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Abstract This tutorial provides an introduction to the construction of Markov models of molec-
ular kinetics from molecular dynamics trajectory data with the PyEMMA software. Using tutorial

notebooks, we will guide the user through the basic functionality as well as the more common

advanced mechanisms. Short exercises to self check the learning progress and a notebook on

troubleshooting complete this basic introduction.
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1 Introduction
PyEMMA [1] (http://emma-project.org) is a software for the

analysis ofmolecular dynamics (MD) simulations usingMarkov

state models [2, 3] (MSMs). The package is written in Python

(http://python.org), relies heavily on NumPy/SciPy [4, 5], and

is compatible with the scikit-learn [6] framework for machine

learning.

1.1 Scope
In this tutorial, we assume the reader’s familiarity with the

basic theory behind the MSM approach (see Sec. 2.1) and

focus on usage of PyEMMA. Nevertheless, we will mention

important theoretical concepts when appropriate through-

out the tutorial. We also assume the reader is familiar with

MD analyses of proteins and peptides and commonly used

structural components of these systems (for a review of the

simulation of biomolecular macromolecules, see [7]).

The tutorial is divided into lessons on specific topics, each

accompanied by a Jupyter [8] notebook containing code, in-

structions, and exercises. The lessons start with a showcase

of the PyEMMA workflow and follow up with in-depth lessons

on specific topics.

2 Prerequisites
In the following, we summarize the recommended theoretical

background knowledge of Markov state modeling for this

tutorial. Then, we address the software required to work

through the lessons.

2.1 Background knowledge
For those unfamiliar with Markov state modeling, “Markov
State Models: From an Art to a Science” [9] provides a recent
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Figure 1. The PyEMMA workflow: MD trajectories are processed
and discretized (first row). A Markov state model is estimated from

the resulting discrete trajectories and validated (middle row). By

iterating between data processing and MSM estimation/validation, a

dynamical model is obtained that can be analyzed (last row).

overview, while “Markov models of molecular kinetics: Genera-
tion and validation” [10] describes the basic MSM theory and
methodology in detail. Additionally, two textbooks exist that

focus on computational methods and applications [11] and

mathematical theory [12].

In addition to publications on theory and application of

Markov state modeling [2, 13–24], we also recommend the

literature on time-lagged independent component analysis

(TICA) [25–28], transition path theory (TPT) [29, 30], hidden

Markov state models (HMMs) [31–33], and variational tech-

niques [34–36], as these topics play important roles within

the standard MSM workflow.

2.2 Software/system requirements
We utilize Jupyter [8] notebooks to show code examples along

with figures and interactive widgets to display molecules. The

user can install all necessary packages in one step using

the conda command provided by the Anaconda Python stack
(https://anaconda.com). We recommend Anaconda because

it resolves and installs dependencies as well as provides pre-

compiled versions of common packages.

The tutorial installation contains a launcher command to

start the Jupyter notebook server as well as the notebook files.

The data for the demonstrated test systems is downloaded

upon the first use and is cached for future invocations of the

tutorial.

The underlying software stack for running the tutorial

consists of:

• PyEMMA –MSM/HMM estimation, validation, analysis,
and visualization, and its dependencies [1]

• mdshare – A downloader for MD data from a public
server

• notebook – The Jupyter notebook tool used for run-
ning the tutorials [8], along with extension packages

jupyter_contrib_nbextensions and nbexamples

• nglview –Widget for active viewing of molecular struc-

tures in Jupyter environments [37]

The tutorial software is currently supported for Python

versions 3.5 and 3.6 on the operating systems Linux, OSX,

and Windows.

Should the user prefer not to use Anaconda, a manual

installation via the pip installer is possible. Alternatively, one

can use the Binder service to view and run the tutorials online

in any browser.

3 Content and links
This tutorial consists of nine Jupyter notebooks which intro-

duce the basic features of PyEMMA. The first notebook (00),

which we will summarize in the following, showcases the en-

tire estimation, validation, and analysis workflow for a small

example system. The goal of this introductory notebook (00)

is to provide the user with the typical steps required to obtain

a validated MSM analysis of protein or peptide simulation

data. The seven subsequent notebooks (01–07) provide in-

depth lessons on specific topics, and the last notebook (08)

contains guidelines on how to deal with common problems

during MSM estimation.

