Multi-Ensemble Markov Models and
 䘽 TRAM

Fabian Paul
19-Feb-2020

Main challenges in molecular dynamics simulation

Molecular dynamics simulation of biomolecules is difficult because:

1. molecular systems are high-dimensional
2. their dynamics are stochastic + biologically interesting events are rare

Reachable time scales in MD simulation

Reachable time scales in MD simulation

important biological processes
aggregated length in multiple trajectories
length of a single trajectory

Reachable time scales in MD simulation

Outline

- Importance sampling
- Simulation types
- Boltzmann reweighting
- Umbrella sampling
- multi-temperature simulation
- accelerated MD
- Analysis methods
- Weighted Histogram Analysis method + its problems
- Multi Ensemble Markov Models and discrete TRAM

Importance sampling ${ }^{[1]}$ (Boltzmann reweighting)

- is a method for systems that are "hard" to simulate.

[1] Kahn, Marshall, J. Oper. Res. Soc. Am. 1, 263 (1953) (or earlier by others)

Importance sampling ${ }^{[1]}$ (Boltzmann reweighting)

- is a method for systems that are "hard" to simulate.
- introduces a biased energy model $U^{(1)}$ that is "easier" to simulate.

[1] Kahn, Marshall, J. Oper. Res. Soc. Am. 1, 263 (1953) (or earlier by others)

Importance sampling ${ }^{[1]}$ (Boltzmann reweighting)

- is a method for systems that are "hard" to simulate.
- introduces a biased energy model $U^{(1)}$ that is "easier" to simulate.
- allows to compute observables of the equilibrium distribution that belongs to the physical model $U^{(0)}$ using Boltzmann reweighting.

Importance sampling ${ }^{[1]}$ (Boltzmann reweighting)

- is a method for systems that are "hard" to simulate.
- introduces a biased energy model $U^{(1)}$ that is "easier" to simulate.
- allows to compute observables of the equilibrium distribution that belongs to the physical model $U^{(0)}$ using Boltzmann reweighting.
- (1) works for estimating equilibrium expectations, but not for rates*.

$$
\begin{aligned}
& \langle O\rangle^{(0)}=\int O(x) e^{-\beta U^{(0)}(x)+\beta F^{(0)}} \mathrm{d} x \approx \frac{1}{N} \sum_{n}^{N} O\left(x_{n}\right) \\
& \text { where } \boldsymbol{x}_{n} \sim p^{(0)}(\boldsymbol{x}) \\
& \langle O\rangle^{(0)}=\int O(x) e^{-\beta U^{(1)}(x)+\beta F^{(1)}} \frac{e^{-\beta U^{(0)}(x)+\beta F^{(0)}}}{e^{-\beta U^{(1)}(x)+\beta F^{(1)}}} \mathrm{d} x \\
& \approx \frac{1}{N} \sum_{n}^{N} O\left(x_{n}\right) e^{-\beta U^{(0)}(x)+\beta U^{(1)}(x)+\beta F^{(0)}-\beta F^{(1)}} \\
& \text { where } \boldsymbol{x}_{n} \sim p^{(1)}(\boldsymbol{x})
\end{aligned}
$$

- $U^{(0)}(x)=$ the unbiased or the physical energy
- $U^{(1)}(x)=$ the biased energy
- $U_{\text {bias }}^{(1)}(x)=U^{(1)}(x)-U^{(0)}(x)=$ the bias_energy

Boltzmann reweighting / importance sampling

- $U^{(0)}(x)=$ the unbiased or the physical energy
- $U^{(1)}(x)=$ the biased energy
- $U_{\text {bias }}^{(1)}(x)=U^{(1)}(x)-U^{(0)}(x)=$ the bias energy

What is the optimal bias?

For a low-dimensional system, it would be efficient to sample from a flat energy landscape:

$$
U^{(1)}(x)=0
$$

Allows good sampling of the minima and the barrier.

$$
\Rightarrow U_{\text {bias }}^{(1)}(x)=-U^{(0)}(x)
$$

Importance sampling in high dimensions

- Sampling uniformly is not possible in high dimensional space like the conformational space.

