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Abstract

For strong solutions of the incompressible Navier-Stokes equations in bounded

domains with velocity specified at the boundary, we establish the unconditional

stability and convergence of discretization schemes that decouple the updates of

pressure and velocity through explicit time stepping for pressure. These schemes

require no solution of stationary Stokes systems, nor any compatibility between

velocity and pressure spaces to ensure an inf-sup condition, and are represen-

tative of a class of highly efficient computational methods that have recently

emerged. The proofs are simple, based upon a new, sharp estimate for the com-

mutator of the Laplacian and Helmholtz projection operators. This allows us to

treat an unconstrained formulation of the Navier-Stokes equations as a perturbed

diffusion equation. c© 2006 Wiley Periodicals, Inc.

1 Introduction

The Navier-Stokes equations for incompressible fluid flow in a domain � in

R
N (N ≥ 2) with specified velocity on the boundary � take the form

∂t u + u·∇u + ∇ p = ν�u + f in �,(1.1)

∇ · u = 0 in �,(1.2)

u = g on �.(1.3)

Here u is the fluid velocity, p is the pressure, and ν is the kinematic viscosity

coefficient, which we assume to be a fixed positive constant. We assume � is

bounded and connected and � = ∂� is C3.

The pressure has long been a main source of trouble for understanding and com-

puting solutions to these equations. Pressure plays a role like a Lagrange multiplier

to enforce the incompressibility constraint. This leads to computational difficulties,
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typically related to the lack of an evolution equation for updating the pressure dy-

namically and a lack of useful boundary conditions for determining the pressure

by solving boundary-value problems.

These issues are particularly important in domains with boundary. Much of the

scientific and technological impact of the Navier-Stokes equations derives from

the effect of no-slip boundary conditions in creating physical phenomena such as

lift, drag, boundary layer separation, and vortex shedding, for which the behavior

of the pressure near boundaries is of great significance. Consequently, computing

with high accuracy and stability near boundaries is a major goal.

Yet most existing computational methods able to handle the difficulties are so-

phisticated and lack the robustness and flexibility that would be useful to address

more complex problems. For example, many finite element methods require the

solution of Stokes equations that couple velocity and pressure, and great care is re-

quired to arrange that the approximation spaces for these variables are compatible

in the sense that an inf-sup condition holds that ensures stability [7, 16]. Stabi-

lized finite element methods have been developed that allow one to circumvent

such compatibility conditions, but at the cost of additional complexity [5]. Pro-

jection methods, pioneered by Chorin [9, 10] and Temam [37], achieved a sep-

aration between updates of velocity and pressure through a splitting strategy. It

has proved difficult, however, to achieve high-order accuracy for pressure near

boundaries [28]—uniform second-order accuracy was attained only a few years

ago [8, 39].

Recently a number of workers have developed efficient and accurate numerical

methods that separate velocity and pressure updates without generating numerical

boundary layers in ways that turn out to be closely related. The main objective

of this paper is to develop, for a representative class of such schemes, a theory of

stability and convergence to strong solutions, with the regularity

u ∈ L2(0, T ; H 2(�, R
N )) ∩ H 1(0, T ; L2(�, R

N )),

∇ p ∈ L2(0, T ; L2(�, R
N )).

In particular, we establish unconditional stability and convergence for a class of

fully discrete finite element methods that need not satisfy any compatibility re-

quirement related to an inf-sup condition for the case of no-slip boundary condi-

tions. Our theory is based on a new, sharp estimate in the L2 norm for the com-

mutator of the Laplacian and Helmholtz projection operators. A side benefit of the

theory is a particularly simple proof of local existence and uniqueness for strong

solutions in bounded domains.

For simplicity, at first we consider no-slip boundary conditions, taking g = 0.

Below, we let 〈 f, g〉� = ∫
�

f g denote the L2 inner product of functions f and g in

�, and let ‖ · ‖� denote the corresponding norm in L2(�). We drop the subscript

on the inner product and norm when the domain of integration is understood in

context.
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The schemes that we study here are based on the following time discretization

scheme, implicit only in the viscosity term and explicit in the pressure and nonlin-

ear terms. Given an approximation un to the velocity at time n�t , determine ∇ pn

from a weak-form pressure Poisson equation, requiring

(1.4) 〈∇ pn,∇φ〉 = 〈fn − un · ∇un + ν�un − ν∇∇ · un,∇φ〉 ∀φ ∈ H 1(�),

then determine un+1 from the elliptic boundary value problem

un+1 − un

�t
− ν�un+1 = fn − un · ∇un − ∇ pn,(1.5)

un+1
∣∣
�

= 0.(1.6)

Ultimately we will consider corresponding fully discrete finite element methods

that use C1 elements for the velocity field and C0 elements for the pressure.

The discretization scheme above is a prototype for a class of highly efficient

numerical methods for incompressible flow obtained using different kinds of spa-

tial discretization and higher-order time differencing [21, 22, 23, 30, 39]. The

computation of velocity updates is completely divorced from the computation of

pressure from the kinematic pressure Poisson equation. No stationary Stokes solver

is necessary to handle implicitly differenced pressure terms. The computation of

incompressible Navier-Stokes dynamics in a general domain is thereby reduced to

solving a heat equation and a Poisson equation at each time step.

This decoupling of velocity and pressure updates is also characteristic of pro-

jection methods, which are closely related. But a distinguishing aspect of the new

schemes is the consistent way the boundary condition is implemented and their im-

proved accuracy and flexibility. We refer to Brown et al. [8] for a study of second-

order accuracy near the boundary for several modern improvements of the pro-

jection method. We will discuss the connections between the scheme (1.4)–(1.6)

above, recent improvements of the projection method, and the gauge method [11]

in some detail in Section 2.

The presence of the grad-div term in the pressure Poisson equation (1.4) is a key

feature that allows us to prove the stability of the schemes we consider. To begin to

explain the usefulness of this term, we next describe an unconstrained formulation

of the Navier-Stokes equations that underlies the scheme (1.4)–(1.6).

Recall that a standard way to analyze the Navier-Stokes equations uses the

Helmholtz-Hodge decomposition. We let P denote the Helmholtz projection op-

erator onto divergence-free fields, defined as follows: Given any a ∈ L2(�, R
N ),

there is a unique q ∈ H 1(�) with
∫
�

q = 0 such that Pa := a + ∇q satisfies

(1.7) 0 = 〈Pa,∇φ〉 = 〈a + ∇q,∇φ〉 ∀φ ∈ H 1(�).

The pressure in (1.1) can be regarded as determined by taking a = u·∇u−f−ν�u.

Then (1.1) is rewritten as

(1.8) ∂t u + P(u·∇u − f − ν�u) = 0.
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In this formulation, solutions formally satisfy ∂t(∇ · u) = 0. Consequently, the

zero-divergence condition (1.2) needs to be imposed only on initial data. Never-

theless, the pressure is determined from (1.8) in principle even for velocity fields

that do not respect the incompressibility constraint. But then the dissipation in (1.8)

appears degenerate due to the fact that P annihilates gradients. Thus, the analysis

of (1.8) is usually restricted to spaces of divergence-free fields.

It is possible to determine the pressure differently when the velocity field has

nonzero divergence. Instead of (1.8), we consider

(1.9) ∂t u + P(u·∇u − f − ν�u) = ν∇(∇ · u).

Of course there is no difference as long as ∇ · u = 0. But the incompressibility

constraint is enforced in a more robust way, because the divergence of velocity

satisfies a weak form of the diffusion equation with no-flux (Neumann) boundary

conditions; due to (1.7), for all appropriate test functions φ we have

(1.10) 〈∂t u,∇φ〉 = 〈ν∇(∇ · u),∇φ〉.
Due to the fact that

∫
�

∇ ·u = 0, the divergence of velocity is smoothed and decays

exponentially in the L2 norm. Naturally, if ∇ · u = 0 initially, this remains true

for all later time, and one has a solution of the standard Navier-Stokes equations

(1.1)–(1.3).

The unconstrained formulation (1.9) can be recast in the form (1.1). Taking

a = u·∇u − f − ν�u + ν∇∇ · u and noting P∇∇ · u = 0, we find the projection

term in (1.9) has the form Pa = a + ∇ p with the pressure determined as in (1.7).

Thus, with no-slip boundary conditions, (1.9) is equivalent to

∂t u + u·∇u + ∇ p = ν�u + f in �,(1.11)

〈∇ p,∇φ〉 = 〈f − u·∇u + ν�u − ν∇∇ · u,∇φ〉 ∀φ ∈ H 1(�),(1.12)

u = 0 on �.(1.13)

The scheme (1.4)–(1.6) comes directly from discretization of this system.

An alternative form of (1.9) proves illuminating. First, notice the following:

LEMMA 1.1 Let � ⊂ R
N be a bounded domain, and let u be a vector field in

L2(�, R
N ). Then in the sense of distributions, one has

∇∇ · u = �(I − P)u.

PROOF: We have (I − P)u = ∇q where q ∈ H 1(�) and �q = ∇ · u. Then

∇∇ · u = ∇�q = �∇q and the result follows. �

Using this result, we see that (1.9) takes the equivalent form

(1.14) ∂t u + P(u·∇u − f) + ν[�,P]u = ν�u,

where [�,P] = �P − P� is the commutator of the Laplacian and Helmholtz

projection operators. One may expect this commutator to be “small” in some sense.

Indeed, it vanishes in the case when the domain is a box with periodic boundary
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conditions. With no-slip boundary conditions, it turns out that the commutator is

a second-order operator bounded by the following sharp estimate. This estimate is

the key to our stability theory.

THEOREM 1.2 Let � ⊂ R
N , N ≥ 2, be a connected, bounded domain with C3

boundary. Then for any ε > 0, there exists C ≥ 0 such that for all vector fields

u ∈ H 2 ∩ H 1
0 (�, R

N ),

(1.15)

∫
�

|(�P − P�)u|2 ≤
(

1

2
+ ε

) ∫
�

|�u|2 + C

∫
�

|∇u|2.

The coefficient 1
2

+ ε is essentially sharp—we show in Appendix A using

Fourier analysis that when � = R
N
+ is the half-space where xN > 0, then

(1.16)

∫
�

|(�P − P�)u|2 ≤ 1

2

∫
�

|�u|2

for all u ∈ H 2 ∩ H 1
0 (�, R

N ), and equality holds for some u.

Notice that by Lemma 1.1, [�,P]u is a gradient:

(1.17) (�P − P�)u = (I − P)�u − ∇∇ · u = (I − P)(� − ∇∇·)u.

Thus the pressure in (1.11)–(1.12) is determined by

(1.18) ∇ p = (I − P)(f − u·∇u) + ν(�P − P�)u.

The first part of this pressure gradient is nonlinear but involves only derivatives up

to first order. The second part is controlled by Theorem 1.2 in a way that signif-

icantly sharpens the standard bound ‖[�,P]u‖ ≤ ‖�u‖, valid when ∇ · u = 0

by L2 orthogonality. Because we can take 1
2

+ ε < 1, for stability analysis the

whole pressure gradient can be strictly controlled by the viscosity term modulo

lower-order terms. This explains why one can discretize the pressure explicitly.

Thus, due to the estimate in Theorem 1.2, we can regard (1.14) or equivalently

(1.9) or (1.11)–(1.12) as a controlled perturbation of the vector diffusion equation

∂t u = ν�u, in contrast to the usual approach that regards the Navier-Stokes equa-

tions as a perturbation of the Stokes system ∂t u + ∇ p = ν�u, ∇ · u = 0.

We will prove Theorem 1.2 in Section 3. Based on estimate (1.15), we establish

unconditional stability of the time discretization scheme (1.4)–(1.6) in Section 4.

A straightforward compactness argument, given in Section 5, yields convergence

to the unique local strong solution to the unconstrained system (1.11)–(1.13) with

initial values u( · , 0) = uin ∈ H 1(�, R
N ). When ∇ ·uin = 0 this is the local strong

solution of the standard Navier-Stokes equations (1.1)–(1.3).

The analysis of the time-discrete scheme easily adapts to proving unconditional

stability and convergence for corresponding fully discrete finite element methods

with C1 elements for velocity and C0 elements for pressure as mentioned above.
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We carry out this analysis in Section 6. It is important to note that the finite ele-

ment spaces for velocity and pressure need not satisfy any compatibility require-

ment to enforce an inf-sup condition. The inf-sup condition (also known as the

Ladyzhenskaya-Babuška-Brezzi condition in the context of the Stokes equation)

has long been a central foundation for finite element methods for all saddle point

problems. Its beautiful theory is a masterpiece documented in many finite ele-

ment books. In the usual approach, the inf-sup condition ensures the stability of

the approximation, but this imposes a compatibility restriction on the finite ele-

ment spaces for velocity and pressure that is violated by many natural choices—

piecewise polynomials of the same order, for example. Here, however, due to

the fully dissipative nature of the unconstrained formulation (1.9), which follows

as a consequence of Theorem 1.2, as far as our stability analysis in Section 6 is

concerned, the finite element spaces for velocity and pressure can be completely

unrelated.

We deal with nonhomogenous boundary conditions (g nonzero in (1.3)) in Sec-

tion 7 and provide an estimate on divergence for the time-discrete scheme in Sec-

tion 8. We conclude with three appendices. In particular, in Appendix A we prove

(1.16), and in Appendix B we study the range of the commutator [�,P] acting

on H 2(�, R
N ). This operator accounts for the contribution to the pressure gra-

dient by the viscosity term in bounded domains. In three dimensions it turns out

that its range is the space of square-integrable vector fields that are simultaneously

gradients and curls (see Theorem B.3).

2 Related Formulations and Schemes

2.1 Stokes Pressure and Curl Curl

In order to discuss the connections between the schemes that we treat and re-

lated ones in the literature, we first need to make some points regarding the com-

mutator �P − P�.

