## Variational Approach to Markov Processes (VAMP)

Identification of molecular order parameters and states from nonreversible MD simulations

Fabian Paul
Computer Tutorial in Markov Modeling
18-FEB-2020

## Recap: the spectral theory of MSMs

- A Markov state model consists of:

1. a set of states $\left\{s_{i}\right\}_{i=1, \ldots N}$
2. (conditional) transition probabilities between these states

$$
T_{i j}=\mathbb{P}(s(t+\tau)=j \mid s(t)=i)
$$



## Markov state models: estimation

- Markov model estimation starts with: grouping of geometrically ${ }^{[1]}$ or kinetically ${ }^{[2]}$ related conformations into clusters or microstates

[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011)
[2] Pérez-Hernández, Paul, et al., J. Chem. Phys. 139, 015102 (2013)


## Markov state models: estimation

- We then assign every conformation in a MD trajectory to a microstate.

| time $t$ | $\tau$ | $2 \tau$ | $3 \tau$ | $4 \tau$ | $5 \tau$ | $6 \tau$ | $7 \tau$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| trajectory |  | 2 |  | 2 | 3 | 2 | 3 |

- We count transitions between microstates and tabulate them in a count matrix $\mathbf{C}$
e. g. $C_{11}=1, C_{12}=1, C_{23}=2, \ldots$
- We estimate the transition probabilities $T_{i j}$ from $\mathbf{C}$.
- Naïve estimator: $\hat{T}_{i j}=C_{i j} / \sum_{k} C_{i k}$
- Maximum-likelihood estimator [1]
[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011)
[2] Pérez-Hernández, Paul, et al., J. Chem. Phys. 139, 015102 (2013)


## The spectrum of a reversible $T$ matrix

- The large eigenvalues of the transition matrix and their corresponding eigenvectors encode the information about the slow molecular processes.
- Flat regions of the eigenvectors allow to identify the metastable states.






## Both MSMs and TICA make use of the same spectral method

The spectral method (working with eigenvalue and eigenvector) is not limited to Markov state models.

- Estimation of MSMs

$$
T(\tau)=\frac{C_{i j}(\tau)}{C_{i}}
$$

- In matrix notation

$$
\mathbf{T}(\tau)=\mathbf{C}(0)^{-1} \mathbf{C}(\tau)
$$

- Eigenvalue problem:

$$
\mathbf{T}(\tau) \mathbf{v}=\lambda \mathbf{v} \Leftrightarrow \mathbf{C}(0)^{-1} \mathbf{C}(\tau) \mathbf{v}=\lambda \mathbf{v} \Leftrightarrow \mathbf{C}(\tau) \mathbf{v}=\lambda \mathbf{C}(0) \mathbf{v}
$$

- The last equation is known as the TICA problem. All equations generalize to the case where $\mathbf{C}(0)$ and $\mathbf{C}(\tau)$ are not count matrices, but correlation matrices.
- The indices $i, j$ don't longer refer to states but to features.


## VAC and VAMP

## Variational approach to conformational dynamics VAC (Rayleigh-Ritz for classical dynamics)

Any autocorrelation is bounded by the system-specific number $\hat{\lambda}$, that is related to the system-specific autocorrelation time $\hat{t}$ by $\hat{\lambda}=e^{-\tau / \hat{t}}$.

$$
\operatorname{acf}(\psi ; \tau):=\frac{\sum_{t}^{T-\tau} \psi(x(t)) \psi(x(t+\tau))}{\sum_{t}^{T-\tau} \psi(x(t)) \psi(x(t))}=\frac{\langle\psi, \mathrm{T} \psi\rangle_{\pi}}{\langle\psi, \psi\rangle_{\pi}} \leq \hat{\lambda}
$$

- The maximum is achieved if $\psi$ is an eigenfunction of T .