Importance sampling in high dimensions

- Introduce an "order parameter" that connects the relevant minima in the energy landscape.

order parameter or reaction coordinate

Importance sampling in high dimensions

- Sample uniformly along the order parameter.

order parameter or reaction coordinate
$P\left(\xi^{*}\right) \propto \int \delta\left(\xi(x)-\xi^{*}\right) e^{-\beta U(x)} \mathrm{d} x$

Importance sampling in high dimensions

- The ideal bias energy would be $k_{B} T \log P(\xi)$ (minus the potential of mean force)
- Problem: computing $P(\xi)$ requires sampling from the unbiased distribution!

$$
P\left(\xi^{*}\right) \propto \int \delta\left(\xi(x)-\xi^{*}\right) e^{-\beta U(x)} \mathrm{d} x
$$

order parameter or reaction coordinate

Umbrella sampling

- The ideal bias energy would be $k_{B} T \log P(\xi)$
- Problem: computing $P(\xi)$ requires sampling from the unbiased distribution!
- Instead of simulating with the ideal bias $k_{B} T \log P(\xi)$, we select a suboptimal but flexible form of the bias. \rightarrow umbrella sampling
- Use K different bias potentials that jointly allow uniform sampling.

biased potentials

$$
U_{0}(x)+U_{\text {bias }}^{(k)}(x)
$$

bias potentials
$U_{\text {bias }}^{(k)}(x)$

probability distributions

$$
P_{\text {biased }}(x) \propto e^{-\beta\left[U^{(0)}(x)+U_{\text {bias }}^{(k)}(x)\right]}
$$

Multi temperature simulation

- Multi-temperature simulations is another way of approximately producing a flat biased distribution.

biased potentials $\frac{\beta^{(k)}}{\beta^{(0)}} U^{(0)}(x)$

"bias potentials"
$\frac{\beta^{(k)}-\beta^{(0)}}{\beta^{(0)}} U^{(0)}(x)$

probability distributions
$P_{\text {biased }}(x) \propto e^{-\beta^{(k)} U^{(0)}(x)}$
- Idea has to taken with a grain of salt: order parameter and the minima that it connects are assumed to stay the same for all temperatures.

A bit of notation...

- Introduce "dimension-less bias"

$$
b^{(k)}(x) \equiv \beta^{(k)} U^{(k)}(x)-\beta^{(0)} U^{(0)}(x)
$$

by picking the ensemble 0 as the reference ensemble.

- Assume that the energies in the reference ensemble are shifted, such that its Boltzmann distribution is normalized $\beta^{(0)} F^{(0)}=0$.
- Introduce the log partition function $f^{(k)}=\beta^{(k)} F^{(k)}$

Then the reweighting factors become

WHAM

Weighted Histogram Analysis Method

The MD simulation gives us realizations or samples. How do we find probabilities?

Discretize the order parameter into a number of bins.
For every individual bin, we can do Boltzmann reweighting between ensembles.

$$
\pi_{i}^{(k)}=\frac{\pi_{i} \exp \left[-b^{(k)}(i)\right]}{Z^{(k)}} \quad Z^{(k)}=\sum_{i} \pi_{i} \exp \left[-b^{(k)}(i)\right]
$$

where we have assumed that bias energy is constant over each bin.
But how to we find π_{i} ?
Optimize likelihood: $L_{\mathrm{WHAM}}\left(\pi_{i}^{(k)}\right)=\prod_{k} \prod_{i}\left(\pi_{i}^{(k)}\right)^{N_{i}^{(k)}} \quad$ (see next slide)

Maximum likelihood estimation

Start from basic definition of conditional probability:

$$
\begin{aligned}
\operatorname{Pr}(\text { data }, \text { model }) & =\operatorname{Pr}(\text { data } \mid \text { model }) \cdot \operatorname{Pr}(\text { model }) \\
& =\operatorname{Pr}(\text { model } \mid \text { data }) \cdot \operatorname{Pr}(\text { data })
\end{aligned}
$$