The commutator term in (1.18) supplies the part of the pressure due to the

viscosity term. This is the entire pressure when one neglects nonlinear and forcing

terms, as in the linear Stokes equation. Hence we call this part of the pressure

the Stokes pressure associated with the vector field u ∈ H 2(�, R
N ). The Stokes

pressure pS is defined from

(2.1) ∇ pS = (�P − P�)u.

According to (1.17) and (1.7), pS is determined as the mean-zero solution of

(2.2)

∫
�

∇ pS · ∇φ =
∫
�

(�u − ∇∇ · u) · ∇φ ∀φ ∈ H 1(�).

We observe that the Stokes pressure is a harmonic function determined by a

meaningful boundary value problem. Formal integration by parts in (2.2) suggests
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that pS is determined as the solution of the Neumann boundary-value problem

(2.3) �pS = 0 in �, n · ∇ pS = n · (� − ∇∇·)u on �.

Indeed, this is true for any u ∈ H 2(�, R
N ): In the sense of distributions, the vector

field Au := �u − ∇∇ · u has zero divergence; hence �pS = 0. Moreover, Au and

∇ pS belong to L2(�, R
N ), so both lie in the space H(div; �) consisting of vector

fields in L2(�, R
N ) with divergence in L2(�). By a well-known trace theorem (see

[16], theorem 2.5), the normal components of Au and ∇ pS belong to the Sobolev

space H−1/2(�), and (2.2) implies

(2.4) 0 =
∫
�

φn · (∇ pS − �u + ∇∇ · u) ∀φ ∈ H 1(�).

From this we infer that the boundary condition in (2.3) holds in H−1/2(�).

In two and three dimensions, the Stokes pressure is generated by the tangential

part of vorticity at the boundary. To see this, start with the identity

(2.5) �u − ∇∇ · u = −∇ × ∇ × u,

whence ∇ pS = −(I − P)(∇ × ∇ × u). Green’s formula yields

(2.6)

∫
�

n · (∇ × ∇ × u)φ =
∫
�

(∇ × ∇ × u) · ∇φ = −
∫
�

(∇ × u) · (n × ∇φ)

and therefore from (2.2), pS is also determined by the condition [23]

(2.7)

∫
�

∇ pS · ∇φ =
∫
�

(∇ × u) · (n × ∇φ) ∀φ ∈ H 1(�).

Note that ∇ × u ∈ H 1/2(�, R
N ), and n × ∇φ ∈ H−1/2(�, R

N ) by a standard trace

theorem [16, theorem 2.11], since ∇φ lies in H(curl; �), the space of vector fields

in L2(�, R
N ) with curl in L2.

The unconstrained formulation of the Navier-Stokes equations in (1.11)–(1.12)

can now be seen to be equivalent to a formulation analyzed by Grubb and Solon-

nikov in [18, 19]. For Dirichlet-type boundary conditions, these authors obtain

the contribution to pressure from viscosity by solving the boundary value problem

(2.3). But they did not describe the connection between (2.3) and the commuta-

tor �P − P�. Grubb and Solonnikov performed an analysis of their formulation

based on a general theory of parabolic pseudodifferential initial-boundary-value

problems, and they argued that this formulation is parabolic in a nondegenerate

sense. They also showed that for strong solutions, the divergence of velocity satis-

fies a diffusion equation with Neumann boundary conditions.



1450 J.-G. LIU, J. LIU, AND R. L. PEGO

2.2 Related Schemes That Damp Divergence

Recently a number of workers have independently developed splitting schemes

that can be obtained directly from the time-discrete scheme in (1.4)–(1.6) through

spatial discretization and including higher-order time differencing. In particular,

we mention works of Henshaw and Petersson [22], Guermond and Shen [21], and

Johnston and Liu [23]. The common ingredient is that the pressure is determined

from a Poisson equation using the curl-curl boundary condition as in (2.3). The first

related use of this curl-curl boundary condition appears to be by Orszag et al. [28],

who used it as a way of enforcing consistency for a Neumann problem in the con-

text of the projection method.

In the introduction, we motivated the scheme (1.4)–(1.6) through adding a grad-

div term that produces a diffusive damping of the divergence of velocity in the

time-continuous formulation (1.9). In addition, or alternatively, one can add a term

to produce linear damping of the divergence of velocity. Petersson employed this

procedure in [30] (also see [22]) as a way of further suppressing divergence errors.

With constant divergence damping, his procedure is equivalent to adding λ(I −P)u

on the left-hand side of (1.9).

Upon discretization, this produces several schemes close to ones that have fig-

ured significantly in the recent literature related to the projection method. In the

first-order scheme as suggested by Petersson, the discretized momentum equation

may be written in the form

(2.8)
un+1 − un

�t
+ λ(I − P)un + P(un · ∇un − fn) + ν∇ pn

S = ν�un+1,

with ∇ pn
S determined from un as in (2.3); that is, ∇ pn

S = (�P − P�)un is the

Stokes pressure determined by un .

Taking λ = 1/�t in (2.8) and replacing un by Pun in the convection term re-

sults in the following method close to a first-order version of the projection method

introduced by Timmermans et al. [39]: Given Un = Pun and pn , find un+1 with

un+1 = 0 on � and determine φn+1 so that �t∇φn+1 = (I − P)un+1 by solving

un+1 − Un

�t
+ P(Un · ∇Un − fn) + ∇ pn = ν�un+1 in �,(2.9)

�φn+1 = ∇ · un+1/�t in �, n ·∇φn+1 = 0 on �,(2.10)

and set Un+1 = un+1 − �t∇φn+1 = Pun+1 and

(2.11) pn+1 = pn − ν∇ · un+1 + φn+1.

This differs from the approach of [39] only in the presence of the projection applied

to the convection/forcing term. To see that this scheme is like (2.8) with λ = 1/�t ,

apply I − P to (2.9) and use Lemma 1.1, obtaining

∇(φn+1 + pn) = ν�(I − P)un+1 + ν(�P − P�)un+1

= ν∇∇ · un+1 + ν∇ pn+1
S .
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Using (2.11) we find pn+1 = νpn+1
S .

This same scheme is also equivalent to the following scheme close to a first-

order version of a scheme proposed in the much-cited work of Kim and Moin [24]

and examined in the study of numerical boundary layers by Brown et al. [8]: Given

Un = Pun and φn , find un+1 with un+1 = �t∇φn on �, and determine φn+1 so

that �t∇φn+1 = (I − P)un+1 by solving

un+1 − Un

�t
+ P(Un · ∇Un − fn) = ν�un+1 in �,(2.12)

�φn+1 = ∇ · un+1/�t in �, n ·∇φn+1 = 0 on �,(2.13)

and set Un+1 = un+1 − �t∇φn+1 = Pun+1. To compare with (2.8), let

vn+1 = un+1 − (I − P)un = un+1 − �t∇φn,(2.14)

pn = φn − ν�t�φn = φn − ν∇ · un.(2.15)

Then Pvn = Pun = Un , and using Lemma 1.1 one finds

vn+1 − Un

�t
+ P(Un · ∇Un − fn) + ∇ pn = ν�vn+1,(2.16)

with vn+1 = 0 on �. Applying I − P to (2.12) and using (2.15), we find

∇ pn = 1

�t
(I − P)un − ν�(I − P)un = ν(�P − P�)un = ν∇ pn

S .

The fact that the scheme of Kim and Moin can be transformed into that of Timmer-

mans et al. has been observed in [20].

Finally, if one starts from (2.8) and retains the linear damping term with λ =
1/�t but omits the term ∇ pn

S that produces diffusive damping of the divergence

at the continuous level, one arrives at Chorin’s original projection method from

[9]. Including linear damping with general λ and without ∇ pn
S results in a diver-

gence damping strategy related to Baumgarte’s method of relaxing constraints in

constrained systems of ordinary differential equations [6]; for an approach to in-

compressible Navier-Stokes flow that combines Baumgarte’s stabilization method

with a modified penalty regularization, see [26].

2.3 Equivalence with a Gauge Method

The scheme (1.4)–(1.6) is also related, in a less obvious way, to the gauge

method proposed and studied by E and Liu [11] and by Wang and Liu [40]. The

gauge method is motivated by the goal of splitting the pressure and velocity up-

dates, but its form is superficially very different from (1.4)–(1.6). At the time-

continuous level, the idea is to represent the velocity in the form

(2.17) u = a + ∇φ

and impose sufficient equations and boundary conditions on a and φ to make u

the Navier-Stokes solution. If (2.17) is the Helmholtz decomposition of a, so that
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∇φ = (P − I )a, then u is divergence free. However, we can recover the uncon-

strained formulation (1.14), for which ∇ · u is not necessarily 0, with a different

choice of the gauge variable φ. Namely, we require

∂t a + P(u·∇u − f) = ν�a in �,(2.18)

a + ∇φ = 0 on �,(2.19)

∂tφ + νpS = ν�φ in �,(2.20)

n ·∇φ = 0 on �,(2.21)

where pS is the Stokes pressure determined from u via (2.3). We recover (1.14) by

adding the gradient of (2.20) to (2.18).

Upon time discretization, one obtains a scheme that can be written in the fol-

lowing form. (See Appendix C for further details.) Given an at time tn = n�t such

that n · an = 0 on �, find un and φn so that

un = Pan + ν�t(I − P)�an,(2.22)

�φn = −∇ · an in �, n · ∇φn = 0 on �;(2.23)

then determine an+1 by solving

an+1 − an

�t
+ P(un · ∇un − fn) = ν�an+1 in �,(2.24)

an+1 + ∇φn = 0 on �.(2.25)

The method in [11, 40] differs only in that un in (2.24) is replaced by Pun . For a

closer comparison, we note that ∇φn = (P − I )an and hence

(2.26) un+1 = an+1 + ∇φn.

PROPOSITION 2.1 The scheme in (1.4)–(1.6) is equivalent to the gauge method

(2.22)–(2.25).

For the proof we refer to Appendix C, where we establish equivalence in the

general case with nonhomogeneous boundary conditions and a nontrivial diver-

gence constraint.

2.4 Previous Stability and Convergence Analysis

We briefly review what has been proven regarding the stability and convergence

of schemes related to (1.4)–(1.6) that achieve efficiency through a decoupling of the

updates of pressure and velocity. In many cases, stability has been studied through

normal mode analysis for the linear Stokes equations in periodic strip domains or a

half-space. Orszag et al. [28] were perhaps the first to perform such an analysis of

a projection method. The works [22, 23, 30] treat schemes corresponding to (1.4)–

(1.6) by this approach, and the gauge method was dealt with in [11]. As pointed out

by Petersson [30], showing that the norm of the amplification factor is less than 1

in normal mode analysis establishes only a necessary condition for stability.
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Error estimates that establish a rate of convergence of the scheme have been

established for sufficiently smooth solutions of the Stokes or Navier-Stokes equa-

tions in a number of cases. We refer to [20] for a recent review of results concerning

projection methods for Stokes equations in sufficiently smooth domains, related to

the methods of Timmermans et al. and Kim and Moin, as well as the schemes of

[21, 22, 23, 30]. An analysis of the gauge method was performed by Wang and

Liu [40], who established unconditional stability for the Stokes problem and er-

ror estimates for fully discrete Navier-Stokes equations on a staggered grid in a

periodic strip.

By comparison, the primary novelty of the present paper concerns stability

analysis for approximating strong solutions of the Navier-Stokes equations in gen-

eral smooth (C3) domains, with the spatially continuous scheme (1.4)–(1.6) and

with fully discrete finite element methods not requiring any compatibility between

velocity and pressure spaces related to an inf-sup condition. We establish con-

vergence to local strong solutions by standard compactness arguments. Rate-of-

convergence studies are left for future work.

3 Estimate on the Commutator �P − P�

The purpose of this section is to prove Theorem 1.2. The proof is rather ele-

mentary, based upon (1) an energy-partitioning lemma for harmonic functions that

controls the difference between normal and tangential parts of the Dirichlet inte-

gral near the boundary (see Lemma 3.1) and (2) an orthogonality identity for the

Stokes pressure in terms of a part of velocity near and parallel to the boundary.

3.1 Preliminaries

Let � ⊂ R
N be a bounded domain with C3 boundary �. For any x ∈ � we let

	(x) = dist(x, �)

denote the distance from x to �. For any s > 0 we denote the set of points in �

within distance s from � by

(3.1) �s = {x ∈ � | 	(x) < s},
and set �c

s = � \ �s and �s = {x ∈ � | 	(x) = s}. Since � is C3 and compact,

there exists s0 > 0 such that 	 is C3 in �s0
and its gradient is a unit vector, with

|∇	(x)| = 1 for every x ∈ �s0
. We let

(3.2) n(x) = −∇	(x);
then n(x) is the outward unit normal to �s = ∂�c

s for s = 	(x) and n ∈
C2(�̄s0

, R
N ).

It suffices to establish the estimate (1.15) for all u ∈ C2(�̄, R
N ) with u = 0

on �, since the space of such functions is dense in H 2 ∩ H 1
0 (�, R

N ). This fact

is a consequence of C2,α elliptic regularity theory [15], but we indicate a more

elementary argument in keeping with the nature of the rest of this section: Let
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B(0, r) = {x ∈ R
N | |x | < r} and R

N
+ = {x | xN > 0}. By a standard argument

using partition of unity and C2 boundary-flattening maps, the problem is reduced

to one of local approximation for a locally flat boundary. It suffices to show that

if r0 > r1 > 0 and B(0, r0) ∩ � = B(0, r0) ∩ R
N
+ , then any u ∈ H 2 ∩ H 1

0 (�)

that is supported in B(0, r1) can be approximated by functions uk ∈ C2(RN ) that

vanish when xN = 0 and when |x | > r0. Fix a smooth radial function ξ on R
N

with ξ(x) = 1 for |x | < r1, ξ(x) = 0 for |x | > r0. Given u as described, then

f = (I − �)u ∈ L2(�) and f = 0 outside B(0, r1). Approximate f in the

L2 norm by smooth fk compactly supported in B(0, r1) ∩ R
N
+ and extend fk to

R
N as odd in xN and 0 for |x | > r1. Now uk = ξ(I − �)−1 fk is smooth in R

N

and vanishes when |x | > r0 is odd in xN , and so it vanishes when xN = 0 and

converges to u = ξ(I − �)−1 f in H 2(�). �

3.2 Energy-Partitioning Lemma

Our proof of Theorem 1.2 crucially involves a comparison between the normal

and tangential parts of the Dirichlet integral for harmonic functions in the tubular

domains �s for small s > 0.

