! Qh. 

(64) 

For qh substitute PhP, the projection of p onto Qh which satisfies 

( V ( p -  Php),Vqh) =O, Vqh e Qh, and fnpd~2 = fnPhpd~2. (65) 

That  PhP exists follows from k E {1,2} and p E Hk(~) .  Also note that  

lip - PhPllo = lip - P h P l l o m "  

Substituting u - u h : u - w h -1- w h - u h i n  (64) r e s u l t s  i n  

(u - wh,  vh)  + , (wh - uh, vh)  

+ v  ( V ( u  - wh), Vvh) + v (V(w~ - uh), Vvh) 
= ( p  - P h p ,  V. vh), v (v~, Ch) ~ Dh. 
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Now choose V h ~- U h --  Wh, and note tha t  ( U h , 0 h )  E Dh. As a result, 

Iluh - whl lo  2 + ~' luh - wh) l~  -= ,7 (u  - w n ,  uh - w h )  
+~, ( V ( u  - w h ) ,  v ( - h  - w h ) )  

- (V- (Uh  -- Wh), p -- PhP), V (Wh, qOh) E Dh, 

with ~h dependent  upon w h. From the above, 

luh -- Whl~ ~ ~ (U -- Wh, Uh -- Wh) + ( V ( U  -- Wh), V ( U h  -- Wh)) 
/2 1 
- - ( V .  (uh - Wh), p -- PhP), V (Wh, ~h) C Dh, / /  

luh - W h l l  < C 1 ~  Ilu - whl lo  + I "  - w h l l  + V ~  liP - PhPlIo/~ / . /  

( ~ 1 + C 1 ~  Ilu-w~ll,+--IIp-Phpllo/~,v V(Wh,~h) eDh .  

(66) 

Now choose ~h = 0, and note tha t  { v :  (v ,0)  E Dh} = {v E Vh : ( V .  v, qh) = O, Vq C Qh}. Tha t  
i s ,  ~D h = 0 implies Wh may  be arbitrari ly selected from the subspace of Vh whose divergence is 
orthogonal to Qh. Therefore, because Vh and Qh satisfy the inf-sup condition, 

a V q -  v d~  
sup > w Ilqllo,~, Vq C Qh. (67) 
veV,. fVl l ,~ 

The inequality [1] 

inf 
( w , 0 ) E D h  

IlU-Whl[1 < (1+-'~),,hevhinf I l u - v h l t l  

may be applied to (66) to obtain a fixed w h so tha t  

(68) 

So using (66), it follows tha t  

tUh--WhlI<--(I+CI~) (1+--~ -)vheVhinf IlU--VhHl+S~-2Np--PhPllo/~,v (69) 

Because u - u h • u - w h -F W h  -- U h ,  i t  follows t h a t  

I lu - uhll~ _~ I lu - whl l~  + c2 luh - w ~ l l  

which with (68) and (69) gives 

I lu - uhfl~ < G inf Ilu - vh l l l  + G tip - Phpllo/~. 
- -  v h E V h  

(70) 

Now for interpolation est imates on Vh and Qh, with k E {1,2} and n E {0, 1}, 

IIv - Zhvtl,~ _< Csh k + l - n  I v l k + l ,  

lip - Phpl lo /~ + h IP - PhPl l  <-- C6 hk IPlk " 

Y v E H k + l ( ~ )  2, n < k ,  (7 i )  
(72) 
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So from (70), the velocity error bound is 

Ilu - U h [ l l  < Ch k (lUlk+l + IP lk )  - 

B O U N D S  FOR 0h. To bound 0h, recall from (58) that  

(uh -- V0h, Vqh) = O, V qh E Qh, 

which gives 

1205 

(73) 

(V0~, V0h) = (Uh, V0h) 
= (u~, v0h)  - ( V . u ,  0h) 
= - (u - uh, V0h). 

So the resulting bound, in terms of the velocity error, is 

10hlx < I l u -  UhlJ0. 

B O U N D S  F O R  p -  Ph. To produce bounds for the error in pressure, consider (57) with Ch = 0. 
This gives 

- ( V ( p -  ph), vh) = ~ ( u -  uh,vh) + ~ (V(u - uh), Vvh),  Vvh e Yh, 

and thus 
(Ph -- qh, V .  Vh) = --~7 (U -- Uh, Vh) -- v (•(u -- Uh), ~YVh) 

(74) 
+(P--qh ,  V ' v h ) ,  V V h E V h ,  V q h E Q h .  

