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Protein 3-D structure and function

• Proteins are biomolecules that carry out their function via their 3-D 
structure, e. g. a receptor binding a molecule to detect a flavor or odor.

• Which functions?

• To function, proteins have to change their 3-D structure with time, e. g.: 
• open ↔ closed (for regulation)
• active ↔ inactive (for information processing, communication)
• assembled ↔ disassembled (for rigidity+motion), …
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Molecular dynamics (MD) simulation

• Experiment cannot resolve all temporal and spatial scales 
simultaneously. Experiments either have
• high spatial resolution but low temporal resolution 

(e. g. cryo-electron microscopy*, X-ray diffraction)
• high temporal resolution but limited spatial information. 

(e. g. single molecule fluorescence resonance energy transfer)
• Molecular dynamics simulation is an important tool that allows to 

observe molecules with simultaneously high temporal and high spatial 
resolution (“virtual microscope”).

* Nobel prize in Chemistry 2017 awarded to Dubochet, Frank, and Henderson for cryo-electron microscopy 4



What is molecular dynamics (MD) simulation?

Molecular dynamics* uses classical mechanics to model molecular 
systems and consists of:
1. Equations of motion for the centers of masses !" of the atoms, 

e. g. Langevin equations
#"!̈" = −'#"!̇" − )"* !+, … , !. + 2123' 4" 5

with standard normally distributed random variates (7")9
2. Molecular potential energy model *(!) ”force field” that

consists of energy terms for bonded and non-bonded interactions.

* Nobel prize in Chemistry 2013 awarded to Karplus, Levitt and Warshel for development of MD 5



Reachable time scales in MD simulation
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100 ns / day / GPU*
e.g. Amber, AceMD, OpenMM

10 μs / day / Anton IRate

100 GPUs 1 Anton I

Throughput
Cost

100 traj. of 100 ns / day
10 μs / day
100.000 USD

1 traj. of 10 μs / day
10 μs / day
10.000.000 USD



First generation Markov state models (MSMs) 
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Conformational dynamics
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First generation Markov state models (MSMs) 

• Markov state models (MSMs) can be used as a tool for the systematic 
analysis of multiple MD trajectories.

• A Markov state model consists of:
1. a set of states !" "#$,…'
2. (conditional) transition probabilities between these state 

(") = ℙ(! - + / = 0 ∣ !(-) = 3)
• Unlike MD trajectories, Markov state models are discrete in space 

and in time.

…
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First generation Markov state models: estimation

11
[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011)
[2] Pérez-Hernández, Paul, et al., J. Chem. Phys. 139, 015102 (2013) 

• Markov model estimation starts with:
grouping of geometrically[1] or kinetically[2] related conformations into 
clusters or microstates

microstates
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First generation Markov state models: estimation[1]

12
[1] Prinz et al., J. Chem. Phys. 134, 174105 (2011)
[2] Pérez-Hernández, Paul, et al., J. Chem. Phys. 139, 015102 (2013) 
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• We then assign every conformation in a MD trajectory to a microstate.

• We count transitions between microstates and tabulate them in a 
count matrix #
e. g. $%% = 1, $%( = 1, $() = 2, …

• We estimate the transition probabilities +,- from #.
• Naïve estimator: .+,- = $,-/∑1 $,1
• Maximum-likelihood estimator [1]: 23 = argmax

3
∏,,- +,-
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First generation Markov state models: properties

Markov state models:

• model the probability evolution of an ensemble
let !"($) = ℙ(( $ = )), then

*+ ,- = *+ 0 /0

MSMs can extrapolate from the short-time 
estimate /(-) to long time scales.

• model the equilibrium distribution of an ensemble

1+:= *+ ∞ = *+ 0 lim0→8/
0

MSMs can even extrapolate to infinite time *+ ∞ . (- ≪ ∞)

We can recover a coarse-grained version of the Boltzmann distribution 
(1) without having to estimate / from data distributed according to the 
Boltzmann distribution.

figure adapted from Nüske et al., J. Chem. Theory Comput. 10, 1739 (2014) 13
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Second generation Markov models: spectral theory
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time scales: processes:

Prinz et al., J. Chem. Phys. 134, 174105  (2011) Sarich et al., SIAM Multiscale Model. Simul. 8, 1154 (2010).

!" # = !" 0 & ='
(
)( *( [,( ⋅ ! 0 ]

/( (left) 0( (right)

'

!" 1# ='
(
)(2*( [,( ⋅ ! 0 ]

• Eigenfunctions encode the slow relaxation processes.
• Eigenfunction point to the location of metastable states.



Second generation Markov models: variational principle

• If the cluster boundary is misplaced, transition across the 
boundary will be faster than transitions over the barrier but 
never slower.

