Coarse-graining MSMs with PCCA
and
Transition Path Theory analysis
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Why do we want to coarse-grain MSMs?
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Prinz et al. J. Chem. Phys. 134, 174105 (2011)

State 1 State 2

n Markov states (clusters)

n-1 non-stationary processes

T(T) eR’nX’n

® MSMs approximate true eigenfunctions
with (multi) step functions.

® The better the discretization, the
better the description ¥ (x)

® The more discretization clusters, the
more difficult is to interpret the MSM.

Metastate 1 Metastate 2

m metastable states
m-1 non-stationary processes

T (1) € R™*™




Right eigenvectors of T(1)
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® Spectral decomposition of the transition matrix:
TO=RA(T)L
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Figure courtesy of JH Prinz

How many metastable states do we choose?

® Right eigenvectors represent
dynamical processes between the
different states.

® They contain information about
metastable and transient regions.

® Transient regions are characterized
by (abrupt) changes, while
metastable regions are flat.

|

We aim to find a cluster of states
that is maximally metastable
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® At long lag times A(t) becomes sparse because of the exponential
decay of eigenvalues:
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Figure courtesy of JH Prinz

® \\Ve can approximate the transition matrix using only the (Perron)
cluster of m-dominant eigenvalues and eigenvectors:

TN =R N L

"
T(T) e Ran i» A’(T) e Rme _'> Tc(.l.) e Rme

[ Do a cluster analysis on the Perron cluster (PCCA) }




The PCCA problem

® Goal: find a non-singular (i.e. invertible) transformation matrix A such that:

M=R"A

subject to the following constraints:

M(i) = O (positivity)
> M(i) = 1 (partition of unity)

® The resulting matrix M, referred as the membership matrix, provides a fuzzy
assignment over the metastable states (instead of a hard, crisp assignment to

a single state). Metastates
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® Intuition: for each cluster center we build a linear combination of (A-weighted)
dominant eigenvectors that tell us how relevant they are in each metastable state.
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The PCCA problem

® Subset of m-dominant eigenvalues and eigenvectors from the spectral
decomposition:

TO=R'AN(T)
® |ntroduce matrix A and its inverse such that:
T(M) =R (AAY) N(T) (AAY) L
T(1) = (R’ A) (A* A'(1) A) (A L)
M T (1) D

Matrix of memberships: P(metastable state ¢ | cluster j)
Coarse-grained T(1):  P(metastable state i | metastable state j)
Matrix of metastable distributions: P(cluster i | metastable state j)

® The coarse-grained matrix T (1) is small (R™*™), preserves eigenvalues of

the full transition matrix, and represents an approximation of the dynamics
between metastable states.

T e R™ " LA N(T) € R™*™ . T ()€ R™*™

® Unfortunately T (1) is not anymore a stochastic matrix since it can contain
negative values.
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function pcca

deeptime.markov.pcca (P, m, stationary_distr‘ibution=None)

PCCA+ spectral clustering method with optimized memberships.

Implementation according to [1]. Clusters the first m eigenvectors of a transition matrix in order to cluster
the states. This function does not assume that the transition matrix is fully connected. Disconnected sets will
automatically define the first metastable states, with perfect membership assignments.

Parameters: |e P (ndarray (n,n)) - Transition matrix. .

e m (int) - Number of clusters to group to. InPUt

e stationary_distribution (ndarray(n,), optional, default=None) - Stationary distribution
over the full state space, can be given if already computed.

References

[1] Susanna Roblitz and Marcus Weber. Fuzzy spectral clustering by pcca+: application to markov state
models and data classification. Advances in Data Analysis and Classification, 7(2):147-179, 2013.
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Attributes

assignments Assignment of states to metastable sets using PCCA++

coarse_grained stationary probability | Stationary distribution for coarse_grained transition_matrix.

coarse_grained_transition_matrix Coarse grained transition matrix with n_metastable states.

Probabilities of MarkovStateModel states to belong to a
metastable state by PCCA+

memberships

Probability of metastable states to visit an MarkovStateModel

tastable_distributi
metastable_distributions state by PCCA+

n_metastable Number of metastable states.

sets Metastable sets using PCCA+

T(H) = (R A) (A* N (1) A) (A*L)
M T (1) D

Matrix of memberships: P(metastable state i | cluster j)

Coarse-grained T(1): P(metastable state i | metastable state j)

Matrix of metastable distributions: P(cluster i | metastable state j)
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Which of the pathways between A and N is most likely?

ATAY, \‘

Voelz et al. J. Am. Chem. Soc., 132, 4702 (2010)



Transition path theory

® Transition path theory is a mathematical framework to study the ensemble of
transition paths between metastable states

® A-B reactive trajectory: parts where the system goes from A to B without coming
back to A (or A-B transition path ensemble for a set of such trajectories).