LEMMA 3.1 Let � be a bounded domain with C2 boundary and suppose 	 is C2

in �s0
, s0 > 0. Then there exists C0 ≥ 0 such that whenever p is a harmonic

function in �s0
and 0 < s < s0, we have∣∣∣∣ ∫
�s

(|n ·∇ p|2 − |(I − nnT)∇ p|2) ∣∣∣∣ ≤ C0s

∫
�s0

|∇ p|2.

PROOF: We let

Q0 = |n ·∇ p|2 − |(I − nnT)∇ p|2 = 2|n ·∇ p|2 − |∇ p|2,
and note that due to n = −∇	 and |n|2 = 1 we have

Q0 = ∇	 · v, v = 2∇ p(∇	 · ∇ p) − ∇	|∇ p|2.
Following a technique used by Sanni [32, p. 13], we integrate by parts for 0 < s <

s0 to obtain

(3.3)

∫
�s

Q0 =
∫
�s

	(−n · v) −
∫
�s

	∇ · v = s

∫
�s

Q0 +
∫
�s

	Q1,

where, since �p = 0 (and with summation on repeated indices implied),

Q1 = −∇ · v = −2∇2	 : (∇ p ⊗ ∇ p) + (�	)|∇ p|2
= −2(∂i∂j	)(∂i p)(∂j p) + (∂2

i 	)(∂j p)2.
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We have |Q0| ≤ |∇ p|2 and |Q1| ≤ C1|∇ p|2 where C1 depends only upon � and

s0. We divide (3.3) by s2 and integrate in s to obtain

1

s

∫
�s

Q0 − 1

s0

∫
�s0

Q0 =
∫ s0

s

1

r2

( ∫
�r

	Q1

)
dr

= 1

s

∫
�s

	Q1 − 1

s0

∫
�s0

	Q1 +
∫

�s0
\�s

Q1.

Since |	(x)| ≤ r in �r , it follows directly that∣∣∣∣ ∫
�s

Q0

∣∣∣∣ ≤ s

∫
�s0

(
s−1

0 |Q0| + 2|Q1|
) ≤ C0s

∫
�s0

|∇ p|2

with C0 = s−1
0 + 2C1. �

3.3 Boundary Identities

As a consequence of the no-slip boundary condition u = 0 on �, we obtain two

key identities that involve the parts of u parallel and normal to the boundary.

LEMMA 3.2 Let � ⊂ R
N be a bounded domain with boundary � of class C2. Let

u ∈ C1(�̄, R
N ) and suppose that

u‖ = (I − nnT)u, u⊥ = nnTu,

in some neighborhood of �. Then the following are valid:

(i) If u = 0 on �, then ∇ · u‖ = 0 on �.

(ii) If n · u = 0 on �, then ∇u⊥ − ∇u⊥T = 0 on �. (In particular, ∇ × u⊥ = 0

on � if N = 2, 3).

PROOF: To begin, recall n = −∇	. Equality of mixed partial derivatives

yields ∂j ni = ∂i n j for all i, j = 1, . . . , N . Together with the fact ni ni = 1, we

infer that for small s > 0, throughout �s we have

(3.4) ni∂j ni = 0 and ni∂i n j = 0.

(i) First, for any f ∈ C1(�̄), if f = 0 on � then ∇ f ‖ n on �, which means

(3.5) (I − nnT)∇ f = 0 or (∂k − nknj∂j ) f = 0 for k = 1, . . . , N .

Now suppose u ∈ C2(�̄, R
N ) with u = 0 on �. Then, after taking derivatives in

�s for some s > 0 and then taking the trace on �, using (3.5) we get

∇ · ((I − nnT)u) = ∂j (uj − nj nkuk) = ∂j u j − nj nk∂j uk = ∂j u j − ∂kuk = 0.

(ii) Let f = n · u so that u⊥ = n f . Using ∂j ni = ∂i n j and (3.5) we find that

∂j (ni f ) − ∂i (nj f ) = ni nj nk∂k f − nj ni nk∂k f = 0.

This proves (ii). If N = 2 or 3, this just means ∇ × (n f ) = n×∇ f = 0 on �. �
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3.4 Orthogonality Identity

Let u ∈ C2(�̄, R
N ). As indicated in (2.7), in two and three dimensions the

Stokes pressure vanishes if the vorticity tangential to the boundary vanishes. In

any dimension N ≥ 2, the Stokes pressure pS from (2.2) is determined by

(3.6)

∫
�

∇ pS · ∇φ =
∫
�

(∂2
j ui − ∂i∂j u j )∂iφ =

∫
�

nj (∂j ui − ∂i u j )∂iφ

=
∫
�

n · (∇u − ∇uT)∇φ ∀φ ∈ H 1(�).

Thus, pS is not affected by any part of the velocity field that contributes nothing

to n · (∇u − ∇uT). This means the Stokes pressure is not affected by the part of

the velocity field in the interior of �, nor is it affected by the normal component of

velocity near the boundary if n · u
∣∣
�

= 0, by Lemma 3.2(ii).

This motivates us to focus on the part of velocity near and parallel to the bound-

ary. We make the decomposition

u = u⊥ + u‖,(3.7)

u⊥ = ξnnTu + (1 − ξ)u, u‖ = ξ(I − nnT)u,(3.8)

where ξ is a cutoff function satisfying ξ(x) = 1 when 	(x) < 1
2
s and ξ(x) = 0

when 	(x) ≥ s. We can define ξ as follows: Let ρ : [0,∞) → [0, 1] be a smooth

decreasing function with ρ(t) = 1 for t < 1
2

and ρ(t) = 0 for t ≥ 1. With

ξ(x) = ρ(	(x)/s), ξ is C3 for small s > 0 and has the desired properties.

Suppose that u = 0 on �. Since then u⊥ ∈ C2(�̄, R
N ) with u⊥ = 0 and

n · (∇u⊥ − ∇u⊥T) = 0 on �, we have that the Stokes pressure for u⊥ vanishes;

replacing u by u⊥ in (2.1) and (2.2) and (3.6), we get

(3.9) (�P − P�)u⊥ = (I − P)(� − ∇∇·)u⊥ = 0.

With (3.7), this proves

(3.10) ∇ pS = (�P − P�)u = (�P − P�)u‖ = (I − P)(� − ∇∇·)u‖.

LEMMA 3.3 Let � ⊂ R
N be a bounded domain with C3 boundary, and let u ∈

H 2 ∩ H 1
0 (�, R

N ). Let pS and u‖ be defined via (2.1) and (3.8), respectively. Then

for any q ∈ H 1(�) that satisfies �q = 0 in the sense of distributions,

(3.11) 〈�u‖ − ∇ pS,∇q〉 = 0.

In particular, we can let q = pS, so 〈�u‖ − ∇ pS,∇ pS〉 = 0 and

(3.12) ‖�u‖‖2 = ‖�u‖ − ∇ pS‖2 + ‖∇ pS‖2.

PROOF: It suffices to suppose u ∈ C2(�̄, R
N ) with u = 0 on � by the density

remark in Section 3.1. By Lemma 3.2(i),

(3.13) ∇ · u‖
∣∣
�

= 0,
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so ∇ · u‖ ∈ H 1
0 (�); thus 〈∇∇ · u‖,∇q〉 = −〈∇ · u‖,�q〉 = 0. Now (3.10) entails

(3.14) 〈∇ pS,∇q〉 = 〈�u‖,∇q〉.
This proves (3.11). Then (3.12) follows by L2 orthogonality. �

3.5 Proof of Theorem 1.2

Let ε > 0 and β = 1
2

+ ε. Fix β1 < 1 such that 1 + ε0 := β(1 + β1) > 1,

and fix s, ε1, ε2 > 0 small so that 2ε1 < ε0 and 1 − ε2 − 2C0s > β1 with C0 as in

Lemma 3.1.

Let u ∈ H 2 ∩ H 1
0 (�, R

N ), define the Stokes pressure ∇ pS = (�P − P�)u,

and make the decomposition u = u⊥ + u‖ as in the previous subsection. Then by

Lemma 3.3 we have

(3.15) ‖�u‖2 = ‖�u⊥‖2 + 2〈�u⊥,�u‖〉 + ‖�u‖ − ∇ pS‖2 + ‖∇ pS‖2.

We will establish the theorem with the help of two further estimates.

Claim 1. There exists a constant C1 > 0 independent of u such that

(3.16) 〈�u⊥,�u‖〉 ≥ −ε1‖�u‖2 − C1‖∇u‖2.

Claim 2. There exists a constant C2 independent of u such that

(3.17) ‖�u‖ − ∇ pS‖2 ≥ β1‖∇ pS‖2 − C2‖∇u‖2.

Combining the two claims with (3.15), we get

(3.18) (1 + 2ε1)‖�u‖2 ≥ (1 + β1) ‖∇ pS‖2 − (C2 + 2C1)‖∇u‖2.

Multiplying by β and using β(1 + β1) = 1 + ε0 > 1 + 2ε1 yields (1.15).

PROOF OF CLAIM 1: From the definitions in (3.8), we have

(3.19) �u⊥ = ξnnT�u + (1 − ξ)�u + R1, �u‖ = ξ(I − nnT)�u + R2,

where ‖R1‖ + ‖R2‖ ≤ C‖∇u‖ with C independent of u. Since I − nnT = (I −
nnT)2,

(ξnnT�u + (1 − ξ)�u) · (ξ(I − nnT)�u) = 0 + ξ(1 − ξ)|(I − nnT)�u|2 ≥ 0.

This means the leading term of 〈�u⊥,�u‖〉 is nonnegative. Using the inequality

|〈a, b〉| ≤ (ε1/C)‖a‖2 + (C/ε1)‖b‖2 and the bounds on R1 and R2 to estimate the

remaining terms, it is easy to obtain (3.16). �

PROOF OF CLAIM 2: Let a = ∇ pS and b = �u‖, and put

(3.20) a‖ = (I − nnT)a, a⊥ = (nnT)a, b‖ = (I − nnT)b, b⊥ = (nnT)b.

Recall u‖ is supported in �s = {x ∈ � | 	(x) < s}. Due to (3.19), we have

(3.21)

∫
�s

|b⊥|2 =
∫
�s

|n · �u‖|2 =
∫
�s

|n · R2|2 ≤ C

∫
�

|∇u|2.
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Since b = 0 in �c
s = {x ∈ � | 	(x) ≥ s}, we have

(3.22) ‖�u‖ − ∇ pS‖2 =
∫
�

|a − b|2 =
∫
�c

s

|a|2 +
∫
�s

|a⊥ − b⊥|2 +
∫
�s

|a‖ − b‖|2.

We estimate the terms in (3.22) as follows. First,

(3.23)

∫
�s

|a⊥ − b⊥|2 ≥
∫
�s

(|a⊥|2 − 2a⊥ · b⊥) ≥ (1 − ε2)

∫
�s

|a⊥|2 − 1

ε2

∫
�s

|b⊥|2.

Due to the orthogonality in Lemma 3.3, we have 〈a, a − b〉 = 0, hence

(3.24) 0 =
∫
�

a · (a − b) =
∫

�c
s

|a|2 +
∫
�s

a⊥ · (a⊥ − b⊥) +
∫
�s

a‖ · (a‖ − b‖).

For a sharp estimate we need to treat b‖ carefully. Using (3.24) we obtain∫
�s

|a‖ − b‖|2 + |a‖|2 ≥ −2

∫
�s

a‖ · (a‖ − b‖)

= 2

∫
�c

s

|a|2 + 2

∫
�s

a⊥ · (a⊥ − b⊥)

≥ 2

∫
�c

s

|a|2 + (2 − ε2)

∫
�s

|a⊥|2 − 1

ε2

∫
�s

|b⊥|2;

hence

(3.25)

∫
�s

|a‖ −b‖|2 ≥ (1−ε2)

∫
�s

|a‖|2 + (2−ε2)

∫
�s

(|a⊥|2 −|a‖|2)− 1

ε2

∫
�s

|b⊥|2.

Using (3.23) and (3.25) in (3.22) yields

(3.26)

∫
�

|a − b|2 ≥ (1 − ε2)

∫
�

|a|2 + (2 − ε2)

∫
�s

(|a⊥|2 − |a‖|2) − 2

ε2

∫
�s

|b⊥|2.

Finally, using Lemma 3.1 and the estimate (3.21), we infer

(3.27)

∫
�

|∇ pS − �u‖|2 ≥ (1 − ε2 − 2C0s)

∫
�

|∇ pS|2 − C

∫
�

|∇u|2.

This establishes Claim 2 and finishes the proof of Theorem 1.2. �

Note that estimate (1.15) also holds with
∫
�

|∇u|2 replaced by
∫
�

|u|2, due to a

simple interpolation estimate.
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4 Unconditional Stability of Time Discretization

with Pressure Explicit

In this section we exploit Theorem 1.2 to establish the unconditional stability

of the simple time discretization scheme (1.4)–(1.6) for the initial-boundary-value

problem for (1.11)–(1.13), our unconstrained formulation of the Navier-Stokes

equations with no-slip boundary conditions, with initial conditions

(4.1) u = uin in � for t = 0.

We focus here on the case of two and three dimensions.