## Proof:

Expand $\psi$ in an (orthonormal) eigen-basis of T :

$$
\begin{aligned}
& \psi(x)=\sum_{i} c_{i} \phi_{i}(x), \quad\langle\psi, \hat{\psi}\rangle_{\pi}=\sum_{i} c_{i}^{2}>0 \\
& \langle\psi, \mathrm{~T} \psi\rangle_{\pi}-\hat{\lambda}\langle\psi, \psi\rangle_{\pi}=\sum_{i} c_{i}^{2} \lambda_{i}-\sum_{i} c_{i}^{2} \hat{\lambda}=\sum_{i} c_{i}^{2}\left(\lambda_{i}-\hat{\lambda}\right) \leq 0
\end{aligned}
$$

- If $\hat{\lambda}$ is $\max _{i} \lambda_{i}$ the largest of T's eigenvalues, the inequality holds.
- Result can only be zero if $c_{i}=0$ for $i \neq j$ and $\lambda_{j}=\max _{i} \lambda_{i} \Rightarrow \psi(x) \propto \phi_{\max }(x)$
- Remark: the variational approach generalizes to the optimization of multiple eigenfunctions. $\hat{\lambda}$ is replaced by the sum of the eigenvalues $R_{k}=\sum_{i=1}^{k} \lambda_{i}$


## Interpretation of variational principle

1. Pick some test function $\chi_{\text {test }}(\mathbf{x})$ and pick some test conformations $\mathbf{x}_{i, \text { inital }}$ distributed according to equilibrium distribution $\pi$
good test function

2. Propagate $\mathbf{x}_{i, \text { inital }}$ with the the MD integrator. Call result $\mathbf{x}_{i, \text { final }}$.

3. Correlate $\chi_{\text {test }}\left(\mathbf{x}_{\text {inital }}\right)$ with $\chi_{\text {test }}\left(\mathbf{x}_{\text {final }}\right)$.


## Gradient-based optimization of function parameters

Parameters $\mathbf{p}$ of $\chi_{\text {test }}(\mathbf{x} ; \mathbf{p})$ can be optimized with gradient-based techniques. Make use of the gradient of the VAC or VAMP score, the gradient of the test function and off-the-shelf optimizers such as ADAM or BFGS.


## Reversible dynamics

- In equilibrium, every trajectory is as probable as its time-reversed copy

$$
\begin{gathered}
\mathbb{P}(s(t+\tau)=j \text { and } s(t)=i)=\mathbb{P}(s(t+\tau)=i \text { and } s(t)=j) \\
\mathbb{P}(s(t+\tau)=j \mid s(t)=i) \mathbb{P}_{\text {eq }}(s(t)=i)=\mathbb{P}(s(t+\tau)=i \mid s(t)=j) \mathbb{P}_{\mathrm{eq}}(s(t)=j)
\end{gathered}
$$

$$
\pi_{i} T_{i j}=\pi_{j} T_{j i}
$$

- In mathematician's notation $\left\langle\mathbf{e}_{i}, \mathbf{T} \mathbf{e}_{j}\right\rangle_{\pi}=\left\langle\mathbf{e}_{j}, \mathbf{T e}_{i}\right\rangle_{\pi}$ where $\langle\mathbf{x}, \mathbf{y}\rangle_{\pi}=\sum_{i} x_{i} y_{i} \pi_{i}$
- T is a symmetric matrix w.r.t. to a non-standard scalar product.
- T has real eigenvalues and eigenvectors (linear algebra I).


## The problem with nonreversible systems

- $R_{k}=\sum_{i=1}^{k} \lambda_{i}$ where $\lambda_{i}$ are the true eigenvalues.
- For nonreversible dynamics $\left\langle\mathbf{e}_{i}, \mathbf{T} \mathbf{e}_{j}\right\rangle_{\pi} \neq\left\langle\mathbf{e}_{j}, \mathbf{T} \mathbf{e}_{i}\right\rangle_{\pi}$
- There might not even be a well-defined $\boldsymbol{\pi}$.
- Eigenvalues and eigenvectors will be complex.
- Variational principle doesn't work. $\operatorname{acf}(\psi) \leq \hat{\lambda} \in \mathbb{C}$ makes no sense. One can't order complex numbers on a line.
- Optimization of models not possible
- Feature selection not possible
- Is there any way to fix this? Can we maybe find some other operator that is related to dynamics and that is symmetric?