$\max _{\text {models }} \underset{\text { posterior }}{ } \operatorname{Pr}($ model \mid data $)=\underset{\uparrow}{\operatorname{Pr}(\text { data } \mid \text { model })} \frac{\operatorname{Pr}(\text { model })}{\operatorname{Pr}(\text { data })}$
Because we don't know better: $\operatorname{Pr}($ model $)=$ const
Compute:

$$
\max _{\text {models }} \operatorname{Pr}(\text { data I model })
$$

Likelihood for WHAM

Likelihood:

$$
L_{\mathrm{WHAM}}=\Pi_{k} \Pi_{i}\left(\pi_{i}^{(k)}\right)^{N_{i}^{(k)}}
$$

Example: set of 5 samples $\{1,2,3,3,2\}$ (index of the bin for 5 samples) form simulation with umbrella 1

$$
\operatorname{Pr}(\{1,2,3,3,2\})=\pi_{1}^{(1)} \pi_{2}^{(1)} \pi_{3}^{(1)} \pi_{3}^{(1)} \pi_{2}^{(1)}=\left(\pi_{1}^{(1)}\right)^{1}\left(\pi_{2}^{(1)}\right)^{2}\left(\pi_{3}^{(1)}\right)^{2}
$$

All simulations and all samples are statistically independent. Inserting the Boltzmann reweighting relation into $L_{\text {WHAM }}$ gives:

$$
L\left(\pi_{1}, \ldots, \pi_{n}\right)=\prod_{k} \prod_{i}\left(\frac{\pi_{i} \exp \left[-b^{(k)}(i)\right]}{\sum_{j} \pi_{j} \exp \left[-b^{(k)}(j)\right]}\right)^{N_{i}^{(k)}}
$$

with the data $N_{i}^{(k)}, \exp \left[-b^{(k)}(i)\right]$ and the model parameters π_{i}. Note: can make bins so small s. t. they contain only one $x . i \longrightarrow x$.

WHAM workflow

Computing the bias energies

A closer look at the anatomy of $b^{(k)}(x)$:
in general multiple simulation runs (independent trajectories)

value of the bias energy

of a conformation
evaluated in all ensembles
not only in the ensemble in which x was generated

- This is 3-D data structure.
- Since the trajectories might have different lengths this is a jagged/ragged array and not a tensor. In PyEmma it's a list of 2-D numpy arrays:

```
btrajs = [
    np.array([[0.0, ...], [1.2, ...]]),
    np.array([[0.0, ...], [4.2, ...]]),
]
```


Computing the bias energies

Example: Umbrella sampling

- All temperatures are the same

$$
\beta^{(k)}=\beta=1 / k_{B} T=1 /(0.00198 \mathrm{kcal} / \mathrm{mol} \mathrm{~K} \cdot 300 \mathrm{~K})
$$

- The bias is a quadratic function of an order parameter $\xi(x)$

$$
U^{(k)}(x)=\frac{1}{2} \kappa^{(k)}\left(\xi(x)-\xi_{\text {center }}^{(k)}\right)^{2}
$$

with the spring constants $\kappa^{(k)}$ and rest positions $\xi_{\text {center }}^{(k)}$.

```
btrajs = []
for n in range(N_trajectories):
    b = np.zeros((N_frames[n], N_ensembles))
    for i in range(N_frames[n]):
        xi = compute_order_parameter(md_traj[n][i, :])
        for k in range(N_ensembles):
            b[i, k] = 0.5*kappa[k]*(xi-center[k])**2
    btrajs.append(b)
```


Computing the bias energies

Working with saved (pre-computed) order parameters:

```
btrajs = []
for n in range(N_trajectories):
    b = np.zeros((N_frames[n], N_ensembles))
    order_parameter = np.loadtxt('order_parameter_simulation_%d.dat'%n)
    for i in range(N_frames[n]):
        xi = order_parameter[i]
        for k in range(N_ensembles):
            b[i, k] = 0.5*kappa[k]*(xi-center[k])**2
    btrajs.append(b)
```


NOT computing the bias energies

pyemma. thermo.estimate_umbrella_sampling(us_trajs, us_dtrajs, us_centers, us_force_constants, md_trajs=None, md_dtrajs=None, $k T=$ None, maxiter $=10000$, maxerr $=1 e-15$, save_convergence_info $=0$, estimator='wham', lag=1, dt_traj='1 step', init=None, init_maxiter=10000, init_maxerr=1e-08, width=None, **kwargs)

This function acts as a wrapper for $\operatorname{tram}()$, dtram(), mbar(), and wham() and handles the calculation of bias energies (bias) and thermodynamic state trajectories (ttrajs) when the data comes from umbrella sampling and (optional) unbiased simulations.