We assume uin ∈ H 1
0 (�, R

N ) and f ∈ L2(0, T0; L2(�, R
N )) for some given

T0 > 0. We consider the time-discrete scheme (1.4)–(1.6) with

(4.2) fn = 1

�t

∫ (n+1)�t

n�t

f(t)dt,

and take u0 ∈ H 2 ∩ H 1
0 (�, R

N ) to approximate uin in H 1
0 (�, R

N ).

Let us begin making estimates—our main result is stated as Theorem 4.1 below.

Let ∇ pn
S = (�P − P�)un be the Stokes pressure for un so that by (2.2),

(4.3)

∫
�

∇ pn
S · ∇φ =

∫
�

(�un − ∇∇ · un) · ∇φ ∀φ ∈ H 1(�).

Combining this with (1.4) and taking φ = pn , we obtain the estimate

(4.4) ‖∇ pn‖ ≤ ‖fn − un · ∇un‖ + ν‖∇ pn
S‖.

Now dot (1.5) with −�un+1 to obtain

(4.5)

1

2�t

(‖∇un+1‖2 − ‖∇un‖2 + ‖∇un+1 − ∇un‖2
) + ν‖�un+1‖2

≤ ‖�un+1‖(2‖fn − un · ∇un‖ + ν‖∇ pn
S‖

)
≤ ε1

2
‖�un+1‖2 + 2

ε1

‖fn − un · ∇un‖2 + ν

2

(‖�un+1‖2 + ‖∇ pn
S‖2

)
for any ε1 > 0. This gives

(4.6)

1

�t

(‖∇un+1‖2 − ‖∇un‖2
) + (ν − ε1)‖�un+1‖2

≤ 8

ε1

(‖fn‖2 + ‖un · ∇un‖2
) + ν‖∇ pn

S‖2.

Fix any β with 1
2

< β < 1. By Theorem 1.2 one has

(4.7) ν‖∇ pn
S‖2 ≤ νβ‖�un‖2 + νCβ‖∇un‖2.



1460 J.-G. LIU, J. LIU, AND R. L. PEGO

Using this in (4.6), one obtains

(4.8)

1

�t

(‖∇un+1‖2 − ‖∇un‖2
) + (ν − ε1)

(‖�un+1‖2 − ‖�un‖2
)

+ (ν − ε1 − νβ)‖�un‖2

≤ 8

ε1

(‖fn‖2 + ‖un · ∇un‖2
) + νCβ‖∇un‖2.

At this point there are no remaining difficulties with controlling the pressure.

It remains only to use the viscosity to control the nonlinear term. We focus on

the physically most interesting cases N = 2, 3. We make use of Ladyzhenskaya’s

inequalities [25] ∫
RN

g4 ≤ 2

( ∫
RN

g2

)( ∫
RN

|∇g|2
)

, N = 2,(4.9)

∫
RN

g4 ≤ 4

( ∫
RN

g2

)1/2( ∫
RN

|∇g|2
)3/2

, N = 3,(4.10)

valid for g ∈ H 1(RN ) with N = 2, 3, respectively, together with the fact that the

standard bounded extension operator H 1(�) → H 1(RN ) is also bounded in the L2

norm, to infer that for all g ∈ H 1(�),

‖g‖2
L4 ≤ C‖g‖L2‖g‖H1, N = 2,(4.11)

‖g‖2
L3 ≤ ‖g‖2/3

L2 ‖g‖4/3

L4 ≤ C‖g‖L2‖g‖H1, N = 3.(4.12)

Using that H 1(�) embeds into L4 and L6, these inequalities lead to the estimates

(4.13)

∫
�

|un · ∇un|2

≤
{

‖un‖2
L4‖∇un‖2

L4 ≤ C‖u‖L2‖∇un‖2
L2‖∇un‖H1, N = 2,

‖un‖2
L6‖∇un‖2

L3 ≤ C‖∇un‖3
L2‖∇un‖H1, N = 3.

By the elliptic regularity estimate ‖∇u‖H1 ≤ ‖u‖H2 ≤ C‖�u‖, we conclude

(4.14) ‖un · ∇un‖2 ≤
{

ε2‖�un‖2 + 4Cε−1
2 ‖un‖2‖∇un‖4, N = 2,

ε2‖�un‖2 + 4Cε−1
2 ‖∇un‖6, N = 2 or 3.

for any ε2 > 0. Plug this into (4.8) and take ε1, ε2 > 0 satisfying ν − ε1 > 0 and

ε := ν − ε1 − νβ − 8ε2/ε1 > 0. We get

(4.15)

1

�t

(‖∇un+1‖2 − ‖∇un‖2
)

+ (ν − ε1)
(‖�un+1‖2 − ‖�un‖2

) + ε‖�un‖2

≤ 8

ε1

‖fn‖2 + 32C

ε1ε2

‖∇un‖6 + νCβ‖∇un‖2.
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A simple discrete Gronwall-type argument leads to our main stability result:

THEOREM 4.1 Let � be a bounded domain in R
N (N = 2 or 3) with C3 boundary,

and let ν, M0 > 0. Then there exist positive constants T∗ and C3 such that, if

f ∈ L2(0, T0; L2(�, R
N )) for some T0 > 0 and u0 ∈ H 1

0 ∩ H 2(�, R
N ) with

‖∇u0‖2 + ν�t‖�u0‖2 +
∫ T0

0

‖f‖2 ≤ M0,

then whenever 0 < n�t ≤ T = min(T∗, T0), the solution to the time-discrete

scheme (1.4)–(1.6) and (4.2) satisfies

sup
0≤k≤n

‖∇uk‖2 +
n∑

k=0

‖�uk‖2�t ≤ C3,(4.16)

n−1∑
k=0

(∥∥∥∥uk+1 − uk

�t

∥∥∥∥2

+ ‖uk · ∇uk‖2

)
�t ≤ C3.(4.17)

PROOF: Put

(4.18) zn = ‖∇un‖2 + (ν − ε1)�t‖�un‖2, wn = ε‖�un‖2, bn = ‖fn‖2,

and note that from (4.2) we have that as long as n�t ≤ T ,

(4.19)

n−1∑
k=0

‖fk‖2�t ≤
∫ T

0

|f(t)|2 dt,

by the Cauchy-Schwarz inequality. Then by (4.15),

(4.20) zn+1 + wn�t ≤ zn + C�t(bn + zn + z3
n),

where we have replaced max{8/ε1, 32C/(ε1ε2), νCβ} by C . Summing from 0 to

n − 1 and using (4.19) yields

(4.21) zn +
n−1∑
k=0

wk�t ≤ C M0 + C�t

n−1∑
k=0

(zk + z3
k) =: yn.

The quantities yn so defined increase with n and satisfy

(4.22) yn+1 − yn = C�t(zn + z3
n) ≤ C�t(yn + y3

n).

Now set F(y) = ln(y/
√

1 + y2) so that F ′(y) = (y + y3)−1. Then on (0,∞), F

is negative, increasing, and concave, and we have

(4.23) F(yn+1) − F(yn) ≤ F ′(yn)(yn+1 − yn) = yn+1 − yn

yn + y3
n

≤ C�t,

whence

(4.24) F(yn) ≤ F(y0) + Cn�t = F(C M0) + Cn�t .
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Choosing any T∗ > 0 so that C∗ := F(C M0) + CT∗ < 0, we infer that as long as

n�t ≤ T∗ we have yn ≤ F−1(C∗), and this together with (4.21) yields the stability

estimate (4.16).

Now, using (4.14) and elliptic regularity, we get from (4.16) that

n∑
k=0

‖uk · ∇uk‖2�t ≤ C

n∑
k=0

‖∇uk‖2
L2‖∇uk‖2

H1�t ≤ C

n∑
k=0

‖�uk‖2�t ≤ C.

Then the difference equation (1.5) yields

(4.25)

n−1∑
k=0

∥∥∥∥uk+1 − uk

�t

∥∥∥∥2

�t ≤ C.

This yields (4.17) and finishes the proof of the theorem. �

5 Existence, Uniqueness, and Convergence

The stability estimates in Theorem 4.1 lead in classic fashion to a short proof

of existence and uniqueness for strong solutions of the unconstrained formulation

(1.9) of the Navier-Stokes equations. Convergence of the time-discrete scheme

follows as a consequence. Regarding the constrained Navier-Stokes equations,

there are of course many previous works; see [1] for a recent comprehensive treat-

ment. For unconstrained formulations of the Navier-Stokes equations with a va-

riety of boundary conditions including the one considered in the present paper,

Grubb and Solonnikov [18, 19] lay out a general existence theory in anisotropic

Sobolev spaces using a theory of pseudodifferential initial-boundary-value prob-

lems developed by Grubb.

THEOREM 5.1 Let � be a bounded domain in R
3 with boundary � of class C3, and

let ν, M1 > 0. Then there exists T∗ > 0 such that if f ∈ L2(0, T0; L2(�, R
N )) for

some T0 > 0 and uin ∈ H 1
0 (�, R

N ) with ‖∇uin‖2 + ∫ T0

0
‖f‖2 ≤ M1, then a unique

strong solution of (1.11)–(1.13) exists on [0, T ], T = min(T∗, T0), that satisfies

(4.1) and

u ∈ L2(0, T ; H 2(�, R
N )) ∩ H 1(0, T ; L2(�, R

N )),

∇ p ∈ L2(0, T ; L2(�, R
N )).

Moreover, u ∈ C([0, T ], H 1(�, R
N )), and ∇ · u ∈ C∞((0, T ], C∞(�)) is a clas-

sical solution of the heat equation with no-flux boundary conditions. The map

t �→ ‖∇ · u‖2 is smooth for t > 0 and we have the dissipation identity

(5.1)
d

dt

1

2
‖∇ · u‖2 + ν‖∇(∇ · u)‖2 = 0.

PROOF OF EXISTENCE: We shall give a simple proof of existence based on the

finite difference scheme considered in Section 4, using a classical compactness ar-

gument [27, 35, 38]. In contrast to similar arguments in other sources, for example,
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by Temam [38] for a time-discrete scheme with implicit differencing of pressure

terms, we do not make any use of regularity theory for stationary Stokes systems.

First we smooth the initial data. Given uin ∈ H 1
0 (�, R

N ) and �t > 0, deter-

mine u0 in H 1
0 ∩ H 2(�, R

N ) by solving (I − �t �)u0 = uin. An energy estimate

yields

‖∇u0‖2 + �t‖�u0‖2 ≤ ‖∇uin‖‖∇u0‖ ≤ ‖∇uin‖2.

Then ‖�t �u0‖2 = O(�t) as �t → 0, so u0 → uin strongly in L2 and weakly in

H 1. Note the stability constant C3 in Theorem 4.1 is independent of �t .

We define the discretized solution un by (1.4)–(1.6), and note

(5.2)
un+1 − un

�t
+ P(un · ∇un − fn − ν�un) = ν�(un+1 − un) + ν∇∇ · un.

With tn = n�t , we put u�t(tn) = U�t(tn) = un for n = 0, 1, . . ., and on each

subinterval [tn, tn + �t), define u�t(t) through linear interpolation and U�t(t) as

piecewise constant:

u�t(tn + s) = un + s

(
un+1 − un

�t

)
, s ∈ [0,�t),(5.3)

U�t(tn + s) = un, s ∈ [0,�t).(5.4)

Then (5.2) means that whenever t > 0 with t �= tn ,

(5.5) ∂t u�t + P(U�t · ∇U�t − f�t − ν�U�t) =
ν�(U�t( · + �t) − U�t) + ν∇∇ · U�t ,

where f�t(t) = fn for t ∈ [tn, tn + �t).

We will use the simplified notation X (Y ) to denote a function space of the form

X ([0, T ], Y (�, R
N )), and we let Q = � × [0, T ] where T = min(T0, T∗) with T∗

as given by Theorem 4.1. The estimates in Theorem 4.1 say that u�t is bounded in

the Hilbert space

(5.6) V0 := L2(H 2 ∩ H 1
0 ) ∩ H 1(L2),

and also that U�t is bounded in L2(H 2), uniformly for �t > 0. Moreover, estimate

(4.16) says u�t is bounded in C(H 1). This is also a consequence of the embedding

V0 ↪→ C(H 1); see [35, p. 42] or [12, p. 288].

Along some subsequence �t j → 0, then, we have that u�t converges weakly in

V0 to some u ∈ V0, and U�t and U�t( · +�t) converge weakly in L2(H 2) to some

U1 and U2, respectively. Since clearly V0 ↪→ H 1(Q), and since the embedding

H 1(Q) ↪→ L2(Q) is compact, we have that u�t → u strongly in L2(Q). Note that

by estimate (4.17),

‖u�t − U�t‖2
L2(Q)

≤ ‖U�t( · + �t) − U�t‖2
L2(Q)

=
n−1∑
k=0

‖un+1 − un‖2�t ≤ C�t2.
(5.7)
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Therefore U�t( · + �t) and U�t converge to u strongly in L2(Q) also, so U1 =
U2 = u.

We want to show u is a strong solution of (1.11) by passing to the limit in (5.5).

From the definition of fn in (4.2) and estimate (4.19), it is a standard result which

can be proved by using the density of C(Q) in L2(Q) that

(5.8) ‖f − f�t‖2
L2(Q)

→ 0 as �t → 0.

We are now justified in passing to the limit weakly in L2(Q) in all terms in (5.5) ex-

cept the nonlinear term, which (therefore) converges weakly to some w ∈ L2(Q).

But since ∇U�t converges to ∇u weakly and U�t to u strongly in L2(Q), we can

conclude U�t · ∇U�t converges to u · ∇u in the sense of distributions on Q. So

w = u · ∇u, and upon taking limits in (5.5), it follows that

(5.9) ∂t u + P(u · ∇u − f − ν�u) = ν∇∇ · u.

That is, u is indeed a strong solution of (1.11). That u(0) = uin is a consequence

of the continuity of the map u → u(0) from V0 through C(H 1) to H 1(�, R
N ).