## A possible solution: VAMP Variational approach to Markov processes

- Introduce the "backward" transition matrix

$$
\mathbf{T}_{\mathrm{b}}:=\mathbf{C}(N)^{-1} \mathbf{C}(-\tau)=\mathbf{C}(N)^{-1} \mathbf{C}^{\top}(\tau)
$$

i.e. estimate MSM/TICA from time-reversed data, where

$$
\begin{aligned}
& C_{i j}(-\tau):=\sum_{t=\tau}^{N} f_{i}(x(t-\tau)) f_{j}(x(t)) \\
& C_{i j}(N):=\sum_{t=\tau}^{N} f_{i}(x(t)) f_{j}(x(t))
\end{aligned}
$$

- Introduce the forward-backward transition matrix $\mathbf{T}_{\mathrm{fb}}:=\mathbf{T T}_{\mathrm{b}}$ and $\mathbf{T}_{\mathrm{bf}}:=\mathrm{T}_{b} \mathbf{T}$
- Can show that $\mathbf{T}_{\mathrm{fb}}$ and $\mathbf{T}_{\mathrm{bf}}$ are symmetric without any reference to a stationary vector (symmetry is built into the matrices).
- Eigenvalues and eigenvectors of $\mathbf{T}_{f b}$ and $\mathbf{T}_{b f}$ are real.
- They fulfill a variational principle $\left\|\mathbf{C}^{-1 / 2}(0) \mathbf{C}(\tau) \mathbf{C}(\mathrm{N})^{-1 / 2}\right\| \leq R$


## Cross-validation

- The model parameters (in this example parameters of the line and steepness of the transition) were optimized for a particular realization of the dynamics.
- Didn't we say that the eigenfunctions and eigenvalues were an intrinsic property of the molecular system?
- So the eigenfunctions should be the same if we repeat the analysis with a second simulation of the same system.



## Cross-validation

- The model parameters (in this example parameters of the line and steepness of the transition) were optimized for a particular realization of the dynamics.
- Didn't we say that the eigenfunctions and eigenvalues were an intrinsic property of the molecular system?
- So the eigenfunctions should be the same if we repeat the analysis with a second simulation of the same system.



## Cross-validation

- Ideally, we want to tell if the solution is robust at a single glance by measuring the robustness with one number.
- The VAMP score or VAC score (also called GRMQ ${ }^{1}$ ) lends itself to this task.
- Keep all the trained model parameters fixed (here the line parameters and the steepness of the transition), plug in new data and recompute the test autocorrelation.
- The test autocorrelation will be lower in general, which means that the original model was fit to noise (overfit).



## Cross-validation

- Reporting a test-score that was computed from independent realizations is the gold standard.
- Independent realizations can be expensive to sample.
- Do the approximate $k$-fold (hold-out) cross-validation.
- Split all data into training set and test sets.
- Optimize the model parameters with the training set and test the parameters with test sets.
- Repeat for $k$ different divisions of the data.

|  | Testdata $\longleftarrow$ Traing data |
| :---: | :---: |
|  |  |
| Heram | $\rightarrow 0000000000000000000$ |
|  | -000000 |

Herationk $\rightarrow 00000000000000000000$
4 All data

- $k$-fold cross-validation can be tricky with highly autocorrelated time series data!

Applications

## Application: feature selection

- variational principle: the higher the score the better
- Compare test scores for different selections of molecular features. Which selection gives best score?

chemical intuition?

rigid body approximation?


## Application: feature selection

NTL9
Best feature $=c=5 \AA$, max. score $=3.83 \pm 0.06$



# Application: ion channel nonequilibrium MD 



Analysis of MD simulation data of the "controversial" direct-knock-on conduction mechanism in the KcsA potassium channel. Ions a constantly inserted at one side of the membrane and deleted at the other side.




## Application: ion channel nonequilibrium MD



By clustering in the VAMP space, we identified 15 different states that differ structurally near the selectivity filter and differ in their conductivity.


## Summary and conclusion

- VAC and VAMP are two variational principles that allow to approximate the true eigenfunctions of the dynamical system (VAC) or its restricted singular functions (VAMP) by using optimization.
- VAMP even works in non-equilibrium settings, if the dynamics is driven by external forces or if the sampling is so limited, that transitions in both the forward and backward directions are not available.
- VAMP can be used for feature selection and to model the slow reaction coordinates with enormously complicated functions (see talk tomorrow).