Noting IV" vl0 _< v~[IVlll, assuming v ~t 0 and dividing both sides of (74) by IlVh]ll gives 

(ph--qh,  V ' V h )  <_2ma.x{rl, V}l lU_Uhll l  + V~llp_qhHO, Vqh E Q, h. (75) 
Ilvhlll 

Now using the inf-sup condition (67), choose Vh ~ 0 so that  

w IlPh -- qhllo/~ < (Ph -- qh,V" Vh) 
- -  IVhlx 

Noting that  IlVhlll < C; -1 Ivhlx, and using (75) gives 

[IPh -- qhllo/~ < C1 2- max{~, v} Ilu - Uhlll + Cx v~  liP - qhllo/~, Vqh E Qh, w t.,d 

so using the triangle inequality 

lip - Phllo/~ <-- IlPh -- qh[lo/~ + lip -- qhllo/~ 

results in 

IIP-PhII°/Yt<~ c1-~2 max{rJ' u} I l u -  Uhlll q - w  (1 q- C I ~  V/~) qhEQhinf IlP--qhHO/~' VqhEQ,  h" 

Now considering (70), substituting qh = PhP gives 

liP --Phllo/~ <-- C2 inf Hu - Vhlll -~- C 3 lip - PhPlIo/~, vh E Vh 
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SO from the velocity error bound (73), 

l i p -  phllo/~ < Chk ([u[k+l + IPlk) • (76) 

BOUNDS F O R  u - -  Uh -t- V 0 h .  To improve the velocity error bound somewhat,  consider a variant 
of the duality argument of Aubin and Nitsche [11,12]. For a convex polygonal domain, and given 
F E L2(~) 2, there exists a unique solution (¢, #) [1] to the Stokes (dual) problem 

- V 2 ¢ -  V#  = F,  V .  ¢ = 0, e l f  = 0, 
H I ( ~ )  

¢ e H2(~2) 2 N H~(~)  2, # e T '  H~/)H2 -[- [#]1 --~ C1 [[Fl[o • 

To see tha t  this is also true for the unsteady Stokes problem, note tha t  because F E C*, by the 
Lax-Milgram theorem there is a unique solution to E H~ (fit) 2 to 

~to - vV2to = - V 2 ¢ ,  to[r = 0. 

Noting that  vV2to = - V 2 ¢  - rito E L2(~), it follows from F E C* that  to E H2(~)  2 ~ Hol(f~) 2. 
Taking distributional derivatives gives 

v .  (rito - vV2O)  = ~ v .  to - v V 2 V .  to = - v .  v 2 ¢  = 0. 

Now let ~ = V • to and note that  there is a unique solution ~ -- 0 to 

v~  - v V 2 ~  = 0, ~ l r  = 0. 

So V • t0 = 0. It  follows that  for a given F E L2(~) 2, there exists a unique solution (to, #) to the 
unsteady Stokes (dual) problem 

rlto - vV2to - V #  = F, 

to ~ H 2 ( a )  ~ n H ~ ( a )  ~, ~ c - -  

v .  to = 0, tolr = 0, (77)  

H ~ ( a )  
, [[toil2 + [#[1 < C1 [[F][ o . (78)  

Using the true solution to (77) (to,#), the true solution (u,p)  to (1), and the approximation 
(uh,Ph) to (1), gives 

( f ,  u - Uh) = ri (to, u -- Uh) + v (Vto, V (u - Uh)) -- (V#, u - Uh). (79) 

Also, because (uh,Ph) is the approximation for (u,p),  using (37) and (41) results in 

0 = ~ ( u -  uh ,vh )  + ~ ( V ( u -  u h ) , V v h )  + ( V ( p - -  p h ) , v h ) ,  Vvh ~ Vh. 

Combining this with (58) and the fact tha t  V • (~to - vV2to - V#) = - V 2 ~  = V .  F,  

0 = ri ( u  - uh, vh) + v (V(u  - ~h), v v h )  + (V(p - ph), vh) 

+ (Vqh, uh) -- (Vqh, V0h) 
- (eh, v 2 ~ )  - ( v .  F, eh),  Vvh e Vh, Vqh e Q~, (80) 

= ri ( u  - uh, vh) + v (V(u  - uh), Vvh)  + ( V ( p  - ph),  vh) 

--(qh, V . U h ) + ( V O h ,  V ( # - - q h ) ) - { - ( F ,  VOh ) , k/vh E Vh, Vqh E Qh .  