3.1 The PyEMMA workflow
In short, the workflow for a full analysis of an MD dataset

might consist of,

• extracting molecular features from the raw data (01),
• transforming those features into a suitable, low dimen-
sional subspace (02),

• discretizing the low dimensional subsets into a state
decomposition (02),

• estimating a maximum likelihood or Bayesian MSM

from the discrete trajectories and performing valida-

tion tests (03),

• analyzing the stationary and kinetic properties of the
MSM (04),

• finding metastable macrostates and applying transition
path theory (TPT) to identify the pathways of conforma-

tional change (05),

• computing expectation values for experimental observ-
ables (06), and

• coarse-graining the MSM using a hidden Markov model
approach (07).

For the remainder of this manuscript we will walk through

the first notebook (00). In notebook 00 we analyze a dataset

of the Trp-Leu-Ala-Leu-Leu pentapeptide (Fig. 2a), consisting

of 25 independent MD trajectories conducted in implicit sol-

vent with frames saved at an interval of 0.1 ns. We present the

results obtained in the notebook, thereby providing an exam-

ple of how results generated using PyEMMA can be integrated
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into research publications. The figures that will be displayed

in the following are created in the showcase notebook (00)

and can be easily reproduced.

3.2 Feature selection
In Markov state modeling our objective is to model the slow

dynamics of a molecular process. In order to approximate

the slow dynamics in a statistically efficient manner, a lower

dimensional representation of our simulation data is neces-

sary. However, the features (e.g. torsion angles, distances

or contacts) which best represent the slow dynamical modes

of a given molecular system are unknown a priori [39]. For-

tunately, the variational principle of conformational dynam-

ics [34, 40] and the more general variational approach for

Markov processes (VAMP) [35] provide a systematic means to

quantitatively compare multiple representations of the simu-

lation data. In particular, we can use a scalar score obtained

using VAMP to directly compare the ability of certain features

to capture slow dynamical modes in a particular molecular

system.

Here, we utilize the VAMP-2 score, which maximizes the

kinetic variance contained in the features [28]. We should

always evaluate the score in a cross-validated manner to en-

sure that we neither include too few features (under-fitting)

or too many features (over-fitting) [35, 36]. To choose among

three different molecular features relevant to protein struc-

ture, we compute the (cross-validated) VAMP-2 score at a lag

time of 0.5 ns and find that backbone torsions contain more

kinetic variance than the backbone’s heavy atom positions or

the distances between them (Fig. 2b).

We note that deep learning approaches for feature se-

lection have recently been developed that may eventually

replace the feature selection step [41–43].

3.3 Dimensionality reduction
Subsequently, we perform TICA [25, 28] in order to reduce the

dimension from the feature space, which typically contains

many degrees of freedom, to a lower dimensional space that

can be discretized with higher resolution and better statistical

efficiency. TICA is a special case of the variational princi-

ple [34, 40] and is designed to find a projection preserving

the long-timescale dynamics in the dataset. Here, performing

TICA on the backbone torsions at lag time 0.5 ns yields a four

dimensional subspace using a 95% kinetic variance cutoff

(note that we perform a cos / sin-transformation of the tor-

sions before TICA in order to preserve their periodicity). The

sample density projected onto the first two independent com-

ponents (ICs) exhibits several maxima (Fig. 2c). Discrete jumps

between the maxima can be observed by visualizing the trans-

formation of the first trajectory into these ICs (Fig. 2d). We
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Figure 2. Exemplary analysis of the conformational dynamics of a
pentapeptide backbone: (a) The Trp-Leu-Ala-Leu-Leu pentapeptide

in licorice representation [38]. (b) The VAMP-2 score indicates which

of the tested featurizations contains the highest kinetic variance.

(c) The sample density projected onto the first two time-lagged in-

dependent components (ICs) at lag time τ = 0.5 ns shows multiple

density maxima and (d) the time series of the first two ICs show rare

transition events. (e) The convergence behavior of the first four im-

plied timescales indicates that a lag time of τ = 0.5 ns is suitable

for MSM estimation. (f) A Chapman-Kolmogorov test shows that an

MSM estimated at lag time τ = 0.5 ns under the assumption of five

metastable states accurately predicts the kinetic behavior on longer

timescales. In (e) and (f), the shaded areas indicate 95% confidence

intervals computed with a Bayesian sampling procedure.
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thus assume that our TICA-transformed backbone torsion

features describe one or more metastable processes.