It remains to study ∇ · u. Dot (5.9) with ∇φ, φ ∈ H 1(�). We get

(5.10)

∫
�

∂t u · ∇φ = ν

∫
�

∇(∇ · u) · ∇φ.

This says that w = ∇ · u is a weak solution of the heat equation with Neumann

boundary conditions:

(5.11) ∂tw = ν�w in �, n ·∇w = 0 on �.

Indeed, the operator A := ν� defined on L2(�) with domain

(5.12) D(A) = {w ∈ H 2(�) | n · ∇w = 0 on �}
is self-adjoint and nonpositive, so it generates an analytic semigroup. For any

φ ∈ D(A) we have that t �→ 〈w(t), φ〉 = −〈u(t),∇φ〉 is absolutely continuous,

and using (5.10) we get (d/dt)〈w(t), φ〉 = 〈w(t), Aφ〉 for a.e. t . By Ball’s char-

acterization of weak solutions of abstract evolution equations [4], w(t) = eAtw(0)

for all t ∈ [0, T ]. It follows w ∈ C([0, T ], L2(�)), and w(t) ∈ D(Am) for every

m > 0 [29, theorem 6.13]. Since Amw(t) = eA(t−τ) Amw(τ) if 0 < τ < t , we

infer that for 0 < t ≤ T , w(t) is analytic in t with values in D(Am). Using interior

estimates for elliptic equations, we find w ∈ C∞((0, T ], C∞(�)) as desired. The

dissipation identity follows by dotting with w.

This finishes the proof of existence. �

PROOF OF UNIQUENESS: Suppose u1 and u2 are both solutions of (1.11)–

(1.13) and (4.1) belonging to V0. Put u = u1 −u2 and ∇ pS = (I −P)(�−∇∇·)u.

Then u(0) = 0 and

(5.13) ∂t u + P(u1 · ∇u + u · ∇u2) = ν�u − ν∇ pS.
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Dot with −�u and use Theorem 1.2 to get

〈ν�u − ν∇ pS,−�u〉 ≤ −ν

2
‖�u‖2 + ν

2
‖∇ pS‖2

≤ −νβ

2
‖�u‖2 + C‖∇u‖2

(5.14)

with β = 1
2

− ε > 0. Next, use the Cauchy-Schwarz inequality for the nonlinear

terms, estimating them as follows in a manner similar to (4.11)–(4.13), using that

u1 and u2 are a priori bounded in the H 1 norm:

‖u1 · ∇u‖ ‖�u‖ ≤ C‖∇u1‖‖∇u‖1/2‖�u‖3/2 ≤ ε‖�u‖2 + C‖∇u‖2,(5.15)

‖u · ∇u2‖ ‖�u‖ ≤ C‖∇u‖‖∇u2‖H1‖�u‖(5.16)

≤ ε‖�u‖2 + C‖�u2‖2‖∇u‖2.

Lastly, since u ∈ V0 we infer that 〈∂t u,−�u〉 ∈ L1(0, T ) and t �→ ‖∇u‖2 is

absolutely continuous with

(5.17) 〈∂t u,−�u〉 = 1

2

d

dt
‖∇u‖2.

This can be shown by using the density of smooth functions in V0; see [12, p. 287]

for a detailed proof of a similar result.

Through this quite standard approach, we get

(5.18)
d

dt
‖∇u‖2 + α‖�u‖2 ≤ C(1 + ‖�u2‖2)‖∇u‖2

for some positive constants α and C . Because ‖�u2‖2 ∈ L1(0, T ), by Gronwall’s

inequality we get ‖∇u‖ ≡ 0. This proves the uniqueness. �

Since the interval of existence [0, T ] depends only upon M1, in standard fash-

ion we may extend the unique strong solution to a maximal interval of time and

infer that the approximations considered above converge to this solution up to the

maximal time.

COROLLARY 5.2 Given the assumptions of Theorem 5.1, system (1.11)–(1.13) with

(4.1) admits a unique strong solution u on a maximal interval [0, Tmax) with the

property that if Tmax < T0 then

(5.19) ‖u(t)‖H1 → ∞ as t → Tmax.

For every T̂ ∈ [0, Tmax), the approximations u�t constructed in (5.3) converge to

u weakly in

L2([0, T̂ ], H 2 ∩ H 1
0 (�, R

N )) ∩ H 1([0, T̂ ], L2(�, R
N ))

and strongly in L2([0, T̂ ] × �, R
N ).
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6 Finite Element Methods Without Compatibility Conditions

for Velocity and Pressure

The simplicity of the stability proof for the time-discrete scheme in Section 4

allows us to easily establish unconditional stability locally in time and convergence

up to the maximal time of existence for the strong solution for corresponding fully

discrete finite element methods that use C1 elements for the velocity field and C0

elements for pressure.

We suppose that for some sequence of positive values of h approaching 0,

Xh ⊂ H 2 ∩ H 1
0 (�, R

N ) is a finite-dimensional space containing the approximate

velocity field, and suppose Yh ⊂ H 1(�)/R is a finite-dimensional space containing

approximate pressures. We assume these spaces have the approximation property

that

∀v ∈ H 2 ∩ H 1
0 (�, R

N ) ∀h ∃vh ∈ Xh ‖�(v − vh)‖ → 0 as h → 0,(6.1)

∀φ ∈ H 1(�)/R ∀h ∃φh ∈ Yh ‖∇(φ − φh)‖ → 0 as h → 0.(6.2)

As we have emphasized in the introduction to this paper, we impose no compatibil-

ity condition between the spaces Xh and Yh in order to ensure an inf-sup condition.

The finite element scheme that we consider was derived in [23] and is equiva-

lent to a space discretization of the scheme in (1.4)–(1.6). Given the approximate

velocity un
h at the nth time step, we determine pn

h ∈ Yh and un+1
h ∈ Xh by requiring

〈∇ pn
h ,∇φh〉 = 〈fn − un

h ·∇un
h + ν�un

h − ν∇∇ · un
h,∇φh〉 ∀φh ∈ Yh,(6.3) 〈∇un+1

h − ∇un
h

�t
,∇vh

〉
+ 〈ν�un+1

h ,�vh〉 = 〈∇ pn
h + un

h · ∇un
h − fn,�vh〉

∀vh ∈ Xh.

(6.4)

We remark that in general, practical finite element methods usually use spaces

defined on domains that approximate the given �. For simplicity here we suppose

� can be kept fixed, such that finite element spaces Xh and Yh can be found as

described with C1 elements for velocity and C0 elements for pressure. In principle

this should be possible whenever � has a piecewise polynomial C3 boundary.

6.1 Stability

We are to show the scheme in (6.3)–(6.4) is unconditionally stable. First, we

take φh = pn
h in (6.3). Due to the fact that

〈P(� − ∇∇·)un
h,∇ pn

h〉 = 0,

we directly deduce from the Cauchy-Schwarz inequality that

(6.5) ‖∇ pn
h‖ ≤ ‖ν∇ pS(u

n
h)‖ + ‖un

h ·∇un
h − fn‖

where

(6.6) ∇ pS(u
n
h) = (�P − P�)un

h = (I − P)(� − ∇∇·)un
h
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is the Stokes pressure associated with un
h . (Note ∇ pS(u

n
h) need not lie in the space

Yh .) Now, taking vh = un+1
h in (6.4) and arguing just as in (4.5), we obtain an exact

analogue of (4.6), namely,

(6.7)

1

�t
(‖∇un+1

h ‖2 − ‖∇un
h‖2) + (ν − ε1)‖�un+1

h ‖2

≤ 8

ε1

(‖fn‖2 + ‖un
h · ∇un

h‖2
) + ν‖∇ pS(u

n
h)‖2.

Proceeding now exactly as in Section 4 leads to the following unconditional stabil-

ity result:

THEOREM 6.1 Let � be a bounded domain in R
N , N = 2 or 3, with C3 boundary,

and let ν, M0 > 0. Then there exist positive constants T∗ and C4 with the following

property: Suppose Xh ⊂ H 2 ∩ H 1
0 (�, R

N ) and Yh ⊂ H 1(�)/R satisfy (6.1)–

(6.2). Assume f ∈ L2(0, T0; L2(�, R
N )) for some T0 > 0, u0

h ∈ Xh, and

‖∇u0
h‖2 + ν�t‖�u0

h‖2 +
∫ T0

0

‖f‖2 ≤ M0.

Then whenever 0 < n�t ≤ T = min(T∗, T0), the solution to the finite element

scheme (6.3)–(6.4) satisfies

sup
0≤k≤n

‖∇uk
h‖2 +

n∑
k=0

‖�uk
h‖2�t ≤ C4,(6.8)

n−1∑
k=0

(∥∥∥∥uk+1
h − uk

h

�t

∥∥∥∥2

+ ‖uk
h · ∇uk

h‖2

)
�t ≤ C4.(6.9)

6.2 Convergence

We prove the convergence of the finite element scheme described above by

taking h → 0 to obtain the solution of the time-discrete scheme studied in Sec-

tion 4, then �t → 0 as before. Because of the uniqueness of the solution of the

time-discrete scheme and of the strong solution of the PDE, it suffices to prove

convergence for some subsequence of any given sequence of values of h tending

toward 0. The bounds obtained in Theorem 6.1 make this rather straightforward.

Fix �t > 0. The bounds in Theorem 6.1 and in (6.5) imply that for all positive

integers n < T∗/�t , the un
h are bounded in H 2 ∩ H 1

0 (�, R
N ), and the ∇ pn

h are

bounded in L2(�, R
N ) uniformly in h. So from any sequence of h approaching 0,

we may extract a subsequence along which we have weak limits

(6.10)
un

h ⇀ un in H 2(�, R
N ),

∇ pn
h ⇀ ∇ pn, un

h · ∇un
h ⇀ wn, in L2(�, R

N ),

for all n. Then un
h → un strongly in H 1

0 (�, R
N ) and so wn = un · ∇un since the

nonlinear term converges strongly in L1.
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Now, for any v ∈ H 2 ∩ H 1
0 (�, R

N ) and φ ∈ H 1(�), by assumption there

exist vh ∈ Xh and φh ∈ H 1(�) such that vh → v strongly in H 2(�, R
N ) and

∇φh → ∇φ strongly in L2(�, R
N ). Applying these convergence properties in

(6.3)–(6.4) yields that the weak limits in (6.10) satisfy

〈∇ pn + ν∇∇ · un − ν�un + un · ∇un − fn,∇φ〉 = 0,(6.11) 〈
un+1 − un

�t
− ν�un+1 + ∇ pn + un · ∇un − fn,�v

〉
= 0.(6.12)

But this means exactly that un satisfies (1.4)–(1.6). So in the limit h → 0 we

obtain the solution of the time-discrete scheme studied in Section 4. Then the limit

�t → 0 yields the unique strong solution on a maximal time interval as established

in Section 5.

7 Nonhomogeneous Side Conditions

We consider the Navier-Stokes equations with nonhomogeneous boundary con-

ditions and extended to include a divergence constraint (such as may be used to

model a distributed source or sink of fluid at constant density, with an adjustment

of the body force f to account for bulk viscosity):

∂t u + u · ∇u + ∇ p − ν�u = f in � for t > 0,(7.1)

∇ · u = h in � for t ≥ 0,(7.2)

u = g on � for t ≥ 0,(7.3)

u = uin in � for t = 0.(7.4)

Our aim in this section is to prove stability and convergence to strong solutions for

a time discretization of an appropriate unconstrained formulation of this problem.

In a subsequent work we will study error estimates for fully discrete finite element

methods with greater regularity assumptions on the data.

7.1 An Unconstrained Formulation

We can write an unconstrained formulation for (7.1) similar to (1.9) but includ-

ing another gradient term to account for the inhomogeneous side conditions:

(7.5) ∂t u + P(u·∇u − f − ν�u) + ∇ pgh = ν∇(∇ · u).

We obtain an equation that determines the inhomogeneous pressure pgh by impos-

ing the requirement that the divergence residual w := ∇ · u − h should be a weak

solution of the heat equation with no-flux boundary conditions:

(7.6) ∂tw = ν�w in �, n · ∇w = 0 on �,

and with initial condition w = ∇ · uin − h
∣∣
t=0

. Then the divergence constraint will

be enforced through exponential diffusive decay as before. (See (7.47) below.) By
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formal integration by parts using the side conditions, we find that an appropriate

weak formulation of (7.6) is to require

(7.7) 〈∂t u,∇φ〉 − 〈∂t(n · g), φ〉� + 〈∂t h, φ〉 = 〈ν∇(∇ · u − h),∇φ〉
for all φ ∈ H 1(�). To obtain this from (7.5), we should require

(7.8) 〈∇ pgh,∇φ〉 = −〈∂t(n · g), φ〉� + 〈∂t h, φ〉 + 〈ν∇h,∇φ〉 ∀φ ∈ H 1(�).

See Lemma 7.1 below regarding the existence of pgh satisfying (7.8) for data g and

h in an appropriate class.

As with (1.14), by using Lemma 1.1 and the definition ∇ pS = (�P − P�)u,

we find that (7.5) is equivalent to

(7.9) ∂t u + P(u·∇u − f) + ∇ pgh + ν∇ pS = ν�u.

Our unconstrained formulation of (7.1)–(7.4) then takes the form (7.8)–(7.9) to-

gether with (7.3)–(7.4).

7.2 Regularity Assumptions

We assume � ⊂ R
N (N = 2 or 3) is a connected bounded domain with bound-

ary � of class C3 as before. Let

V (0, T ) := L2(0, T ; H 2(�)) ∩ H 1(0, T ; L2(�)),(7.10)

W (0, T ) := L2(0, T ; H 1(�)) ∩ H 1(0, T ; H 1(�)′).(7.11)

Here (H 1)′ is the space dual to H 1.