	Parameters:	us_trajs
list of N arrays, each of shape $\left(T_{-} i, d\right)$ - List of arrays, each having $T_{-} i$		
order parameter	rows, one for each time step, and d columns where d is the dimensionality of the	
subspace in which umbrella sampling was applied. Often $d=1$, and thus us_trajs will		
trajectories	be a list of 1d-arrays.	

- us_dtrajs (list of N int arrays, each of shape ($T_{-} i$,) - The integers are indexes in 0 , ..., $\mathrm{n}-1$ enumerating the n discrete states or the bins the umbrella sampling trajectory is in at any time.
- us_centers (list of N floats or d-dimensional arrays of floats) - List or array of N center positions. Each position must be a d-dimensional vector. For 1d umbrella sampling, one can simply pass a list of centers, e.g. $[-5.0,-4.0,-3.0, \ldots$.$] .$
- us_force_constants (list of N floats or d - or dxd-dimensional arrays of floats) - The force constants used in the umbrellas, unit-less (e.g. kT per squared length unit). For multidimensional umbrella sampling, the force matrix must be used.
- Pyemma example

Combining free energy calculations with MSMs: Multi Ensemble Markov Models

Problems of Umbrella sampling: slow orthogonal degrees of freedom

Remember the WHAM likelihood:

$$
L_{\mathrm{WHAM}}=\prod_{k} \prod_{i}\left(\pi_{i}^{(k)}\right)^{N_{i}^{(k)}}
$$

Second product means that samples are drawn from the equilibrium distribution $\pi_{i}^{(k)}$.

Problems of Umbrella sampling: slow orthogonal degrees of freedom

In the energy landscape above, motion along x_{\perp} can be highly autocorrelated. So the assumption of independent samples may be wrong. \rightarrow systematic error

Since we know that MSMs can be used to compute free energies reliably form correlated data, can't we just somehow build an MSM along x_{\perp} ?

MEMM

Multi Ensemble Markov Model $T_{i j}^{(k)}$

$$
\begin{gathered}
\left(\begin{array}{ccc}
T_{11}^{(1)} & \cdots & T_{1 n}^{(1)} \\
\vdots & \ddots & \vdots \\
T_{n 1}^{(1)} & \cdots & T_{11}^{(1)}
\end{array}\right) \\
\left(\begin{array}{ccc}
T_{11}^{(2)} & \cdots & T_{1 n}^{(2)} \\
\vdots & \ddots & \vdots \\
T_{n 1}^{(2)} & \cdots & T_{11}^{(2)}
\end{array}\right) \\
\vdots \\
\\
\left(\begin{array}{ccc}
T_{11}^{(K)} & \cdots & T_{1 n}^{(K)} \\
\vdots & \ddots & \vdots \\
T_{n 1}^{(K)} & \cdots & T_{11}^{(K)}
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
\text { index } k \quad= & \text { number of the Umbrella potential } \\
= & \text { number of temperature in multi-temperature } \\
& \text { simulations } \\
\text { indices } i, j= & \text { number of the discrete Markov state, } \\
& \text { i.e. bin number along } x_{\perp} \\
& \text { or any other sensible state discretization }
\end{aligned}
$$

2×2 example:
Ensemble 2

Ensemble 1

MEMM

Multi Ensemble Markov Model $T_{i j}^{(k)}$

- How the individual MSMs in the MEMM are coupled together?
- Part 1 of the answer:

Boltzmann reweighting of stationary distributions (like in WHAM)
$\pi_{i}^{(k)}=\frac{\pi_{i} \exp \left[-b^{(k)}(i)\right]}{z^{(k)}}$

$$
Z^{(k)}=\sum_{i} \pi_{i} \exp \left[-b^{(k)}(i)\right]
$$

- Part 2 of the answer:
$\pi_{i}^{(k)}$ is the stationary distribution of $T_{i j}^{(k)}$.

