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Figure from: Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science”




The problem
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Figure from: Husic & Pande 2017, J Chem Phys, “MSM lag time cannot be used for variational model selection” I
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Figure from: Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science” I




Let’'s make sure we're clear on MSMs
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Figure from: Husic & Pande 2018, JACS, “Markov State Models: From an Art to a Science” I




The VAC
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The VAC
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The VAC
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Figure from: Husic & Pande 2017, J Chem Phys, “MSM lag time cannot be used for variational model selection”




Cross validation
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An example

3.2
3.0
2.8
2.6
2.4
2.2
2.0

1.8

[ 1 Training score

200 400 600 800 1k 5k
Number of microstates

30k

3.2
3.0
2.8
2.6
2.4
2.2
2.0

1.8

[ 1 Training score
B Test score

200 400 600 800

1K

5k 30k

Number of microstates

From Husic et al 2016, J Chem Phys, “Optimized parameter selection...”




Finally: the VAMP!
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Finally: the VAMP!
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I I

KT — {i, 0is Xi SCORE = Z:('fi SZUi
3

B B " Consider now a different
‘ matrix that is not necessarily o
|:] < reversible. I:owever: it wllll alwlays
[ ] ? It may not have an ave a singuiar value
- ° eigendecomposition anymore, decomposition.
- or its eigendecomposition
\_.  may not be useful. The VAMP uses more
general math to score
Key papers: models that may not be
reversible

Wu & Noé 2017, arXiv:1707.04659, “Variational approach...”
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What we’ve learned...

- We have many choices when we make Markov state models

- Luckily, we have the VAC to evaluate different choices objectively
- But not the MSM lag time, of course.

- We just have to do it under cross-validation to avoid overfitting

- We can use the VAMP in the more general, nonreversible case
- Which is the same as the VAC when we have an MSM!

- With an objective metric, can’t we just make models automatically..?
- This is the aim of VAMPnets!
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