The equality at (80) follows from the divergence theorem and the fact tha t  Uhtr = 0 and 0hlr = 0. 
Now for qh choose Ph#, the projection of # onto Qh as in (65). Then subtract ing (80) from the 
right-hand side of (79) gives 
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( F ,  u - Uh)  = n ( 0  - Vh,  u --  Uh)  + v ( V ( 0  - V h ) ,  V ( u  - U h ) )  

- ( v ~ , ,  u - Uh)  - ( v ( p  - Ph) ,  Vh)  

+ (Phtz, V .  Uh) -- (WOh, V(#  -- Pn/z)) - (F, V0h) ,  VVh e Vh. 
As in (65), (V0h, ~7(# -- Ph#)) = 0, so using V .  u = 0 and V .  0 = 0 gives 

(81) 

( F ,  u - Uh + VOh) = ~ ( 0  -- Vh,  U -- Uh)  + ~ ( V ( 0  -- Vh) ,  V (U -- U h ) )  

+ (~,, v .  ( ~  - U h ) )  - (p - Ph,  V .  ( 0  --  V h ) )  

- ( P h # ,  V '  (u - Uh)) 
= n ( o  - Vh,  u - u h )  + ~ ( V ( O  - Vh) ,  V ( u  -- u h ) )  

+ (P-Ph ,V"  (Vh-- 0)) -- (# - -  Ph#,V" (Uh -- u ) ) ,  V V h  ~ Yh. 

(82) 

( 8 3 )  

Noting that  this holds V F  E L2(f~) 2, and tha t  U--llh-~-O h E L2(~'~), choose F so tha t  [IFHo = 1 and 
( F , u  - Uh + Oh) = Ilu -- Uh + 0hll0. Choosing F fixes (0 ,#)  by (77), so (78) gives 110112 + Itzll _< 
C1 IIFIl0 = C1. Now choose Vh as the Vh interpolant of 0. Using the interpolant and projection 
e r r o r  e s t i m a t e s  f o r  ( 0 , # )  C H ] ( ~ )  2 x L2(12)  r e s u l t s  i n  

IiO - vhll~ ~ C2h and I1~ - Ph~llo ~ C3h, 

It  follows tha t  

Finally, from (83), 

IlO - vhllo ~ C2h and N V ( O -  Vh)No -< v~C2h. 

l lu - Uh + Ohllo ~ ~ II~ - vh l lo  Ilu - uhllo + v l l V ( ~  - v h ) l l o  IIV ( u  - Uh) l lo  

+ lip - P h i l o  ItV" (Vh - 0)]10 + lllz - Ph~]lo HV" (Uh -- u ) l l 0  
( 8 4 )  

SO using the errors proven earlier for the approximation (Uh,Ph), 

Ilu - Uh + V0hllo _< Ch l+k (lUlk+l + IPlk), 

thus proving Theorem 4.1. 

r/----0, u =  1 

r / = l , v = l  

T a b l e  1. R e s u l t s  for  E x a m p l e  1. 

h I lua  - u l l0  lUh -- U l l  IlPh -- PlIO loll 
1 

6 .55e  - 1 2 .37e  + 1 3 .98e  + 0 4 .92e  -- 2 

1 
8 .30e  -- 2 6 .19e  + 0 3 .06e  - 1 8 .46e  - 3 

I 
- -  1 .0he -- 2 1 .57e  + 0 2 .18e  - 2 6 .68e  - 4 
16 
1 

1 .31e - 3 3 .93e  - 1 1.50e -- 3 4 .48e  - 5 
32 

1 
6 .54e  - 1 2 .37e  + 1 3 .99e  + 0 4 .89e  - 2 

I 
8 .29e  - 2 36 .19e  -I- 03 3 .07e  - 1 8 .43e  - 3 

1 
- -  1 .0he  - 2 31 .57e  + 0 2 .18e  -- 2 6 .66e  -- 4 
16 
1 

1 .31e - 3 33 .93e  - 1 1 .50e - 3 4 .47e  -- 5 
32  
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5.  N U M E R I C A L  R E S U L T S  