3.4 Discretization
TICA yields a representation of our molecular simulation data

with a reduced dimensionality, which can greatly facilitate

the decomposition of our system into the discrete Markovian

states necessary for MSM estimation. Here, we use the k-
means algorithm to segment the four dimensional TICA space

into k = 75 cluster centers. The number of cluster centers
has been chosen to optimize the VAMP-2 score in a manner

identical to how the feature selection was carried out above,

which is shown in the showcase notebook (00).

3.5 MSM estimation and validation
When estimating an MSM it is critical to choose a lag time, τ ,

which is long enough to ensure Markovian dynamics in our

reduced space, but short enough to resolve the dynamics

in which we are interested. Plotting the implied timescales

(ITS) as a function of τ can be a helpful diagnostic when se-

lecting the MSM lag time [44]. The ITS ti approximates the
decorrelation time of the ith process and is computed from
the eigenvalues λi of the MSM transition matrix via

ti =
–τ

ln |λi(τ )|
. (1)

A necessary condition for Markovian dynamics in our reduced

space is that the ITS are approximately constant as a func-

tion of τ ; accordingly, we chose the smallest possible τ which

fulfills this condition within the model uncertainty. The uncer-

tainty bounds are computed using a Bayesian scheme [14, 21]

with 100 samples. In our example, we find that the four slow-

est ITS converge quickly and are constant within a 95% con-

fidence interval for lag times above 0.5 ns (Fig. 2e). Using

this lag time we can now estimate a (Bayesian) MSM with

τ = 0.5 ns.

To test the validity of our MSM we perform a Chapman-

Kolmogorov (CK) test. The CK test compares the right and the

left side of the Chapman-Kolmogorov equation

T (kτ ) = Tk(τ ) (2)

where T is the MSM transition matrix. The left-hand side of
the equation corresponds to an MSM estimated at lag time

kτ , where k is an integer larger than 1, whereas the right-
hand side of the equation is our estimated MSM to the kth
power. Visualizing the full transition probability matrix T is
difficult; we therefore coarse-grain T into a smaller number of
metastable states before performing the test. An appropriate

number of metastable states can be chosen by identifying

a relatively large gap in the ITS plot. For this analysis, we

chose 5 metastable states. The CK test confirms that this

is an appropriate choice and shows that the MSM we have

estimated at lag time τ = 0.5 ns indeed predicts the long-

timescale behavior of our system within error (Fig. 2f).

3.6 Analyzing the MSM
We can now directly extract several thermodynamic and ki-

netic properties from the estimated and validated model. An

example of the former is the free energy surface in the projec-

tion onto the first two TICA components (Fig. 3a) reweighted

by the MSM stationary distribution.

A spectral clustering using the PCCA++ algorithm [45–47]

allows us to coarse-grain the 75 k-means microstates into
five metastable macrostates (Fig. 3b) Si, i = 1, . . . , 5, for which
we then approximate the stationary probabilities and relative

free energies (defined up to an additive constant)

macrostate Si πSi GSi /kBT
S1 0.004 5.567

S2 0.014 4.293

S3 0.021 3.841

S4 0.021 3.875

S5 0.940 0.062

using the relation

GSi = –kBT ln
∑
j∈Si

πj, (3)

where πj denotes the MSM stationary weight of the jth mi-
crostate.

In order to interpret the slowest relaxation timescales, we

refer to the (right) eigenvectors of the MSM as they contain in-

formation about what configurational changes are happening

and their timescales. The first right eigenvector corresponds

to the stationary process and its eigenvalue is the Perron

eigenvalue 1. The second right eigenvector, however, corre-

sponds to the slowest process (the eigenvector components

are real because of the detailed balance constraint enforced

during MSM estimation). The minimal and maximal compo-

nents of the second right eigenvector indicate the microstates

between which the process shifts probability density. The re-

laxation timescale of this exchange process is exactly the

corresponding implied timescale, which can be computed

from its corresponding eigenvalue using (1). In the projection

onto the first two TICA components, we identify the slowest

MSM process as a probability shift between macrostate S1
and the rest of the system, with macrostates S4 and S5 in
particular (Fig. 3c).