We even require a stronger condition that $\mathbf{T}^{(k)}$ is reversible with respect to $\boldsymbol{\pi}^{(k)}$.

$$
\pi_{i}^{(k)} T_{i j}^{(k)}=\pi_{j}^{(k)} T_{j i}^{(k)}
$$

reversibility $=$ detailed balance
$\operatorname{Pr}(s(t+\tau)=i$ and $s(t)=j)=\operatorname{Pr}\left(s(t+\tau)=\int\right.$ and $\left.s(t)=i\right)$

(d)TRAM

(discrete) Transition-based Reweighting Analysis Method

- How is the MEMM estimated?
- Reminder - estimation of MEMs:

Likelihood for an MSM: $\quad L_{\mathrm{MSM}}=\prod_{i} \prod_{j}\left(T_{i j}\right)^{C_{i j}}$
Consider example trajectory $(1 \rightarrow 2 \rightarrow 2 \rightarrow 1 \rightarrow 2)$

$$
\begin{gathered}
\operatorname{Pr}(1 \rightarrow 2 \rightarrow 2 \rightarrow 1 \rightarrow 2)=\operatorname{Pr}(1) \cdot T_{12} \cdot T_{22} \cdot T_{21} \cdot T_{12} \\
\propto\left(T_{11}\right)^{0}\left(T_{12}\right)^{2}\left(T_{22}\right)^{1}\left(T_{21}\right)^{1} \\
=\left(T_{11}\right)^{C_{11}}\left(T_{12}\right)^{C_{12}}\left(T_{22}\right)^{C_{22}}\left(T_{21}\right)^{C_{21}} \\
=\prod_{i=1}^{2} \prod_{j=1}^{2}\left(T_{i j}\right)^{C_{i j}}
\end{gathered}
$$

(d)TRAM

(discrete) Transition-based Reweighting Analysis Method

- How is the MEMM estimated?

Basically an MEMM is just a collection of MSMs.

$$
L_{\mathrm{MEMM}}\left(\mathbf{T}^{(1)}, \ldots, \mathbf{T}^{(K)}\right)=\prod_{k} L_{\mathrm{MSM}}\left(\mathbf{T}^{(k)}\right)
$$

Inserting gives:

$$
L_{\mathrm{MEMM}}=\prod_{k} \prod_{i} \prod_{j}\left(T_{i j}^{(k)}\right)^{C_{i j}^{(k)}}
$$

Maximize $L_{\text {MEMM }}$ under the constraints:

- $\pi_{i}^{(k)} T_{i j}^{(k)}=\pi_{j}^{(k)} T_{j i}^{(k)}$
- $\quad \sum_{j} T_{i j}^{(k)}=1$
- $\pi_{i}^{(k)}=\frac{\pi_{i} \exp \left[-b^{(k)}(i)\right]}{\sum_{j} \pi_{j} \exp \left[-b^{(k)}(j)\right]}$
- $T_{i j}^{(k)} \geq 0$

(d)TRAM: workflow

probabilistic model:

$$
L=\prod_{k} \prod_{i} \prod_{j}\left(T_{i j}^{(k)}\right)^{c_{i j}^{(k)}}
$$

$$
\pi_{i} \exp \left[-b^{(k)}(i)\right] T_{i j}^{(k)}=\pi_{j} \exp \left[-b^{(k)}(j)\right] T_{j i}^{(k)}
$$

Optimize model parameters π and T.

kinetic probabilities (rates) $T_{i j}^{(k)}$

Advantages of using (d)TRAM

- Better estimation of free energies along the unbiased orthogonal degrees of freedom.

- There is no initial equilibration transient where the simulation have to relax to global equilibrium.
- Smaller de-correlation time (simulation time until one gets a new uncorrelated frame). More efficient usage of the data.
- Kinetics and free energies are inseparably related in reversible systems.
- Make use of detailed balance relation $\exp \left[-\beta f_{i}\right] T_{i j}=\exp \left[-\beta f_{j}\right] T_{j i}$

1. Define the Markov states.

0
0

- Kinetics and free energies are inseparably related in reversible systems.
- Make use of detailed balance relation $\exp \left[-\beta f_{i}\right] T_{i j}=\exp \left[-\beta f_{j}\right] T_{j i}$

1. Define the Markov states.
2. Biased simulation provides information about the $\Delta F^{\prime} s$ between the states.

- Kinetics and free energies are inseparably related in reversible systems.
- Make use of detailed balance relation $\exp \left[-\beta f_{i}\right] T_{i j}=\exp \left[-\beta f_{j}\right] T_{j i}$

1. Define the Markov states.
2. Biased simulation provides information about the $\Delta F^{\prime} s$ between the states
3. Unbiased simulations provide information about the transition probabilities in one direction.

- Kinetics and free energies are inseparably related in reversible systems.
- Make use of detailed balance relation $\exp \left[-\beta f_{i}\right] T_{i j}=\exp \left[-\beta f_{j}\right] T_{j i}$

1. Define the Markov states.
2. Biased simulation provides information about the $\Delta F^{\prime} s$ between the states.
3. Unbiased simulations provide information about the transition probabilities in one direction.
 probabilities, completing the model.