• Right eigenfunctions are flat on the metastable states and 
change only at/near the barrier. A good discretization allows to 
represent the eigenfunction well.

• Equivalence between eigendecomposition and maximizing 
“slowness”!

16
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Second generation Markov models: variational principle

• Equivalence between eigendecomposition and maximizing 

“slowness”. 

! =#
$%&

'
cov +$ ,- , +$ ,-/0 ≤ !'234

where +& 5 ,…+' 5 are uncorrelated functions with variance 1. 

Can maximize the score for multiple functions simultaneously.

• Variational principle: generate a guess (for the functions) and rank 

it with the variational score. The higher, the better.

• Any algorithm that generates functions which maximize the score 

is suitable. Not limited to eigendecompositions / linear algebra.

• Works in very high-dimensional space.

• Result will be close to the true eigenfunctions. 

→ Approximations will retain properties of the eigenfunctions: 

encode the slow dynamics, point towards the metastable states.
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Markov modeling workflow: pentapeptide demo
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Feature selection

Select the set of molecular features that 
gives the most metastable kinetic 
model (the higher VAMP score, the 
better).

Use cross-validation prevent interpreting 
noise as a rare event.
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Markov modeling workflow
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Dimension reduction

Find order parameters (“independent components”) that describe 
the slowest transitions in the MD data.

Reduction to two dimensions allows to visualize various functions 
of the conformational state as 2-D plots, e.g. a histogram 
samples   
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Dimension reduction

Rare events appear clearly in the time series representations of 
the independent components.
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Markov modeling workflow
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State space discretization / clustering

MSM require discretization of state 
space.

Use off-the-shelf clustering methods 
(k-means, …) to dissect the space 
into a number of non-overlapping 
(Voronoi) cells.

The space of independent 
components is already the ideal 
space in which to cluster.

The in the next step count transition 
between cells and estimate MSM.
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Markov modeling workflow
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MSMS validation: Chapman-Kolmogorov test

29

The previous steps (feature selection, dimension reduction, 
clustering) can‘t be done with error. Already the operation of 
reducing the dimension introduced an error.

Errors affect the ability of 
the MSM to predict the 
future evolution of 
ensembles probabilities.

! "# =? ! # &



MSM validation: implied time scale test
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The previous steps (feature selection, dimension reduction, 
clustering) can‘t be done with error. Already the operation of 
reducing the dimension introduced an error.

Errors affect the ability of 
the MSM to predict the 
future evolution of 
ensembles probabilities.

! "# =? ! # &

Inserting the eigen-decomposition of the transition matrix, this 
equation can be transformed to ' "# = ('(#))& or 

ITS "# = - &.
/0 1(&.)= − &.

/0 1(.) 3 = − .
/0 1(.) = ITS(#)



Markov modeling workflow
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MSM analysis: free energy landscapes

• (a) Reweighted free energy surface projected onto the first two 
independent components exhibits five minima which

• (b) PCCA++ identifies the five minima as metastable states. 
Free energy = − ln $ for our purposes.
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MSM analysis: relaxation processes

The eigendecomposition of the transition matrix yields:
• Eigenvalues that encode the relaxation timescales (time, the system 

takes to return to equilibrium “implied timescales”) and 
• Eigenvectors that encode the conformations between which 

probability is moved as the system relaxes to equilibrium.
If there is a gap in between ITS, one can truncate the spectrum.
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MSM analysis: relaxation processes
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• (c) The second right eigenvector shows that the slowest process 
shifts probability between the least probable state (S1) and the other 
states, in particular states (S4, S5), whereas 

• (d) the committor S2 → S4 indicates that states S(1,3,5) act as a 
transition region between states S2 and S4.



Transition path theory / analysis
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MSM analysis: Experimental observables
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afc(%; ') = *+diag(/)0*
*+diag(/) *

Example analysis of the conformational 
dynamics of a pentapeptide 
backbone: 

• (a) the Trp-1 SASA autocorrelation 
function yields a weak signal which, 
however, 

• (b) can be enhanced if the system is 
prepared in the nonequilibrium 
condition S1. 
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Thanks!

Prof Frank Noé, Martin Scherer, Simon Olsson, Christoph 
Wehmeyer, Tim Hempel, Brooke Husic, Moritz Hoffmann, 
Sebastian Stolzenberg and the whole Pyemma team.

Thank you for your attention!
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Job advertisement

Open postdoc position in the lab 
of Prof Benoît Roux,
University of Chicago, USA
starting March 2020.

• Process of Imatinib-Abl kinase 
binding/ conformational 
change.

• Covalent kinase inhibitors.
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