## From order parameters to states to MSMs

- PCCA = Perron-cluster cluster analysis
- Motivating observation: the set of all MD data projected onto the dominant eigenvectors $\{\mathbf{v}(\mathbf{x}) \mid \mathbf{x} \in$ data $\}$ form a simplex
- In 2-D simplex=triangle In 3-D simplex=tetrahedron


Deuflhard, Weber. Linear Algebra Appl., 398 161, (2005). Weber, Galliat. Tech. Rep. 02-12, KZZ (2002).
(a)

(b)

(c)


## From order parameters to states to MSMs

- I: PCCA only needs the eigenvectors
- II: TICA (and VAMP) provide eigenvectors
- I\&II $\rightarrow$ We can do PCCA in TICA or VAMP space.

Steps of the PCCA algorithm:


1. Find the $\mathrm{N}-1$ most distant points (the vertices) in the N -dimensional eigenspace.
2. Compute barycentric coordinates of every MD frame with respect to the N-1 vertices.


Projections to VAMP space, colored by state





IC 2

Transition network


Ensembles of conformations


Separate into:
last $T-\tau$ time steps

Y
first $T-\tau$ time steps

$$
\begin{aligned}
& \mathbf{K}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y}=\mathbf{C}(0)^{-1} \mathbf{C}(\tau) \\
& \mathbf{K} \mathbf{v}=\lambda \mathbf{v} \Leftrightarrow \mathbf{C}(\tau) \mathbf{v}=\lambda \mathbf{C}(0) \mathbf{v}
\end{aligned}
$$

Do a dimensionality reduction by keeping only the dominant eigenmodes.

VAMP is all about the eigendecomposition of the forward-backward transition matrix

$$
\begin{aligned}
T_{f b}:=T_{f} T_{b} & =C_{00}^{-1} C_{01} C_{11}^{-1} C_{01}^{\top} \\
& =\left(X^{T} X\right)^{-1} X^{\top} Y\left(Y^{\top} Y\right)^{-1} Y^{\top} X
\end{aligned}
$$

For the sake of notational simplicity, I have defined $C_{00}:=X^{T} X, C_{11}:=Y^{T} Y$, and $C_{01}:=X^{T} Y$ without normalization.

Theorem: $T_{f b}$ has a real-valued spectrum.
Proof: Introduce the co-ordinate transformed features $\tilde{X}:=X C_{00}^{-\frac{1}{2}}=X\left(X^{\top} X\right)^{-\frac{1}{2}}$ and $\tilde{Y}:=$ $Y C_{11}^{-\frac{1}{2}}=Y\left(Y^{\top} Y\right)^{-\frac{1}{2}}$. This choice leads to

$$
\begin{aligned}
\tilde{C}_{00} & :=\tilde{X}^{T} \tilde{X}=\mathbb{I} \\
\tilde{C}_{11} & :=\tilde{Y}^{T} \tilde{Y}=\mathbb{I} \\
\tilde{C}_{01} & :=\tilde{X}^{T} \tilde{Y}=C_{00}^{-\frac{1}{2}} C_{01} C_{11}^{-\frac{1}{2}}
\end{aligned}
$$

The new matrix $\tilde{T}_{f b}$ in the new co-ordinates is

$$
\tilde{T}_{f b}:=\tilde{C}_{00}^{-1} \tilde{C}_{01} \tilde{C}_{11}^{-1} \tilde{C}_{10}=\tilde{C}_{01} \tilde{C}_{10}=\tilde{X}^{\top} \tilde{Y} \tilde{Y}^{\top} \tilde{X}
$$

Obviously, this matrix is symmetric. Therefore $\tilde{T}_{f b}$ has a real-valued spectrum.

