Everything you wanted to know about VAMP but were afraid to ask

Brooke Husic Freie Universität Berlin PyEMMA Workshop February 20, 2020

First of all

Variational

Approach for

Markov

Processes

Key papers:

First of all

Variational
Approach for

Markov Processes

Our data: $Z_1, Z_2, \ldots, Z_{t-2}, Z_{t-1}, Z_t, Z_{t+1}$

$$\frac{dx}{dt} = \sigma(y - x),$$

$$\frac{dy}{dt} = x(\rho - z) - y,$$

$$\frac{dz}{dt} = xy - \beta z.$$

First of all

Variational

Our data: $Z_1, Z_2, \dots, Z_{t-2}, Z_{t-1}, Z_t, Z_{t+1}$

Approach for

Markov

Processes

$$[Z_t,Z_{t+1}]^{m{\zeta}}$$

$$[Z_t, Z_{t+ au}]$$

 $Y = \begin{bmatrix} z_5 \\ \vdots \\ z_t \end{bmatrix}$

Key papers:

Some history

Figure from: Husic & Pande 2018, JACS, "Markov State Models: From an Art to a Science"

The problem

Figure from: Husic & Pande 2017, J Chem Phys, "MSM lag time cannot be used for variational model selection"

Back to history

Figure from: Husic & Pande 2018, JACS, "Markov State Models: From an Art to a Science"

Let's make sure we're clear on MSMs

Figure from: Husic & Pande 2018, JACS, "Markov State Models: From an Art to a Science"

The VAC

Transition matrix

Key papers:

Noé & Nüske 2013, Multiscale Model Simul, "A Variational Approach..." Nüske et al 2014, J Chem Theory Comput, "Variational Approach..."

The VAC

$$T(\tau)\psi_i = \lambda_i \psi_i \longrightarrow t_i = -\frac{1}{\ln|\lambda_i|}$$

Eigenvalues: related to timescales

Eigenvectors: dynamical processes

The eigenvalues have special properties according to the Perron-Frobenius theorem:

- They are real
- There is a unique maximum eigenvalue of 1
- All other eigenvalues have absolute values below 1

Key papers:

Noé & Nüske 2013, Multiscale Model Simul, "A Variational Approach..." Nüske et al 2014, J Chem Theory Comput, "Variational Approach..."

The VAC

$$T(\tau)\psi_i = \lambda_i\psi_i \longrightarrow t_i = -\frac{\tau}{\ln|\lambda_i|}$$

IMPORTANT: This score is only for the transition matrix defined at the given lag time τ

Eigenvalue predictions from MSM

Key papers:

Noé & Nüske 2013, Multiscale Model Simul, "A Variational Approach..." Nüske et al 2014, J Chem Theory Comput, "Variational Approach..."

Reminder

Eligible regime for scoring MSMs

Figure from: Husic & Pande 2017, J Chem Phys, "MSM lag time cannot be used for variational model selection"

Cross validation

Eigenvalue predictions from MSM validation set

Data: Training set Validation set

Make MSM

Apply MSM and score eigenvalues

(is there enough sampling?)

Key paper:

McGibbon & Pande 2015, J Chem Phys, "Variational cross-validation..."

some number of iterations with different sets

An example

From Husic et al 2016, J Chem Phys, "Optimized parameter selection..."

Finally: the VAMP!

Key papers:

Finally: the VAMP!

Key papers:

Finally: the VAMP!

SCORE =
$$\sum_{i=1}^{m} \hat{\sigma}_i \leq \sum_{i=1}^{m} \sigma_i$$

Consider now a different matrix that is not necessarily reversible.

It may not have an eigendecomposition anymore, or its eigendecomposition may not be useful.

However, it will always have a *singular value decomposition*.

The VAMP uses more general math to score models that may not be reversible

Key papers:

What we've learned...

- We have many choices when we make Markov state models
- Luckily, we have the VAC to evaluate different choices objectively
 - But not the MSM lag time, of course.
- We just have to do it under cross-validation to avoid overfitting
- We can use the VAMP in the more general, nonreversible case
 - Which is the same as the VAC when we have an MSM!
- With an objective metric, can't we just make models automatically..?
 - This is the aim of VAMPnets!

Paper highlights

VAC theory

Noé & Nüske 2013, Multiscale Model Simul, "A Variational Approach..." (arXiv:1211.7103) Nüske et al 2014, J Chem Theory Comput, "Variational Approach..."

Cross-validation

McGibbon & Pande 2015, J Chem Phys, "Variational cross-validation..." (arXiv:1407.8083)

VAMP theory

Wu & Noé 2017, J Nonlinear Sci 2020, "Variational approach..." (arXiv:1707.04659) Scherer et al, J Chem Phys 2019, "Variational selection of features..." (arXiv:1811.11714) Paul et al, J Chem Phys 2019, "Identification of kinetic..." (arXiv:1811.12551)

General overview/history of MSMs

Husic & Pande 2018, JACS, "Markov State Models: From an Art to a Science"

General overview of ML methods

Noé 2018, arXiv:1812.07669, "Machine learning..."