Real-world applications

PMI-Mdm2: medically relevant; complex mechanism

- ${ }^{25-109} \mathrm{Mdm} 2$: amino acids $25-109$ of Mdm 2
- Mdm2 is a natural protein.
- Mdm2 is overexpressed (produced in increased quantity) in certain cancer types. This leads to pathogenic interaction of Mdm 2 with other proteins

image: X-ray crystal structure from [1]
- PMI: peptide (12 amino acids) was developed to stop this pathogenic interaction by blocking Mdm2's binding site.
- PMI is unfolded when unbound [2] but folded when bound to Mdm2. [1]
\rightarrow We expect to see a process of coupled folding and binding.

PMI-Mmd2: analysis of the physical data only

- Not a single full unbinding event is contained in the physical data.
- There are many long-lived states, that appear stable on time scales of 1 to $10 \mu \mathrm{~s}$.
- The short $(1 \mu s)$ simulations do not escape these long-lived states.
- \rightarrow No exit probabilities and not stationary weights $(\boldsymbol{\pi})$ can be determined for these states.

$$
\begin{aligned}
& T_{8 j}=? \\
& \pi_{8}=?
\end{aligned}
$$

$$
\begin{aligned}
& T_{6 j}=? \\
& \pi_{6}=?
\end{aligned}
$$

- $\quad \rightarrow$ No useful MSM could be estimated. ${ }_{43}$

PMI-Mmd2: analysis of all simulation data with TRAM

We determine the dissociation constant $K_{d}=[\mathrm{P}]_{\mathrm{eq}}[\mathrm{L}]_{\mathrm{eq}} /[\mathrm{PL}]_{\mathrm{eq}}$ from

- our simulations using TRAM [3]: $0.34 \mathrm{nM}[0.22 \mathrm{nM}, 0.44 \mathrm{nM}]$
- experiment [3]:
3.02 nM [2.41 nM, 3.63 nM]

Agrees within the expected "force field" inaccuracies (factor of 10) [1,2].
We determine the residence time $\boldsymbol{k}_{\mathbf{o f f}}^{-1}$:

Inclusion of biased data drastically reduces the statistical errors.
[1] Best et al., J. Chem. Theory Comput. 10, 5113 (2014)
[2] Rauscher et al., J. Chem. Theory Comput. 11, 5513 (2014) 44
[3] Paul ... Abualrous et al., Nat. Commun, 8, 1095 (2017)

Application 2: Trypsin-Benzamidine

PMI-Mdm2: binding mechanism

Further reading

- Wu, Mey, Rosta, Noé: "Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states", J. Chem. Phys. 141, 214106 (2014)
- Wu, Paul, Wehmeyer, Noé: "Multiensemble Markov models of molecular thermodynamics and kinetics", PNAS 113, E3221-E3230 (2016)
- Paul et al. "Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations" Nat. Commun., 8, 1095 (2017)

Bin-less estimators

MBAR

Multistate Bennet acceptance ratio

$$
L_{\mathrm{WHAM}}=\prod_{k} \prod_{i}\left(\pi_{i}^{(k)}\right)^{N_{i}^{(k)}}
$$

- Width of the bin is never used.

Can put every sample in its own bin.
Then $N_{i}^{(k)}$ is either 1 or 0 .
Ignore all factors of the form $\left(\pi_{i}^{(k)}\right)^{0}=1$.

$$
L_{\mathrm{MBAR}}=\prod_{k} \prod_{x} \mu^{(k)}(x)
$$

- $\mu^{(k)}(x)=\frac{e^{-b^{(k)}(x)}}{Z^{(k)}} \mu^{(\mathrm{ref})}(x)$
instead of $\pi_{i}^{(k)}=\frac{e^{-b^{(k)}(i)}}{Z^{(k)}} \pi_{i}^{(\mathrm{ref})}$
- WHAM: binning -> reweighting
- MBAR: reweighting -> optional binning (for computing probabilities)

Bin-less TRAM

- How to combine the benefits an MSM with bin-less reweighting?
- For WHAM->MBAR we let go the bin-size to zero.
- For dTRAM->TRAM this doesn't work. MSM with a high number of states are hard to handle.
- Introduce the local equilibrium distribution.