To complete the proof, one has to show that $\dot{T}_{f b}$ has the same eigenvalues as $T_{f b}$. The eigenvectors of $\tilde{T}_{f b}$ can be easily found from the eigenvectors of $T_{f b}$ by a linear transform. Let $v$ be an eigenvector of $\tilde{T}_{f b}$ with the corresponding eigenvalue $\lambda$.

$$
\begin{align*}
\tilde{T}_{f b} v & =\lambda v  \tag{1a}\\
\Leftrightarrow \tilde{C}_{01} \tilde{C}_{10} v & =\lambda v  \tag{1b}\\
\Leftrightarrow C_{00}^{-\frac{1}{2}} C_{01} C_{11}^{-\frac{1}{2}} C_{11}^{-\frac{1}{2}} C_{01}^{\top} C_{00}^{-\frac{1}{2}} v & =\lambda v \tag{1c}
\end{align*}
$$

Set $w:=C_{00}^{-\frac{1}{2}} v$, then we find from the left hand side of 1 a .

$$
\begin{aligned}
\tilde{T}_{f b} v & =C_{00}^{-\frac{1}{2}} C_{01} C_{11}^{-1} C_{01}^{\top} C_{00}^{-\frac{1}{2}} C_{00}^{\frac{1}{2}} w \\
& =C_{00}^{-\frac{1}{2}} C_{01} C_{11}^{-1} C_{01}^{\top} w \\
& =C_{00}^{\frac{1}{2}} T_{f b} w
\end{aligned}
$$

From the right hand side of 1 a we find

$$
\tilde{T}_{f b} v=\lambda C_{00}^{\frac{1}{2}} w
$$

Equating left and right sides, we get

$$
\begin{aligned}
C_{00}^{\frac{1}{2}} T_{f b} w & =\lambda C_{00}^{\frac{1}{2}} w \\
T_{f b} w & =\lambda w
\end{aligned}
$$

Therefore $w$ is an eigenvector of $T_{f b}$ with the unchanged eigenvalue $\lambda$. Since this this hold for all eigenvectors of $T_{f b}$, this completes the proof.

Markov state models

## MSM theory : propagator and generator

- Langevin equation

$$
\ddot{\boldsymbol{x}}=\boldsymbol{F}(\boldsymbol{x}) / m-\gamma \dot{\boldsymbol{x}}+\sqrt{2 k_{B} T \gamma / m} \boldsymbol{\eta}_{i}(t)
$$

- Fokker-Planck equation

$$
\frac{\partial p(t, \boldsymbol{p}, \boldsymbol{x})}{\partial t}=\left(-\frac{\boldsymbol{p}}{m} \cdot \boldsymbol{\nabla}_{x}+\nabla_{p} \cdot(\gamma \boldsymbol{p}-\boldsymbol{F}(\boldsymbol{x}))+\gamma k_{B} T m \Delta_{p}\right) p(t, \boldsymbol{p}, \boldsymbol{x})
$$

- Propagator (operator) define $\boldsymbol{X}=(\boldsymbol{p}, \boldsymbol{x})$

$$
\begin{gathered}
\mathcal{P}_{\tau}[p(t, .)](\boldsymbol{X})=\exp [\tau A] p(t, .)=p(t+\tau, \boldsymbol{X}) \\
=\int p(t, \mathbf{Y}) p(\mathbf{Y} \rightarrow \mathbf{X} ; \tau) \mathrm{d} Y
\end{gathered}
$$

- Transfer operator
define $p(t, \boldsymbol{X})=u(t, \boldsymbol{X}) p_{B}(\boldsymbol{X})$

$$
\mathcal{T}\left[u_{t} ; \tau\right](\mathbf{X}):=\frac{1}{p_{B}(\mathbf{X})} \int u_{t}(\mathbf{Y}) p_{B}(\mathbf{Y}) p(\mathbf{Y} \rightarrow \mathbf{X} ; \tau) \mathrm{d} Y
$$

$$
\begin{aligned}
& c_{3}=\sqrt{k_{B} T\left(1-c_{1}^{2}\right)}
\end{aligned}
$$

## Stochastic Position Verlet (SPV)

$$
\begin{aligned}
x_{n+1 / 2} & =x_{n}+\delta t M^{-1} p_{n} / 2 \\
p_{n+1} & =c_{1} p_{n}-c_{2} \nabla U\left(x_{n+1 / 2}\right)+c_{3} M^{1 / 2} R_{n+1} \\
x_{n+1} & =x_{n+1 / 2}+\delta t M^{-1} p_{n+1} / 2
\end{aligned}
$$