The mean first passage times (MFPTs) out of and into the

macrostate S1 compute to

direction mean / ns std / ns
S1 → S(2,3,4,5) 9.0 ± 1.9

S(2,3,4,5) → S1 2496.4 ± 470.0
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Figure 3. Exemplary analysis of the conformational dynamics of
a pentapeptide backbone: (a) The reweighted free energy surface

projected onto the first two independent components exhibits five

minima which (b) PCCA++ identifies as five metastable states. (c)

The second right eigenvector shows that the slowest process shifts

probability between the least probable state (S1) and the other states,
in particular states (S4, S5), whereas (d) the committor S2 → S4 indi-
cates that states S(1,3,5) act as a transition region between states S2
and S4. (e) The Trp-1 SASA autocorrelation function yields a weak sig-
nal (top) which, however, can be enhanced if the system is prepared

in the nonequilibrium condition S1 (bottom).
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Figure 4. Visualization of the transition paths from S2 to S4:
Metastable states S(1–5) are represented by an ensemble of represen-
tative structures and are arranged along the horizonal axis according

to their committor probabilities. The three main transition pathways

starting from S2 and ending in S4 are depicted by gray arrows with
thickness proportional to the transition flux. The dominant pathway

proceeds through S5.

using the Bayesian MSM.

TPT [29, 30] is a method used to analyze the statistics of

transition pathways. The TPT version of [16] can be conve-

niently applied to the estimated MSM. Here, we compute the

TPT flux between macrostates S2 and S4 (Fig. 3d). The com-
mittor projection onto the first two TICA components shows

that it is constant within the metastable states defined above.

Transition regions (macrostates S(1,3,5)) can be identified by
committor values ≈ 1

2
.

The transition network can be additionally visualized by

plotting representative structures of the fivemetastable states

S(1–5) according to their committor probability (Fig. 4). It is
easy to see from this depiction that the dominant pathway

from S2 to S4 proceeds through S5.

3.7 Connecting the MSM with experimental
data

MSMs can also be analyzed in the context of experimental ob-

servables. Connecting MSM analysis to experimental data can

both serve as an accuracy test of our MSM as well as provide a

mechanistic interpretation of observed experimental signals.

Since we have both the stationary and dynamic properties of

the molecular system encoded in the MSM transition proba-

bility matrix, we can compute observables that involve both

stationary ensemble averages as well as correlation functions.

As an example, here we look at the fluorescence corre-

lation of Trp-1, since this terminal tryptophan is a realistic

experimental observable for our pentapeptide system. In

order to compute the fluorescence correlation functions we

require a microscopic, instantaneous value of the tryptophan

fluorescence for each of the original 75 MSM microstates.

To approximate the fluorescence signal in our pentapeptide

system, we use the mdtraj library [48] to compute the solvent
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accessible surface area (SASA) of Trp-1. Now that we have

an approximation of the fluorescence in each of our MSM

states, we can use PyEMMA to compute the fluorescence au-

tocorrelation function (ACF) from our MSM (3e, upper). Note

how the computed ACF has a very small response (i.e., signal

amplitude).

Using PyEMMA, we can simulate the relaxation of an ob-

servable if we had prepared ourmolecular system in a nonequi-

librium initial condition. The experimental counterpart of

such a prediction could be a temperature or pressure jump ex-

periment or a stopped flow assay. To illustrate such an experi-

ment, we initialize our molecular ensemble as the metastable

distribution of S1 and follow the predicted fluorescence sig-
nal as it relaxes to equilibrium (3e, lower). We see that the

predicted relaxation signal has a much larger amplitude for

the nonequilibrium initialization, making it more likely to be

experimentally measurable.

3.8 Summary
In this section, we have summarized how to conduct an MSM-

based analysis of biomolecular dynamics data using PyEMMA.

For the full analysis, please refer to the first notebook (00).

All notebooks as well as detailed installation instructions are

available on github.com/markovmodel/pyemma_tutorials.

3.9 Advanced Methods
While the present tutorial is intended to cover Markov State

Modeling 101, we encourage the user to explore other, more

recent extensions of themethodology. Multi-ensembleMarkov

models (MEMMs) [49, 50] can be used to combine unbiased

and biased simulations so as to probe kinetics of very rare

events [51]; MEMMs are implemented in PyEMMA. Recently,

there have been steps towards replacing the traditional user-

directed pipeline (involving featurizing, reducing dimension,

discretizing, MSM estimation and coarse-graining) by a sin-

gle end-to-end deep learning method such as VAMPnets [41].

Other deep learning methods for performing the dimension

reduction [42], finding reaction coordinates for enhanced

sampling [43, 52, 53], and generative MSMs [54] have been

put forward and are likely to spawn an active field of research

on its own right. Implementations of some of these meth-

ods are available or are under development in the deeptime

package github.com/markovmodel/deeptime.
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