The local equilibrium distribution

$\mu^{(k)}\left(x_{j}\right)$: contribution of the sample x_{j} to the Boltzmann distribution of ensemble k.
$\mu_{i}^{(k)}\left(x_{j}\right)$: contribution of the sample x_{j} to the Boltzmann
 distribution of ensemble k, given that the sample falls into Markov state s_{i}.
$\mathbb{P}(x \mid$ state i and ens. $k)=\frac{\mathbb{P}(x \text { and } x \in \text { state } i \text { and ens. } k)}{\mathbb{P}(\text { state } i \text { and ens. } k)}$

$$
\begin{aligned}
& \Rightarrow \mu_{i}^{(k)}\left(x_{j}\right)=\frac{\mu^{(k)}\left(x_{j}\right) \chi_{i}\left(x_{j}\right)}{z_{i}^{(k)}} \\
& =\frac{\mu\left(x_{j}\right) \exp \left[-b^{(k)}\left(x_{j}\right)\right] \chi_{i}\left(x_{j}\right)}{z_{i}^{(k)}}
\end{aligned}
$$

Formulation of the TRAM model

Simulation at ensemble k

Formulation of the TRAM model

Simulation at ensemble k

$$
\mathbb{P}\left(s_{t+\tau}^{(k)}=j \mid s_{t}^{(k)}=i\right)=T_{i j}^{(k)}(\text { modeling by MSM })
$$

Formulation of the TRAM model

Formulation of the TRAM model

Model for one (whole) trajectory:
$L($ traj from ensemble $k)=\mu_{s(0)}^{(k)} \cdot T_{s(0) s(1)}^{(k)} \cdot \mu_{s(1)}^{(k)} \cdots T_{s(N-1) s(N)}^{(k)} \cdot \mu_{s(N)}^{(k)}$

Rearranging:

$$
L(k)=\prod_{i, j}\left(T_{i j}^{(k)}\right)^{c_{i j}^{(k)}} \cdot \prod_{x \in X^{k}} \mu_{s(x)}^{(k)}
$$

Model for all trajectories from all ensembles:

$$
L=\prod_{k} L(k)
$$

TRAM: workflow

probabilistic model: $L=\prod_{i, j, k}\left(T_{i j}^{(k)}\right)^{c_{i j}^{(k)}} \cdot \prod_{k} \prod_{x \in X^{k}} \frac{e^{-b^{(k)}(x)} \mu(x)}{Z_{s(x)}^{(k)}}$

$$
z_{i}^{(k)} T_{i j}^{(k)}=z_{j}^{(k)} T_{j i}^{(k)}
$$

optimize model parameters T and $\mu($ and $z[\mu])$
stationary probabilities
(thermodynamics)

Relation between the methods

TRAM: strategies for enhanced sampling of kinetics

Model system:

TRAM: strategies for enhanced sampling of kinetics

What is replica exchange?

- sample from generalized ensemble :

$$
p\left(x_{i}, x_{j}, \ldots, x_{k}\right)=\frac{\mathrm{e}^{-\beta^{(0)} U^{(0)}\left(x_{i}\right)}}{Z^{(0)}} \cdot \frac{\mathrm{e}^{-\beta^{(1)} U^{(1)}\left(x_{j}\right)}}{Z^{(1)}} \cdot \ldots \cdot \frac{\mathrm{e}^{-\beta^{(K)} U^{(K)}\left(x_{K}\right)}}{Z^{(K)}}
$$

- accept exchanges with Metropolis criterion

$$
p_{\text {accept }}=\min \left[1, \frac{\mathrm{e}^{-\beta^{(1)} U^{(1)}\left(x_{2}\right)} \mathrm{e}^{-\beta^{(2)} U^{(2)}\left(x_{1}\right)}}{\mathrm{e}^{-\beta^{(1)} U^{(1)}\left(x_{1}\right)} \mathrm{e}^{-\beta^{(2)} U^{(2)}\left(x_{2}\right)}}\right]
$$

with labels updated after an accepted exchange.

The role of HREMD

What is valid input data for TRAM?

Overlap in (d)TRAM

Jo et al, J. Phys. Chem. B 1208733 (2016)

Overlap in (d)TRAM

Jo et al, J. Phys. Chem. B 1208733 (2016)

Overlap of biased distributions

Biased distributions have to overlap!

