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Why do we want to coarse-grain MSMs?
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The better the discretization, the 
better the description Ψ
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The more discretization clusters, the 
more difficult is to interpret the MSM.
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MSM approx)imation to Ψ
2
(x)x))

Prinz et al. J. Chem. Phys. 134, 174105 (2011)

MSMs approximate true eigenfunctions 
with (multi) step functions.



  

Right eigenvectors of T(τ)
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We aim to find a cluster of states
that is maximally metastable

Right eigenvectors represent 
dynamical processes between the 
different states.

They contain information about 
metastable and transient regions.

Transient regions are characterized 
by (abrupt) changes, while 
metastable regions are flat.

They contain information about 
metastable and transient regions.

Spectral decomposition of the transition matrix:

 T(τ) = R Λ(τ) L

How many metastable states do we choose?

Figure courtesy of JH Prinz

Stationary process

Transient region



  

How many metastable states do we choose?
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At long lag times Λ(τ) becomes sparse because of the exponential 
decay of eigenvalues: 
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 T(τ) ≈ R’ Λ’(τ) L’

Do a cluster analysis on the Perron cluster (PCCA)

We can approximate the transition matrix using only the (Perron) 
cluster of m-dominant eigenvalues and eigenvectors:

Figure courtesy of JH Prinz

T(τ) ∈ Λ’(τ) ∈ T
c
(τ) ∈

?



  

The PCCA problem
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Goal: find a non-singular (i.e. invertible) transformation matrix A such that:

 M = R’ A

subject to the following constraints:

The resulting matrix M, referred as the membership matrix), provides a fuzzy 
assignment over the metastable states (instead of a hard, crisp assignment to 
a single state).

Markov
states

Membership
assignment

Intuition: for each cluster center we build a linear combination of (A-weighted) 
dominant eigenvectors that tell us how relevant they are in each metastable state.
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The PCCA problem
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Subset of m-dominant eigenvalues and eigenvectors from the spectral 
decomposition:

 T(τ) ≈ R’ Λ’(τ) L’

Introduce matrix A and its inverse such that:

 T(τ) ≈ R’ (AA-1) Λ’(τ) (AA-1) L’

 T(τ) ≈ (R’ A) (A-1 Λ’(τ) A) (A-1 L’)
M  T

c
(τ)  D

Matrix of memberships: 
Coarse-grained T(τ): 
Matrix of metastable distributions: 

The coarse-grained matrix T
c
(τ) is small (            ), preserves eigenvalues of 

the full transition matrix, and represents an approximation of the dynamics 
between metastable states.

Unfortunately T
c
(τ) is not anymore a stochastic matrix since it can contain 

negative values.

T(τ) ∈ Λ’(τ) ∈ T
c
(τ) ∈



  

DeepTime API: PCCA
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input



  

DeepTime API: PCCA
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 T(τ) ≈ (R’ A) (A-1 Λ’(τ) A) (A-1 L’)
M  T

c
(τ)  D

Matrix of memberships:

Coarse-grained T(τ):

Matrix of metastable distributions:



  

Transition path theory
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Which of the pathways between A and N is most likely?

Voelz et al. J. Am. Chem. Soc., 132, 4702 (2010)



  

Transition path theory
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Transition path theory is a mathematical framework to study the ensemble of 
transition paths between metastable states

A-B reactive trajectory: parts where the system goes from A to B without coming 
back to A (or A-B transition path ensemble for a set of such trajectories).

A

The essential ingredient required to compute the statistics of transition pathways 
is the committor probability function from A to B:

Forward committor q(+): how likely is that a trajectory starting at state “i” 
reaches state B before A.

-

Backward committor q(-): how likely is that a trajectory arriving at “i” was 
previously in state A.

-

B

i fire

q(-) q(+)



  

Transition path theory
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We can compute the forward committor 
function from A to B (q+) taking into 
account the following set of equations:

    

State A State B

Boundary value problem that we can solve numerically:

For a system in equilibrium, we can define the backward committor simply as:

State I

Probability to jump from “i” to any state  S ∈ S 
(x)Tij) and subsequently reach B (x)q

j
+).



  

Transition path theory
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We can use the committor function together with T(τ) and π to obtain information 
about fluxes of trajectories (number of observed A→B transitions per unit time).

The gross flux (or effective flux) is a matrix whose elements describe the 
probability flux along the edge i,j contributing to the transition from A to B:

We can also define the total flux as the sum over all the f
ij
 elements starting in

i  A and ending in j  A:∈ ∈

From the total flux we can compute the rate from A to B:

j
i



  

TPT: gross flux of trajectories from A to B
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Pathway decomposition
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Pathway 1
f=1.49 (65%)

Pathway 2
f=0.67 (29%)

Pathway 3
f=0.15 (6%)

We can find all pathways from A to B by “subtracting” them iteratively:



  

DeepTime API: TPT
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input



  

DeepTime API: TPT
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DeepTime API: TPT
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Further reading

“Fuzzy spectral clustering by PCCA+: application to Markov state models and 
data classification” Röblitz & Weber Adv. Data Anal. Classif. (2013) 7, 147–179.

“Improved coarse-graining of Markov state models via explicit consideration of 
statistical uncertainty” Bowman J. Chem. Phys. (2012), 137, 134111.

MSM coarse graining

Transition path theory

“Constructing the equilibrium ensemble of folding pathways from short off-
equilibrium simulations” Noé et al. PNAS. (2009) 106:19011-19016.

“Towards a theory of transition paths” Weinan & Vanden-Eijnden. J. Stat. Phys. 
(2006) 123:503–523.

https://deeptime-ml.github.io/notebooks/tpt.html

“A Minimum Variance Clustering Approach Produces Robust and Interpretable 
Coarse-Grained Models” Husic et al. J. Chem. Theory Comput. (2018), 14, 
1071−1082.
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https://deeptime-ml.github.io/notebooks/tpt.html
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