## The Method of Brunger-Brooks-Karplus (1982) (BBK)

$$
\begin{aligned}
p_{n+1 / 2} & =(1-\delta t \gamma / 2) p_{n}-\delta t \nabla U\left(x_{n}\right) / 2+\sqrt{\delta t k_{B} T \gamma} M^{1 / 2} R_{n} / 2 \\
x_{n+1} & =x_{n}+\delta t M^{-1} p_{n+1 / 2} \\
p_{n+1} & =\left[p_{n+1 / 2}-\delta t \nabla U\left(x_{n+1}\right) / 2+\sqrt{\delta t k_{B} T \gamma} M^{1 / 2} R_{n+1} / 2\right] /(1+\delta t \gamma / 2)
\end{aligned}
$$

## Euler-Maruyama

$$
x_{n+1}=x_{n}-\delta t M^{-1} \nabla U\left(x_{n}\right)+\sqrt{2 k_{B} T_{33} \delta t} M^{-1 / 2} R_{n}
$$

cited from: Leimkuhler, Matthews, Applied Mathematics Research eXpress, 2013, 34 (2013)

## MSM theory : transfer operator

$$
\begin{gathered}
\mathcal{T}\left[u_{t} ; \tau\right](\mathbf{X}):=\frac{1}{p_{B}(\mathbf{X})} \int u_{t}(\mathbf{Y}) p_{B}(\mathbf{Y}) p(\mathbf{Y} \rightarrow \mathbf{X} ; \tau) \mathrm{d} y \\
u_{t+\tau}(\mathbf{X})=\mathcal{T}_{\text {slow }}\left[u_{t} ; \tau\right](\mathbf{X})+\mathcal{J}_{\text {fast }}\left[u_{t} ; \tau\right](\mathbf{X}) \\
\mathcal{J}_{\text {slow }}\left[u_{t} ; \tau\right](\mathbf{X})=\sum_{i} \lambda_{i}(\tau) \psi_{i}(\mathbf{X}) \int \psi_{i}(\mathbf{Y}) p_{B}(\mathbf{Y}) u_{t}(\mathbf{Y}) \mathrm{d} y=\sum_{i} \lambda_{i}(\tau) \psi_{i}(\mathbf{X})\left\langle\psi_{i}, u_{t}\right\rangle_{p_{B}} \\
T_{i j}=\frac{\left\langle\chi_{j}, \mathcal{T}\left[\chi_{i}\right]\right\rangle_{p_{B}}}{\left\langle\chi_{j}, \chi_{i}\right\rangle_{p_{B}}}=\frac{\iint \chi_{i}(\mathbf{x}) p_{B}(\mathbf{Y}) p(\mathbf{Y} \rightarrow \mathbf{X} ; \tau) \chi_{j}(\mathbf{X}) \mathrm{d} x \mathrm{~d} y}{\int \chi_{j}(\mathbf{X}) \chi_{i}(\mathbf{X}) p_{B}(\mathbf{X}) \mathrm{d} y}=\frac{\operatorname{cov}\left(\chi_{j}, \chi_{i} ; \tau\right)}{\operatorname{cov}\left(\chi_{i}, \chi_{i} ; 0\right)}
\end{gathered}
$$

## MSM: spectral properties

 time scales:

$$
\begin{aligned}
& \mathcal{J}_{\text {slow }}\left[u_{t} ; \tau\right](\mathbf{X})=\sum_{i} \lambda_{i}(\tau) \psi_{i}(\mathbf{X})\left\langle\psi_{i}, u_{t}\right\rangle_{p_{B}} \\
& \underbrace{\mathcal{S}_{S} \circ \ldots \circ \mathcal{T}_{S} u_{t}}_{n \text { times }}=\sum_{i} \lambda_{i}^{n}(\tau) \psi_{i}\left\langle\psi_{i}, u_{t}\right\rangle_{p_{B}} \\
& \text { for MSM: }
\end{aligned}
$$

$$
\boldsymbol{p}^{T}(n \tau)=\sum_{i} \lambda_{i}^{n} \boldsymbol{\phi}_{i}\left[\boldsymbol{\psi}_{i} \cdot \boldsymbol{p}(0)\right]
$$