Diagnostics:

- Post-hoc replica exchange: How many exchanges would have been accepted if the simulation had been carried out with replica exchange between ensembles? How does this number compare to the number of simulated samples?

$$
\text { score }=(N+M) \frac{1}{N M} \sum_{x \in X^{(k)}} \sum_{y \in X^{(l)}} \min \left[1, \frac{e^{-\beta U^{(k)}(x)} e^{-\beta U^{(l)}(y)}}{e^{-\beta U^{(k)}(y)} e^{-\beta U^{(l)}(x)}}\right] \lessgtr 1
$$

- error of the free energies estimated by (M)BAR (equation from [1]). Alternative way to relate the overlap of distributions to the number of samples.
[1] Shirts and Chodera, Statistically optimal analysis of samples from multiple equilibrium states, J. Chem. Phys. 129, 124105 (2008)

Overlap in (d)TRAM

Much of this is based on empirical evidence from numerical examples.

TRAM: combining normal MD with biased MD

probabilistic model: $L=$

$$
z_{i}^{k} T_{i j}^{k}=z_{j}^{k} T_{j i}^{k}
$$

optimize model parameters T and μ (and $\mathrm{z}[\mu]$)

WHAM derivation

$$
\begin{gathered}
\log L=\sum_{i, k} N_{i}^{(k)} \log \pi_{i}^{(k)} \\
=\sum_{i, k} N_{i}^{(k)} \log \left(\frac{\pi_{i} \gamma_{i}^{(k)}}{\sum_{j} \pi_{j} \gamma_{j}^{(k)}}\right) \\
=\sum_{i, k} N_{i}^{(k)} \log \pi_{i} \gamma_{i}^{(k)}-\sum_{i, k} N_{i}^{(k)} \log \sum_{j} \pi_{j} \gamma_{j}^{(k)} \\
=\sum_{i, k} N_{i}^{(k)} \log \pi_{i} \gamma_{i}^{(k)}-\sum_{k} N^{(k)} \log \sum_{j} \pi_{j} \gamma_{j}^{(k)} \\
\frac{\partial L}{\partial \pi_{n}}=\sum_{k} \frac{N_{n}^{(k)}}{\pi_{n} \gamma_{n}^{(k)} \gamma_{n}^{(k)}-\sum_{k} \frac{N_{k}^{(k)} \gamma_{n}^{(k)}}{\sum_{j} \pi_{j} \gamma_{j}^{(k)}}=0} \\
\frac{1}{\pi_{n}} \sum_{k} N_{n}^{(k)}=\sum_{k} \frac{N^{(k)} \gamma_{n}^{(k)}}{\sum_{j} \pi_{j} \gamma_{j}^{(k)}} \\
\pi_{n}=\frac{N_{n}}{\sum_{k} \frac{N^{(k)} \gamma_{n}^{(k)}}{\sum_{j} \pi_{j} \gamma_{j}^{(k)}}}
\end{gathered}
$$

(d)TRAM: solution

update equations:

$$
\begin{gathered}
\pi_{i}^{\text {new }}=\frac{\sum_{j, k} c_{j i}^{(k)}}{\sum_{l, j} \frac{\left(c_{i j}^{(l)}+c_{j i}^{(l)}\right) \gamma_{i}^{(l)} v_{j}^{(l)}}{\gamma_{i}^{(l)} \pi_{i} v_{j}^{(l)}+\gamma_{j}^{(l)} \pi_{j} v_{i}^{(l)}}} \\
v_{i}^{(k), \text { new }}=v_{i}^{(k)} \sum_{j} \frac{\left(c_{i j}^{(k)}+c_{j i}^{(k)}\right) \gamma_{j}^{(k)} \pi_{j}^{(k)} \pi_{i} v_{j}^{(k)}+\gamma_{j}^{(k)} \pi_{j} v_{i}^{(k)}}{}
\end{gathered}
$$

transition matrix:

$$
T_{i j}^{(k)}=\frac{\left(c_{i j}^{(k)}+c_{j i}^{(k)}\right) \gamma_{j}^{(k)} \pi_{j}}{\gamma_{i}^{(k)} \pi_{i} v_{j}^{(k)}+\gamma_{j}^{(k)} \pi_{j} v_{i}^{(k)}}
$$