Our theory of convergence to strong solutions comes in two similar flavors,

depending on the regularity assumed on the data. The two flavors correspond to

solutions having either the regularity

(7.12) u ∈ Vdiv(0, T ) := V (0, T )N ∩ {u | ∇ · u ∈ V (0, T )},
or the somewhat weaker regularity

(7.13) u ∈ Wdiv(0, T ) := V (0, T )N ∩ {u | ∇ · u ∈ W (0, T )},
for some T > 0. In the first case, ∇ · u is more regular (∇ · u = 0 is usual),

but we need to assume ∇ · uin ∈ H 1(�) due to the embedding V (0, T ) ↪→
C([0, T ], H 1(�)). The condition (7.13) means that u ∈ V (0, T )N and ∇ · u has

a vector-valued distributional derivative ∂t(∇ · u) in L2(0, T ; H 1(�)′), the dual of

L2(0, T ; H 1(�)).

It will be a consequence of our theory that an arbitrary pair (u, p) with

(7.14) u ∈ Vdiv(0, T ) or Wdiv(0, T ), p ∈ L2(0, T ; H 1(�)/R),

is a strong solution of the constrained system (7.1)–(7.4) for appropriate data. For

the linear problem without convection term, this yields an isomorphism between
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the solution space from (7.14) for the constrained Stokes problem and the corre-

sponding space of data that satisfy the requirements below together with the extra

compatibility condition

(7.15) ∇ · uin = h in � for t = 0.

Corresponding to the regularity in (7.13), our precise assumptions on the data

are that for some T > 0 we have

f ∈ Hf := L2(0, T ; L2(�, R
N )),(7.16)

g ∈ Hg := H 3/4(0, T ; L2(�, R
N )) ∩ L2(0, T ; H 3/2(�, R

N ))(7.17)

∩ {g | ∂t(n · g) ∈ L2(0, T ; H−1/2(�))},
h ∈ Hh := W (0, T ),(7.18)

uin ∈ Hin := H 1(�, R
N ).(7.19)

We also impose the compatibility conditions∫
�

n · g =
∫
�

h for t > 0,(7.20)

g = uin on � for t = 0.(7.21)

Corresponding to the regularity in (7.12), we will assume additionally that h ∈
V (0, T ) and ∇ · uin ∈ H 1(�).

With these assumptions, we get the existence of pgh as follows.

LEMMA 7.1 Assume (7.17), (7.18), and (7.20). Then there exists pgh ∈ L2(H 1(�))

with zero mean, satisfying (7.8) and

‖pgh‖L2(H1(�)) ≤ C
(‖∂t(n · g)‖L2(H−1/2(�)) + ‖h‖W (0,T )

)
.(7.22)

PROOF: One applies the Lax-Milgram lemma for a.e. t to (7.8) in the space of

functions in H 1(�) with zero average. We omit the standard details. �

To explain the regularity of g and eventually reduce the analysis to a problem

with homogeneous boundary conditions, we make the following point. From the

theory of Lions and Magenes [27, vol. II] (see theorems 2.3 and 4.3), taking the

trace on the parabolic boundary of �×(0, T ), defined for smooth enough functions

by u �→ (u(0, · ), u|�), extends to yield a bounded map

(7.23)
V (0, T ) → H 1(�) × (H 3/4(0, T ; L2(�)) ∩ L2(0, T ; H 3/2(�)))

∩ {(u, g) | u = g on � for t = 0},
and this map admits a bounded right inverse. By consequence, given (uin, g) satis-

fying our assumptions above, there exists ũ such that

(7.24) ũ ∈ V (0, T )N , ũ(0) = uin, ũ|� = g,

and the norm of ũ in V (0, T )N is bounded in terms of the norm of (uin, g) in

Hin × Hg. One can regard ũ as given data, instead of the pair (uin, g).
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To relate the regularity in (7.13) with (7.17), we note the following.

LEMMA 7.2 Wdiv(0, T ) = V (0, T )N ∩ {u | ∂t(n · u|�) ∈ L2(0, T ; H−1/2(�))}.
PROOF: Let u ∈ V (0, t)N . Given any φ ∈ C∞

0 ((0, T ), H 1(�)) we have

(7.25)

∫ T

0

〈∇ · u, ∂tφ〉dt =
∫ T

0

〈n · u, ∂tφ〉� dt +
∫ T

0

〈∂t u,∇φ〉dt.

The last term is bounded by a constant times the norm of φ in L2(0, T ; H 1(�)).

Using that the trace map H 1(�) → H 1/2(�) is onto with bounded right inverse,

we get the left-hand side bounded by the same estimate if and only if the boundary

term is bounded by the norm of φ|� in L2(0, T ; H 1/2(�)). This means ∂t(∇ · u) ∈
L2(0, T ; H 1(�)′) if and only if ∂t(n · u

∣∣
�
) ∈ L2(0, T ; H−1/2(�)). �

At this point we can give our “converse existence” result.

PROPOSITION 7.3 Suppose that (u, p) is an arbitrary pair that satisfies (7.14),

and let f, g, h, and uin be computed from (7.1)–(7.4). Then the conditions (7.16)–

(7.21) all hold, and u satisfies (7.8)–(7.9). Additionally, if u ∈ Vdiv(0, T ), then

h ∈ V (0, T ) and ∇ · uin ∈ H 1(�).

PROOF: One easily checks (7.16)–(7.21) using (4.14), (7.23), and Lemma 7.2.

Additionally, if u ∈ Vdiv(0, T ), clearly h ∈ V (0, T ) and ∇ · uin ∈ H 1(�). Further-

more, for any φ ∈ C∞
0 ((0, T ), H 1(�)), from (7.25) we find

−
∫ T

0

〈∂t h, φ〉dt = −
∫ T

0

〈∂t(n · g), φ〉� dt +
∫ T

0

〈∂t u,∇φ〉dt.

Hence (7.7) holds in L1(0, T ). If we define ∇ pS = (�P − P�)u and ∇ pE =
(P − I )(u ·∇u − f), and set pgh = p − pE − νpS, it follows that (7.9) and (7.8)

hold by combining (7.1) with Lemma 1.1 and (7.7). �

We remark that most of the literature on nonhomogeneous Navier-Stokes prob-

lems [17, 18, 19, 25, 34] treats the constrained case with h = 0 in � and imposes

the condition n · g = 0 on �. One treatment with h = 0 but imposing only∫
�

n · g = 0 is that of Fursikov et al. [14], who study the problem in a scale of

spaces that in one case exactly corresponds to what we consider here but with zero

divergence constraint. Amann recently studied very weak solutions without im-

posing n · g = 0 on �, but only in spaces of very low regularity that exclude the

present case [2].

7.3 Discretization Scheme

We consider the following time-discrete scheme: Given u0, find un+1 (n ≥ 0)

such that

un+1 − un

�t
+ P(un · ∇un − fn) + ν∇ pn

S + ∇ pgh
n = ν�un+1 in �,(7.26)

un+1 = gn+1 on �,(7.27)
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where ∇ pn
S = (�P − P�)un , and pgh

n with zero mean is determined from

(7.28) 〈∇ pn
gh∇φ〉 = −

〈
n · (gn+1 − gn)

�t
, φ

〉
�

+
〈

hn+1 − hn

�t
, φ

〉
+ν〈∇hn+1,∇φ〉.

Here

gn = 1

�t

∫ (n+1)�t

n�t

g(t)dt, hn = 1

�t

∫ (n+1)�t

n�t

h(t)dt,

and fn is determined in the same way from f as in (4.2). (This scheme is equivalent

to a first-order gauge method—see Appendix C for the proof.)

7.4 Stability

We assume the data satisfy (7.16)–(7.21) for some given T > 0. To prove the

stability and convergence of the discretiztion scheme, we use ũ that satisfies (7.24)

and is bounded in terms of (uin, g). We define

(7.29) ũn = 1

�t

∫ (n+1)�t

n�t

ũ(t)dt, vn = un − ũn,

and we assume that u0 = ũ0. Then v0 = 0 in � and vn = 0 on �. We can rewrite

(7.26) as an equation for vn:

(7.30)
vn+1 − vn

�t
+ P(vn · ∇vn − fn) + P(vn · ∇ũn + ũn · ∇vn)

+ ν(�P − P�)vn = ν�vn+1 − f̃n,

where

(7.31) f̃n := ũn+1 − ũn

�t
+ ν(�P − P�)ũn + ∇ pn

gh − ν�ũn+1 + P(ũn · ∇ũn).

We claim there exists C > 0 depending only upon the data such that

(7.32)

n−1∑
k=0

‖f̃k‖2�t ≤ C,

provided (n + 1)�t ≤ T . Because ũ ∈ V (0, T )N ↪→ C([0, T ], H 1(�, R
N )) and

(7.33)
ũn+1 − ũn

�t
=

∫ tn+1

tn

∫ �t

0

∂t ũ(t + s)
ds

�t

dt

�t
=

∫ 2

0

∂t ũ(tn + τ�t)�(τ)dτ

where �(τ) = 1 − |1 − τ |, due to the Cauchy-Schwarz inequality we have

(7.34) sup
0≤k≤n

‖∇ũk‖2 +
n∑

k=0

‖ũk‖2
H2�t +

n−1∑
k=1

∥∥∥∥ ũn+1 − ũn

�t

∥∥∥∥2

�t ≤ C.

Using this with (4.14) bounds the nonlinear term in (7.31). To bound ∇ pn
gh , we use

Lemma 7.1 and estimate the time differences in (7.28) as in (7.33)–(7.34) using the

Cauchy-Schwarz inequality. Note that the compatibility condition (7.20) is used to

ensure solvability for pn
gh . Thus we obtain the bound (7.32).
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Following the approach of Section 4, we obtain an analogue of Theorem 4.1.

THEOREM 7.4 Let � be a bounded domain in R
N , N = 2 or 3, with a C3 bound-

ary, and assume (7.16)–(7.21) for some given T > 0. Consider the time-discrete

scheme (7.26)–(7.28) with u0 = ũ0 from (7.29) and (7.24). Then there exist positive

constants T∗ and C3 such that whenever n�t ≤ T∗, we have

sup
0≤k≤n

‖∇uk‖2 +
n∑

k=0

‖uk‖2
H2�t ≤ C3,(7.35)

n−1∑
k=0

(∥∥∥∥uk+1 − uk

�t

∥∥∥∥2

+ ‖uk · ∇uk‖2

)
�t ≤ C3.(7.36)

Inequalities (7.35)–(7.36) are also true with uk replaced by vk .

PROOF: We first write (7.26) as (7.30). Using (7.32) and comparing with the

proof of Theorem 4.1, which establishes the stability of the scheme

wn+1 − wn

�t
+ P(wn · ∇wn − fn) + ν(�P − P�)wn = ν�wn+1, wn+1

∣∣
�

= 0,

we see that the only difference is that in (7.30) we have some extra linear terms of

the form

(7.37) P(ũ · ∇v + v · ∇ũ).

Similarly to (4.14), we get

‖P(ũ · ∇v)‖2 ≤ ε‖�v‖2 + C

ε
‖ũ‖4

H1‖∇v‖2.(7.38)

We estimate the other term in (7.37) by using Gagliardo-Nirenberg inequalities [13,

theorem 10.1] and the Sobolev embeddings of H 1 into L3 and L6:

(7.39) ‖v‖L∞ ≤
{

C‖�v‖1/2

L3/2‖v‖1/2

L3 ≤ C‖�v‖1/2‖∇v‖1/2, N = 2,

C‖�v‖1/2‖v‖1/2

L6 ≤ C‖�v‖1/2‖∇v‖1/2, N = 3.

Then for N = 2 and 3 we have

‖P(v · ∇ũ)‖2 ≤ ‖v‖2
L∞‖∇ũ‖2 ≤ ε‖�v‖2 + C

ε
‖ũ‖4

H1‖∇v‖2.(7.40)

With these estimates, the rest of the proof of the stability of vn is essentially the

same as that of Theorem 4.1 and therefore we omit the details. The stability of vn

leads to that of un , using (7.34), (7.38), and (7.40). �
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7.5 Convergence

First, we define u�t and U�t exactly as before by (5.3) and (5.4), and define

(7.41) pgh�t
(t) = pn

gh for t ∈ [tn, tn+1), n = 0, 1, . . . .

Then, (7.26) can be written as

(7.42)
∂t u�t + P(U�t · ∇U�t − f�t − ν�U�t) + ∇ pgh�t

= ν�(U�t( · + �t) − U�t) + ν∇∇ · U�t ,

Comparing with (5.5), we see that exactly as before in the proof of Theorem 5.1,

we are justified to pass to the limit along some subsequence �t j → 0 in all the

linear terms except ∇ pgh�t
.

In fact, we claim that with Q = � × (0, T ),

(7.43) ‖∇ pgh�t
− ∇ pgh‖L2(Q) → 0 as �t → 0.

The proof is straightforward using Lemma 7.1. First, let h�t(t) = hn+1 for t ∈
[tn, tn+1), n = 0, 1, . . .. As in (5.8) we have ∇h�t → ∇h strongly in L2(Q).

Next, suppose generally that X is a Banach space and ψ ∈ L2(0, T ; X). Let

(7.44) ψ�t(t) =
∫ 2

0

ψ(tn + τ�t)�(τ)dτ, t ∈ [tn, tn+1), n = 0, 1, . . . ,

as in (7.33). (Extend ψ by 0 for t > T .) The map ψ → ψ�t is bounded on

L2(0, T ; X) by the Cauchy-Schwarz inequality, and ψ�t → ψ strongly as �t →
0, since this is true for ψ in C([0, T ], X), a dense set.

Applying this result with ψ = ∂t h, X = (H 1)′, and with ψ = ∂t(n · g),

X = H−1/2(�), comparing with (7.33), and using Lemma 7.1, we get the strong

convergence asserted in (7.43).

As before in the proof of Theorem 5.1, we can now pass to the limit in all terms

of (7.42) and find that

(7.45) u�t → u weakly in V (0, T∗)N ,

where u satisfies (7.5), which is equivalent to (7.9) of our unconstrained formula-

tion. It remains to verify the boundary and initial conditions and study the regular-

ity of ∇ · u.