I n  t h i s  s e c t i o n ,  n u m e r i c a l  r e s u l t s  f o r  P r o b l e m  3 . 5  a r e  p r e s e n t e d  w h i c h  c o n f i r m  t h e  c o n v e r g e n c e  

r a t e s  p r e d i c t e d  b y  T h e o r e m  4 . 1 .  T h e  r e s u l t s  a r e  g i v e n  a s  L 2 ( ~ l )  n o r m s  a n d  H I ( ~ )  s e m i n o r m s  o f  

t h e  d i f f e r e n c e  b e t w e e n  t h e  f i n i t e - e l e m e n t  a p p r o x i m a t i o n  a n d  t h e  e x a c t  s o l u t i o n ,  e . g . ,  IlPh -PIIo 
a n d  l u h  - U l l .  A l s o  d i s p l a y e d  a r e  r e s u l t s  f o r  1Oll a n d  IlUh --  l l l lo ,  w h i c h  b y  P o i n c a r e - F r i e d r i c h s  

s h o u l d  s a t i s f y  [1] 

flu- uhllo < c lul,. 
I n  e a c h  e x a m p l e ,  t h e  d i s c r e t e  s y s t e m s  g e n e r a t e d  b y  t h e  G l o w i n s k i - P i r o n n e a u  a l g o r i t h m  a r e  s o l v e d  

u s i n g  t h e  C h o l e s k i  m e t h o d .  T h e  t r i a n g u l a r  m e s h  i n  a l l  c a s e s  is c o n s t r u c t e d  s o  t h a t  n o  t r i a n g l e  

h a s  t w o  e d g e s  o n  F [13].  A s  s t a t e d  in  [2], t r i a n g u l a t i n g  i n t o  c o r n e r s  is  n o t  n e c e s s a r y  t o  a c h i e v e  

Re = 0.01 

R e =  0.1 

Re = 1.0 

Re = 10.0 

Re = 100.0 

Ta b l e  2. Resu l t s  for E x a m p l e  2. 

h Iluh -- UlJo rUh -- u t l  IlPh -- PIIO 1011 

1 
3 . 9 0 e -  1 1.14e + 1 1 . 0 3 e +  3 2 . 1 4 e -  1 

1 
4.65e - 2 2.94e + 0 1.59e + 2 1.79e - 2 

1 
- -  5.44e - 3 7.41e - 1 2.20e + 1 1.1Be - 3 
16 
1 

6.60e - 4 1.86e - 1 2.90e + 02 7.46e - 5 
32 

1 
3.78e - 1 1.10e + 1 9.99e + 1 2.07e - 1 

1 
4.50e - 2 2.85e + 0 1.54e + 1 1.74e - 2 

1 
5 . 2 7 e -  3 7 . 1 7 e -  1 2.13e + 0 1 . 1 7 e -  3 

16 
1 

6.40e - 4 1.80e - 1 2.80e - 1 8.61e - 5 
32 

1 
2.77e - 1 8.12e + 0 7.18e + 0 1.49e - 1 

1 
3.31e - 2 2.08e + 0 1.09e + 0 L 3 3 e  - 2 

1 
3.97e - 3 5.23e - 1 1.51e - 1 1.31e - 3 

16 
1 

5.21e - 4 1.31e - 1 2.00e - 2 2.39e - 4 
32 

1 
4.07e - 2 1.21e + 0 7.50e - 2 1.43e - 2 

1 
5.13e - 3 3.07e - 1 1.13e - 2 1.68e - 3 

1 
7.02e - 4 7.69e -- 2 1.86e - 3 3.57e -- 4 

16 
1 

1.17e - 4 1.92e - 2 3.63e - 4 9.01e - 5 
32 

1 
1.39e - 2 4.04e - 1 6.82e - 4 4.90e - 4 

1 
1.83e - 3 1.03e - 1 6.54e - 5 4.79e - 5 

1 
- -  2.32e - 4 2.61e - 2 1.24e - 5 3.40e - 6 
16 
1 

2.91e - 5 6.53e - 3 2.91e - 6 2.22e - 7 
32 
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opt imal  accuracy. I t  was observed tha t  for the  examples  given in this  paper ,  the  magni tude  
( though not  the  convergence rate)  of errors was less when using t r iangula t ion  into corners. 

5.1.  E x a m p l e  1 

Resul ts  for Example  1 are displayed in Table 1. Here the  domain is [0, 1] ! [0, 1] and f is chosen 
so tha t  the  solut ion is 

u = 2 5 6 x ( x  - 1 ) ( 2 z  - 1)  2 - 6 y  + 1 )  i 

- 2 5 6 y ( y -  1)(2y - 1) (6x 2 - 6x + 1) j ,  

The  errors in lUh -- U]I converge at  the  predic ted rates,  while the  others  converge faster than  
predicted.  