® The essential ingredient required to compute the statistics of transition pathways
Is the committor probability function from A to B:

- Forward committor q): how likely is that a trajectory starting at state “i”
reaches state B before A.

- Backward committor q©: how likely is that a trajectory arriving at “i” was

previously in state A.
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Transition path theory

State A State B e \We can compute the forward committor
: function from A to B (g*) taking into
account the following set of equations:

g =0 foriec A
g =1 fori € B

q = ZTijq;_ fori ¢ {A, B}.

jes

Tt =0 0<agt <1 =1 Probability to jump from “I” to any state € S
a 1 1 (Tij) and subsequently reach B (q;").

® Boundary value problem that we can solve numerically:

—qf —|—Z'E3kq;: = — ZT’”“ forz € 1.
kel keB

® For a system in equilibrium, we can define the backward committor simply as:

g =1-q"
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® \We can use the committor function together with T(t) and 1t to obtain information
about fluxes of trajectories (number of observed A - B transitions per unit time).

® The gross flux (or effective flux) is a matrix whose elements describe the
probability flux along the edge i,j contributing to the transition from A to B:

® \We can also define the total flux as the sum over all the f elements starting in
| € Aand ending in j §é A
F = Z Z TE;ngq;L.
icA j¢A

From the total flux we can compute the rate from A to B:

kAgg:F/(Tqui) .
i=1



TPT: gross flux of trajectories from A to B

Gross flux Net flux
fi = mig; Tyq! 175 = max{f57 — £%,0)

(net flux = 0)
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® \We can find all pathways from A to B by “subtracting” them iteratively:

Pathway 1 Pathway 2
f=1.49 (65%) f=0.67 (29%)

Pathway 3
f=0.15 (6%)

0.05

0.05
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function reactive flux

deeptime.markov. reactive_flux(transirion_matrfx: numpy.ndarray, source_states: Iterable[int], target states:
Iterable[int], stationary distribution=None, qminus=None, gplus=None, transition _matrix_tolerance:

Optional[float] = None) — deeptime.markov. reactive flux.ReactiveFlux

Computes the A->B reactive flux using transition path theory (TPT).

Parameters:

input

Returns:

Return type:

¢ transition_matrix ((M, M) ndarray or scipy.sparse matrix) - The transition matrix.
e source_states (array like)|- List of integer state labels for set A
e target_states (array like) |- List of integer state labels for set B

¢ stationary_distribution ((M,) ndarray, optional, default=None) - Stationary vector. If None
is computed from the transition matrix internally.

e qminus ((M,) ndarray (optional)) - Backward committor for A->B reaction

e gplus ((M,) ndarray (optional)) - Forward committor for A-> B reaction

e transition_matrix tolerance (float, optional, default=None) - Tolerance with which is
checked whether the input is actually a transition matrix. If None (default), no check is
performed.

tpt - A python object containing the reactive A->B flux network and several additional

quantities, such as stationary probability, committors and set definitions.

deeptime.markov.tools.flux.ReactiveFlux object
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DeepTime API: TPT
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Attributes

backward_committor

backward committor probability

forward_committor

forward committor probability

Gross A
rightarrowB flux.

set of intermediate states

Mean-first-passage-time (inverse rate) of A — B transitions.

number of states.

Effective or net flux.

Rate (inverse mfpt) of A
rightarrowB transitions in units of 1/time.

set of reactant (source) states.

stationary_distribution

stationary distribution

target_states

set of product (target) states

The total flux.
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Methods

coarse_grain(user sets)

Coarse-grains the flux onto user-defined sets.

Makes a deep copy of this model.

Get the parameters.

Returns the main pathway part of the net flux comprising at most the
requested fraction of the full flux.

Decompose flux network into dominant reaction paths.

Set the parameters of this estimator.




Further reading

MSM coarse graining

1. “Fuzzy spectral clustering by PCCA+: application to Markov state models and
data classification” Rdblitz & Weber Adv. Data Anal. Classif. (2013) 7, 147-179.

2. “Improved coarse-graining of Markov state models via explicit consideration of
statistical uncertainty” Bowman J. Chem. Phys. (2012), 137, 134111.

3. “A Minimum Variance Clustering Approach Produces Robust and Interpretable
Coarse-Grained Models” Husic et al. J. Chem. Theory Comput. (2018), 14,
1071-1082.

Transition path theory

1. “Towards a theory of transition paths” Weinan & Vanden-Eijnden. J. Stat. Phys.
(2006) 123:503-523.

2. “Constructing the equilibrium ensemble of folding pathways from short off-
equilibrium simulations” Noé et al. PNAS. (2009) 106:19011-19016.

3. https://deeptime-ml.github.io/notebooks/tpt.html


https://deeptime-ml.github.io/notebooks/tpt.html
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