Recall u�t = v�t + ũ�t with v�t and ũ�t defined as in (5.3) by linear interpo-

lation. From Theorem 7.4, we know v�t is uniformly bounded in

Vb := V (0, T∗)N ∩ {w | w(t = 0) = 0, w|� = 0},
which is a Hilbert space carrying zero boundary and initial conditions. Conse-

quently, v�t j
→ v weakly in Vb, and v = 0 at t = 0 and on �. Next we note

that

(7.46) ‖ũ�t − ũ‖L2(Q) → 0 as �t → 0.

This follows because ũ�t is bounded in V (0, T )N ↪→ H 1(Q)N by (7.34), and the

embedding H 1(Q) ↪→ L2(Q) is compact. We already know ũ ∈ V (0, T )N with
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ũ|� = g and ũ(t = 0) = uin. Hence we have u = v + ũ, and it satisfies the correct

boundary and initial conditions. By Lemma 7.2 we have u ∈ Wdiv(0, T∗).
As a by-product of this convergence analysis for the scheme (7.26)–(7.27), we

get the following existence and uniqueness theorem. Convergence of u�t to u along

any subsequence follows from the uniqueness.

THEOREM 7.5 Let � be a bounded, connected domain in R
N (N = 2 or 3) and

assume (7.16)–(7.21). Then there exists T∗ > 0 so that a unique strong solution

of (7.8)–(7.9) and (7.3)–(7.4) exists on [0, T∗], with u ∈ Wdiv(0, T∗). Moreover,

∇ · u − h ∈ W (0, T ) is a smooth solution of the heat equation for t > 0 with

no-flux boundary conditions. The map t �→ ‖∇ · u − h‖2 is smooth for t > 0, and

we have the dissipation identity

(7.47)
d

dt

1

2
‖∇ · u − h‖2 + ν‖∇(∇ · u − h)‖2 = 0.

If we further assume h ∈ V (0, T ) and ∇ · uin ∈ H 1(�), then u ∈ Vdiv(0, T∗).
The approximations u�t constructed above converge to u weakly in V (0, T∗)N

and strongly in L2([0, T∗] × �, R
N ).

PROOF: The existence of u ∈ Wdiv(0, T∗) has been proved, and we can prove

the uniqueness by the same method as in Theorem 5.1. We study w = ∇ · u − h in

a manner similar to the proof of Theorem 5.1. Combining (7.9) with (7.8), we get

(7.7) for any φ ∈ H 1(�). With w = ∇ · u − h, taking φ ∈ D(A) as in (5.12) we

have

(7.48) 〈w,φ〉 = 〈n · g, φ〉� − 〈u,∇φ〉 − 〈h, φ〉.
Therefore t �→ 〈w,φ〉 is absolutely continuous, and (7.7) yields (d/dt)〈w,φ〉 =
〈w, Aφ〉 for a.e. t . This means w is a weak solution in the sense of Ball [4], and the

rest of the proof that w is a smooth solution of the heat equation satisfying (7.47)

goes as before, using (7.20) to get
∫
�

w = 0.

If we further assume h ∈ V (0, T ) and ∇ · uin ∈ H 1(�), then w(0) ∈ H 1(�).

We claim

(7.49) H 1(�) = D((−A)1/2).

Then semigroup theory yields w ∈ C([0, T∗], D((−A)1/2)), so since

(7.50) 0 = 〈−�w, ∂tw − ν�w〉 = d

dt

1

2
‖∇w‖2 + ν‖�w‖2

for t > 0, we deduce w ∈ V (0, T∗), and ∇ · u is in the same space.

To prove (7.49), note X := D((−A)1/2) is the closure of D(A) from (5.12) in

the norm given by

‖w‖2
X = ‖w‖2 + ‖(−A)1/2w‖2 = 〈(I − ν�)w,w〉 =

∫
�

|w|2 + ν|∇w|2.
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Clearly X ⊂ H 1(�). For the other direction, let w ∈ H 1(�) be arbitrary. We

may suppose w ∈ C∞(�̄) since this space is dense in H 1(�). Now we only need

to construct a sequence of C2 functions wn → 0 in the H 1 norm with n ·∇wn =
n ·∇w on �. This is easily accomplished using functions of the form wn(x) =
ξn(dist(x, �))n · ∇w(x), where ξn(s) = ξ(ns)/n with ξ smooth and satisfying

ξ(0) = 0, ξ ′(0) = 1, and ξ(s) = 0 for s > 1. This proves (7.49). �

8 Estimate on the Divergence

We can provide an estimate on ∇ · un − hn for the time-discrete scheme in

Section 7. For this we prove another estimate on Stokes pressure, showing that its

L2 norm is controlled by the tangential components of vorticity on the boundary.

LEMMA 8.1 (L2 Estimate for Stokes Pressure) Let � ⊂ R
N , N ≥ 2, be a bounded,

connected domain with C2 boundary. Then there is a constant C > 0 so that

for any u ∈ H 2(�, R
N ), the associated Stokes pressure pS ∈ H 1(�) defined by

∇ pS = (�P − P�)u with zero mean satisfies

(8.1) ‖pS‖ ≤ C‖n · (∇u − ∇uT)‖L2(�) ≤ C2‖u‖1/4 ‖u‖3/4

H2(�)
.

PROOF: For any φ ∈ L2(�), define ψ with mean zero by

(8.2) �ψ = φ − φ̄, n · ∇ψ
∣∣
�

= 0,

where φ̄ is the mean value of φ over �. Then, since pS has mean zero, we have

(8.3) 〈pS, φ〉 = 〈pS, φ − φ̄〉 = 〈pS,�ψ〉 = −〈∇ pS,∇ψ〉.
From (3.6), we get

(8.4) |〈pS, φ〉| ≤ c0‖n · (∇u − ∇uT)‖L2(�) ‖∇ψ‖L2(�).

By elliptic regularity theory for (8.2),

(8.5) ‖∇ψ‖L2(�) ≤ c1‖ψ‖H3/2(�) ≤ c2‖φ − φ̄‖ ≤ c2‖φ‖.
Taking φ = pS in (8.4) gives the first inequality in the lemma, and the second

follows by standard trace and interpolation theorems. �

PROPOSITION 8.2 Make the same assumptions as in Theorem 7.4, and let

wn = ∇ · un − hn, n = 0, 1, . . . .

Then there exists C > 0 such that as long as n�t ≤ T∗ we have

sup
0≤k≤n

‖wk‖2
H1(�)′ +

n∑
k=1

‖wk‖2�t ≤ C
(‖w0‖2

H1(�)′ + �t1/2
)
.
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PROOF: For φ ∈ H 1(�) with mean zero, we compute from (7.26)–(7.28) that

(8.6)

〈
wn+1 − wn

�t
, φ

〉
+ ν〈∇(wn+1 + pn+1

S − pn
S),∇φ〉 = 0.

Here we used Lemma 1.1 to say (I − P)�un+1 = ∇∇ · un+1 + (�P − P�)un+1.

Next, note that
∫
�

wn = 0 by the compatibility condition (7.20). We let qn be the

mean-zero solution of

(8.7) −�qn = wn, n ·∇qn = 0 on �.

Note that ‖∇qn‖ is equivalent to ‖wn‖H1(�)′ . Taking φ = qn+1 in (8.6), we find〈∇qn+1 − ∇qn

�t
,∇qn+1

〉
+ ν〈wn+1 + pn+1

S − pn
S, w

n+1〉 = 0,

whence

‖∇qn+1‖2 − ‖∇qn‖2

�t
+ 2ν‖wn+1‖2 ≤ ν

(‖wn+1‖2 + ‖pn+1
S − pn

S‖2
)

and

(8.8) ‖∇qn‖2 + ν

n−1∑
k=0

‖wk+1‖2�t ≤ ‖∇q0‖2 + ν

n−1∑
k=0

‖pk+1
S − pk

S‖2�t .

Since ∇(pn+1
S − pn

S) = (�P − P�)(un+1 − un), we use Lemma 8.1 to infer

(8.9) ‖pn+1
S − pn

S‖2 ≤ C‖un+1 − un‖1/2 ‖un+1 − un‖3/2

H2 .

Then by Hölder’s inequality and Theorem 7.4,

n−1∑
k=0

‖pk+1
S − pk

S‖2�t ≤ C

[ n−1∑
k=0

‖uk+1 − uk‖2�t

] 1
4
[ n−1∑

k=0

‖uk+1 − uk‖2
H2�t

] 3
4

≤ C
√

�t .

Appendix A: Optimal Commutator Estimate in a Half-Space

Consider � to be the half-space R
N
+ where xN > 0. In this case, one must

take care to define the Helmholtz projection, since ∇ H 1(�) is now not closed in

L2(�, R
N ) (cf. [33]). Let B ⊂ � be a fixed, bounded domain, and let Y be the

space of functions q ∈ L2
loc(�) such that

∫
B

q = 0 and ∇q ∈ L2(�, R
N ). Then

Y is a Hilbert space with norm ‖q‖2
Y = ∫

�
|∇q|2 and ∇Y is a closed subspace of

L2(�, R
N ). The Helmholtz projection P may be defined as in (1.7) with q ∈ Y

instead of H 1(�).

We note that smooth q ∈ C∞(�) with bounded support are dense in Y . The

proof is similar to that in the case � = R
N as given in [33, lemma 2.5.4]—

approximate by functions with bounded support via cutoff, then mollify. Here

one should shift slightly before mollifying, replacing q(x) by q(x − εeN ), as in

standard proofs of the density of smooth functions in Sobolev spaces (cf. [12]).
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If the estimate (1.15) holds for some ε > 0 and C ≥ 0 independent of u, then

a simple scaling argument shows that it holds with C = 0. We claim that in fact

estimate (1.15) holds with ε = 0 and C = 0, and is sharp in general.

THEOREM A.1 Let � = R
N
+ with N ≥ 2. Then∫

�

|(�P − P�)u|2 ≤ 1

2

∫
�

|�u|2

for all u ∈ H 2 ∩ H 1
0 (�, R

N ), and equality holds for some u.

PROOF: It suffices to study u in a dense subset of H 2 ∩ H 1
0 (�, R

N ), so we take

u smooth in R
N
+ with bounded support. First we obtain an explicit expression for

the Fourier transform of ∇ pS = (�P − P�)u using the boundary value problem

(2.3) for p = pS. Since u = 0 for xN = 0 and n = eN = (0, . . . , 0,−1), we have

n · (�u − ∇∇ · u) = ∂N ∇ · u‖ on �, where u‖ = (u1, . . . , uN−1). Formally taking

the Fourier transform in tangential variables, for k ∈ R
N−1 and s = xN we need

(A.1) (∂2
s − |k|2) p̂(k, s) = 0, ∂s p̂(k, 0) = −ik · ∂s û‖(k, 0).

Since p̂ should not grow exponentially in s > 0, for k �= 0 we get the formula

(A.2) p̂(k, s) = a(k)e−|k|s where a(k) = i k̂ · ∂s û‖(k, 0), k̂ = k

|k| .

Since a(k) is rapidly decreasing, inversion yields a smooth p on R
N
+ with

∇̂ p(k, s) = (ik,−|k|)a(k)e−|k|s,(A.3) ∫
�

|∇ p|2 =
∫

RN−1

∫ ∞

0

(|k|2| p̂|2 + |∂s p̂|2)ds dk =
∫

RN−1

|k| |a(k)|2 dk < ∞.(A.4)

Hence (A.2) determines a harmonic function p ∈ Y (adjusting by a constant if nec-

essary). Fourier inversion of the last component of (A.3) shows that the boundary

condition in (2.3) holds, whence (2.2) holds for all smooth φ ∈ Y with bounded

support. Hence (A.2) indeed determines the Stokes pressure.

Now,

(A.5)

∫
�

|�u|2 =
∫
�

|�uN |2 +
∫

RN−1

∫ ∞

0

|(∂2
s − |k|2)û‖|2 ds dk.
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Let v(s) = k̂ · û‖(k, s) and w(s) = e−|k|s . Then since v(0) = 0, w(0) = 1, and

w′′ = |k|2w, by Green’s identity and Cauchy-Schwarz we find

|a(k)|2 = |v′(0)|2 =
∣∣∣∣ ∫ ∞

0

(wv′′ − w′′v)ds

∣∣∣∣2

≤
∫ ∞

0

w(s)2 ds

∫ ∞

0

|(∂2
s − |k|2)v|2 ds

= 1

2|k|
∫ ∞

0

|(∂2
s − |k|2)v|2 ds.

Together with (A.5) and (A.4) this implies

(A.6)

∫
�

|∇ p|2 ≤ 1

2

∫
�

|�u|2.

To see that equality is possible, choose a(k) smooth with compact support and zero

near k = 0, and determine u ∈ H 2 ∩ H 1
0 (�, R

N ) so uN = 0 and

û‖(k, s) = se−|k|s(−i k̂)a(k).

One then computes that |(∂2
s − k2)û‖| = e−|k|s , and equality holds in (A.6), while

(A.1) and (A.2) hold. �

Appendix B: Range of the Commutator �P − P�

According to (2.1) the range of the commutator [�,P] acting on H 2(�, R
N )

can be characterized as the space of gradients of Stokes pressures. By (2.2), the

space of Stokes pressures is given by

(B.1) Sp := {p ∈ H 1(�)/R | �p = 0 in � and n ·∇ p|� ∈ S�},
where S� is the subspace of H−1/2(�) given by

(B.2) S� := { f = n · (� − ∇∇·)u|� | u ∈ H 2(�, R
N )}.

The Stokes pressure p with zero average is determined uniquely by f = n ·∇ p|� ∈
S�, with ‖p‖H1(�) ≤ C‖ f ‖H−1/2(�) by the Lax-Milgram lemma.