5.2.  E x a m p l e  2 

The  solut ion used for this  example  is known as a 2D Kovasznay flow [14]. The  domain  is 
[-1./2,  1/2] x [ - 1 / 2 ,  1/2], wi th  ~ = 1, u E {1/100, 1/10, 1, 10,100}, and f selected so t ha t  

u = {-e)'X cos(27ry) } i + { 2~e)'~ sin(2ry) } j, 

1 - e ~ p =  - - ,  
2 

where )~ = Re /2  - ( (Re/2)  2 + (27r)2) 1/2 and Re = 1/u. Convergence results  are displayed in 
Table 2. Resul ts  for the  case y = 0 are near ly  identical  to those for ~/= 1. 

5 . 3 .  T i m i n g  R e s u l t s  

Timing comparisons between the Glowinski-Pironneau algori thm, a sparse direct  approach,  
and an i te ra t ive  a lgor i thm are now presented.  Tables 3-5 can be used to  compare  times, in 
seconds, to solve (1) using the sparse direct  solver in the  Aztec package [15], an i tera t ive  solver in 
Aztec,  and the  Glowinski-Pironneau a lgor i thm using the  Choleski me thod  for the  Poisson solves. 
In each case, the  exact  solution is the  Kovasznay flow with  U = u = 1. The  i terat ive solver 
is B iCGStab  wi th  a n inth-order  least squares polynomial  precondit ioner ,  using 1.e - 6 as the  
convergence cri ter ion for the  relat ive residual. 

The  t imings  in Table 5 are organized to separa te  t ha t  por t ion  of the  a lgor i thm which will be 
repea ted  for each t ime step to solve an uns teady  problem, in which the  r ight -hand side of (1) 

Table 3. Timing in seconds for sparse direct solver. 

1 1 1 

Assemble 0.06 0.43 4.56 
Factor 0.27 6.06 139.30 
Solve 0.01 0.04 0.23 

Table 4. Timing in seconds for iterative solver. 

1 1 1 

Assemble 0.06 0.43 4.45 
Solve 0.10 1.92 11.68 
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Table 5. T iming  in seconds for Glowinski P i ronneau algori thm. 

1 1 1 
h ~ 1-~ 3~ 
Assemble boundary  pressure  mat r ix  0.28 3.55 49.80 

corresponding to (45), using (42)-(44) 
Factor boundary  pressure mat r ix  0.006 0.014 0.076 
Assemble and factor sys tems  (39)-(41) 0.08 0.92 13.28 
Solve for boundary  pressures 0.02 0.14 0.89 

- Solve factored form of (39)-(41) 
- Calculate RHS of (45) 
- Solve factored form of (45) 

- Determine Phi, Uhl, 0hl 
- Determine Ph, Uh, Oh using (46)-(48) 

Table 

h 

1 
4 
1 
8 
1 

16 
1 

32 

6. Convergence results  using sparse  LU solver. 

{iUh--UI{o {Uh--Utl I{Ph--P}{o 

2.49e-1 8.47e+0 9.55e+0 

3.17e-2 2.10e+O 1.35e+0 

3.79e-3 5.24e-1 1.79e-1 

4.64e-4 1.31e-1 2.33e-2 

changes. This is the case, for example, in the P-method [4]. It is appropriate, then, to compare 
the last row of timings in each table. The direct solver, as would be expected, has the lowest 
time in the solve step. This fact loses relevance as the problem size grows beyond the point at 
which an LU solver for the velocity-pressure system is feasible. One can infer from a comparison 
of the solve times for the latter two methods that in a time-dependent context, there will be a 
threshold number of time steps at which the total time for the iterative method equals that for 
the Glowinski-Pironneau algorithm, after which the Glowinski-Pironneau algorithm will take less 
time. More extensive numerical results are needed to confirm this point. 

Table 6 displays convergence results for the sparse direct solver from Aztec for the Kovasznay 
flow with ~ = u = 1. The entries can be compared with the Re = 1 values in Table 2, showing 
that the accuracy of the algorithms is very similar. 

6. C O N C L U S I O N S  A N D  F U T U R E  W O R K  
In this paper, a complete description and analysis of the Glowinski-Pironneau finite-element 

method for the unsteady Stokes problem has been presented. The next step in this research 
will be to use the algorithm (or a variant) within a time-dependent viscoelastic flow simulation. 
Implementation in a parallel setting, for the 3D problem, is a likely direction for this effort. 
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