The space S� may be characterized as follows:

THEOREM B.1 Assume � ⊂ R
N is a bounded, connected domain and its boundary

� is of class C3. Denote the connected components of � by �i , i = 1, . . . , m. Then

S� =
{

f ∈ H−1/2(�)

∣∣∣∣ ∫
�i

f = 0 for i = 1, . . . , m

}
= { f = n · (� − ∇∇·)u|� | u ∈ H 2 ∩ H 1

0 (�, R
N )},

and moreover, the map u �→ n ·(�−∇∇·)u|� from H 2 ∩ H 1
0 (�, R

N ) to S� admits

a bounded right inverse.
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PROOF: First we check that if f = n · (� − ∇∇·)u|� with u ∈ H 2(�, R
N ),

then
∫
�i

f = 0 for i = 1, . . . , m. For each �i , there is an si > 0 small enough and a

smooth cutoff function ρi defined in � that satisfies ρi (x) = 1 when dist(x, �i ) <

si and ρi (x) = 0 when dist(x, �j ) < si for all j �= i . Let a = (� − ∇∇·)(ρi u).

Then a ∈ L2(�, R
N ) and ∇ · a = 0, so

(B.3)

∫
�i

f =
∫
�

n · a =
∫
�

∇ · a = 0.

Next, let f ∈ H−1/2(�) with
∫
�i

f = 0 for all i . We will show that we can find

some u ∈ H 2 ∩ H 1
0 (�, R

N ) so that f = n · (� − ∇∇·)u|�. First, treating each

boundary component separately, we can solve the problem

(B.4) ��ψ = − f on �,

∫
�i

ψ = 0 for i = 1, . . . , m,

where �� is the (positive) Laplace-Beltrami operator on �. Denote the mapping

f �→ ψ by T . Then T : H−1(�) → H 1(�) is bounded [3, theorem 1.71, theo-

rem 4.7], [36, p. 306, prop. 1.6]. Also T : L2(�) → H 2(�) is bounded, by elliptic

regularity theory [36, p. 306, prop. 1.6]. So, interpolation implies (see [27, vol. I,

p. 37, remark 7.6])

(B.5) ‖ψ‖H3/2(�) ≤ C‖ f ‖H−1/2(�).

Now by an inverse trace theorem [31, theorem 6.109], there exists a map ψ �→ q ∈
H 3(�) with

(B.6) q = 0 and n ·∇q = ψ on �, ‖q‖H3(�) ≤ C‖ψ‖H3/2(�).

We may assume q is supported in a small neighborhood of �. Define

(B.7) u = (I − nnT)∇q.

Then f �→ u is bounded from S� to H 2 ∩ H 1
0 (�, R

N ). We claim

(B.8) n · (� − ∇∇·)u = f on �.

The proof of this claim amounts to showing that the derivative along the normal

n · ∇ and normal projection nnT commute on the boundary with the tangential

gradient and divergence operators (I − nnT)∇ and ∇ · (I − nnT) for the functions

involved.

First, since n · u = 0, by expanding �(n · u) we get

(B.9) n · �u = −(�n) · u − 2∇n : ∇u = 0 on �,

since for each i , ∇ni is tangential and ∇ui is normal to �—indeed, using ∂j ni =
∂i n j and (3.4) and (3.5), we have that

(B.10) ∇n : ∇u = (∂j ni )(∂j ui ) = (∂i n j )(nj nk∂kui ) = 0 on �.
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Next we calculate in � that

(B.11) n ·∇∇ · u = ∇ · (n ·∇u) − ∇n : ∇u.

Note that n ·∇(nnT) = 0 by (3.4), so n ·∇ commutes with I − nnT in �. Then

since u = (I − nnT)u from (B.7), we get

(B.12) n ·∇u = (I − nnT)(n ·∇)u = (I − nnT)(n ·∇)∇q.

Now

(B.13) (n ·∇)∇q = ∇(n ·∇q) − a

where

(B.14) ai = (∂i n j )(∂j q) = (∂j ni )(∂j q).

This quantity lies in H 2(�) and vanishes on � since ∇q = (nnT)∇q on �. (This

can be proved by approximation.) Using part (i) of Lemma 3.2, we have that

∇ · (I − nnT)a = 0 on �. Combining (B.9)–(B.13), we conclude that

(B.15) n · (� − ∇∇·)u = −∇ · (I − nnT)∇(n ·∇q) on �.

But it is well-known that at any point x where 	(x) = r ∈ (0, s), for any smooth

function φ on �s ,

(B.16) ∇ · (I − nnT)∇φ = �φ − (∇ · n)(n ·∇φ) − (n ·∇)2φ = −��r
(φ|�r

),

where ��r
is the Laplace-Beltrami operator on �r . So taking r → 0 we see that

the right-hand side of (B.15) is exactly −��(n ·∇q|�). So by (B.4) and (B.6) we

have established the claim in (B.8). This finishes the proof. �

Remark B.2. Given a velocity field u ∈ H 2 ∩ H 1
0 (�, R

3), the associated Stokes

pressure is determined by the normal component at the boundary of the curl of the

vorticity ω = ∇ × u, which is a vector field in H 1(�, R
3). A question related

to Theorem B.1 is whether the space S� of such boundary values n · ∇ × ω is

constrained in any way, as compared to the space of boundary values n · ∇ × v

where v ∈ H 1(�, R
3) is arbitrary.

The answer is no. In [38, app. I, prop. 1.3], Temam proves

(B.17) ∇ × H 1(�, R
3) =

{
g ∈ L2(�, R

3) | ∇ · g = 0,

∫
�i

n · g = 0 ∀i

}
.

Clearly S� ⊂ n · ∇ × H 1(�, R
3) by (B.2). For the other direction, let v ∈

H 1(�, R
3) be arbitrary, and let f = n · ∇ × v|�. By (B.17) or otherwise, f ∈

H−1/2(�) and
∫
�i

f = 0 for all i ; hence f ∈ S�. This shows that for N = 3,

(B.18) S� = n · ∇ × H 1(�, R
3).

A related point is that for N = 3, the space of Stokes pressure gradients ∇Sp

(range of [�,P]) can be characterized as the space of simultaneous gradients and

curls.
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THEOREM B.3 Assume � ⊂ R
3 is a bounded, connected domain and its boundary

� is of class C3. Then

(B.19) [�,P]H 2(�, R
3) = ∇Sp = ∇ H 1(�) ∩ ∇ × H 1(�, R

3).

PROOF: Indeed, ∇Sp ⊂ ∇ × H 1 by (B.17) and Theorem B.1. On the other

hand, if g = ∇ × v = ∇ p then �p = ∇ · g = 0 and n ·∇ p|� ∈ S� by (B.17) and

Theorem B.1, so ∇ p ∈ ∇Sp. �

Remark B.4. In the book [38] (see theorem 1.5) Temam establishes the orthog-

onal decomposition L2(�, R
N ) = H ⊕ H1 ⊕ H2, which means that for any

g ∈ L2(�, R
N ),

(B.20) g = Pg + ∇q + ∇�−1∇ · g,

where q satisfies �q = 0 and n · ∇q|� = n · (g − ∇�−1∇ · g). By contrast, we

have shown

(B.21) g = Pg + ∇ p + ∇∇ · �−1g

where p satisfies �p = 0 and n · ∇ p|� = n · (g − ∇∇ · �−1g); i.e., p is the Stokes

pressure associated with �−1g. Thus the map g �→ ∇ p − ∇q is the commutator

∇�−1∇ · −∇∇ · �−1. The decomposition (B.20) is orthogonal, and q satisfies∫
�

n · ∇q = 0. In our decomposition (B.21), the gradient terms are not orthogonal,

but the Stokes pressure term enjoys the bounds stated in Theorem 1.2, and if � is

not connected, it has the extra property that
∫
�i

n · ∇ p = 0 for every i .

Appendix C: Equivalence with a Gauge Method

In this appendix we show that the scheme (7.26)–(7.28) from Section 7 is equiv-

alent to a first-order gauge method essentially the same as studied in [11, 40]. A

similar observation is made in [20] for the linear case with smooth solutions and

homogeneous boundary conditions.

At the time-continuous level, the idea is to reformulate the unconstrained for-

mulation (7.8)–(7.9) using the representation

(C.1) u = a + ∇	

for an appropriate gauge 	. We require

∂t a + P(u·∇u − f) = ν�a in �,(C.2)

a + ∇	 = g on �,(C.3)

∂t	 + νpS + pgh = ν�	 − νh̄ in �,(C.4)

n ·∇	 = n · g on �.(C.5)

Here pgh is determined via (7.8), pS is the Stokes pressure satisfying ∇ pS = (�P−
P�)u, and h̄ is the average value of h. Adding the gradient of (C.4) to (C.2)

produces (7.9).
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When initial data satisfy ∇ · a + �	 = h at t = 0, (C.4) can be replaced by

(C.6) ∇ · a + �	 = h in �.

This has advantages for computational purposes and is used in the discretization

below. If we define ψ by solving

(C.7) �ψ = h in �, n · ∇ψ = n · g on �,

then (C.6) implies ∇(	 − ψ) = (P − I )a and hence u = a + ∇	 = Pa + ∇ψ .

Time discretization of the gauge formulation above yields a scheme that can be

written in the following form, convenient for our analysis. First, determine ψn for

all n ≥ 0 as the mean-zero solution of

(C.8) �ψn = hn in �, n · ∇ψn = n · gn on �.

Then 〈∇ψn,∇φ〉 = 〈n · gn, φ〉� − 〈hn, φ〉 for all φ ∈ H 1(�). Assuming the data

are as in Section 7.2, we have hn ∈ H 1(�), gn ∈ H 3/2(�), and hence ψn ∈ H 3(�).

Using (7.28) one can determine that

(C.9)
ψn+1 − ψn

�t
− ν�ψn+1 = −pn

gh − νh̄n+1,

where h̄n+1 is the average value of hn+1.

Now we write a gauge method as follows: Given an at time tn = n�t such that

n · an = 0 on �, find un and φn so that

un = Pan + ν�t(I − P)�an + ∇ψn,(C.10)

�φn = −∇ · an in �, n · ∇φn = 0 on �,(C.11)

then determine an+1 by solving

an+1 − an

�t
+ P(un · ∇un − fn) = ν�an+1 in �,(C.12)

an+1 + ∇φn + ∇ψn+1 = gn+1 on �.(C.13)

Since (C.11) means ∇φn = (P − I )an , from (C.10) and (C.12) we have

(C.14) un+1 = an+1 + ∇φn + ∇ψn+1

for n ≥ 0. For computational purposes, one would update the velocity using this

equation and compute φn + ψn+1 from a single boundary-value problem. We need

(C.10) here for initialization, but note that in general this equation determines an

from un as well as vice-versa; see below.

One can compare (C.12)–(C.14) with (C.1)–(C.3) taking 	 = φ + ψ . To see

the connection with (C.4)–(C.5), see (C.8)–(C.9) and (C.19) below.

PROPOSITION C.1 The scheme (7.26)–(7.28) is equivalent to the gauge method

(C.10)–(C.13).
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PROOF: First suppose that we have a solution of the gauge method (C.10)–

(C.13) with an ∈ H 2(�, R
N ) and (hence) φn ∈ H 3(�). We need to assume in

addition that (I − P)�a0 ∈ H 2(�, R
N ), so that u0 ∈ H 2(�, R

N ). Observe that

(C.15) Pun = Pan and P�un = P�an,

which follows since un − an is the gradient of an H 3 function, by (C.14) for n > 0.

Next, we can write (I − P)un = ∇qn where qn ∈ H 3(�) has mean zero. Since

(C.16) (I − P)�an = �(I − P)an + (�P − P�)an = ∇(−�φn + pn
S),

applying (I − P) to (C.10), we find qn is determined from φn (or vice versa) by

(C.17) ν�φn − νpn
S = ψn − qn

�t
in �, n ·∇φn = 0 on �.

Applying P and (P − I ), respectively, to (C.12), we get

Pun+1 − Pun

�t
+ P(un · ∇un − fn) = νP�un+1,(C.18)

φn+1 − φn

�t
= ν�φn+1 − νpn+1

S(C.19)

By using (C.17) it follows that φn+1 − φn = ψn+1 − qn+1 and so

(C.20) ν�qn+1 = ν�(ψn+1 + φn − φn+1).

By combining these equations with (C.9), we find

(C.21)
qn+1 − qn

�t
− ν�qn+1 = −pn

gh − νh̄n+1 + νpn+1
S − νpn

S .

Taking the gradient and using �∇qn+1 + ∇ pn+1
S = (I − P)�un+1, we get

(C.22) (I − P)

(
un+1 − un

�t

)
+ ∇ pn

gh + ν∇ pn
S = ν(I − P)�un+1.

Together with (C.18) and (C.14), this yields the scheme (7.26)–(7.28).

Next we argue in the other direction. Suppose that we have a solution of (7.26)–

(7.28) with un ∈ H 2(�, R
N ) for n ≥ 0. Then we can determine an from un so that

(C.10) holds by setting

an = Pun − ∇φn,

where φn is obtained by solving (C.17) with ∇ pn
S = (�P −P�)un . Then ∇φn =

(P − I )an and (C.11) holds, and since φn ∈ H 3(�), we get also (C.15) and (C.16).

Applying P to (7.26) yields (C.18). Applying (I − P) to (7.26), we obtain (C.22)

and hence (C.21). Using this together with (C.9) and (C.17) leads to (C.20). Since

all quantities in (C.19) have mean zero and n · ∇qn+1 = n · un+1 = n · gn+1 =
n · ∇ψn+1 on �, we infer that (C.19) holds. This ensures

(C.23) (I − P)

(
an+1 − an

�t

)
= ν∇(−�φn+1 + pn+1

S ) = ν(I − P)�an+1.
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Combining this with (C.18) and (C.15) gives (C.12), and (C.14) and (C.13) follow.

This concludes the proof. �
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