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Markov State Models
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predict

, Find properties of a system of interest

using a simple model parametrized from observations”



Example CECR2

related to Epigenetic




Raich et al. Proceedings of the National Academy of Sciences 118.4 (2021)



Vlarkov state moaels
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Metastability of states allow us to significantly simplity

the dynamics of our system of interest



Viarkov state models

Initial state

A Markov state model describes the dynamics of a system as
conditional transition probabilities

v st
<21 96% | 1% | 2% | 1%
5% | 95% | 0% | 0%
1% | 0% | 97% | 2%
1% | 0% | 2% | 97%




What is meta-stability”

recQ=R"Y

sets of configurations which are long-lived.
Markov state models assume these states, and exchange between them
IS Important.
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\Vlolecular simulations

e Molecular simulations are realizations of stochastic
orocess on {2 and are Markovian w.r.t. this space.

px,y;t)dy = P[x(t + 1) € y +dy | x(¢) = x]

X,y € 2, 1 € Ry,

Transition probabilities are well defined

Prinz et al. (2011) JCP 134, 174105



\Vlolecular simulations

e Molecular simulations are realizations of stochastic
orocess on {2 and are Markovian w.r.t. this space.

px,y;t)dy = P[x(t + 1) € y +dy | x(¢) = x]

X,y € 2, 1 € Ry,
Iransition probabilities are well defined

px, A;t) = P[x(r + 1) € A|x(?) = X]

=] dy p(X,y; 7).
yecA

Also applies for regions

Prinz et al. (2011) JCP 134, 174105



Molecular simulations (2)

Ergodicity

No two or more segments of the space ) are dynamically
disconnected from each other.

and

For an infinitely long simulation we will have visited every
state x € $) infinitely many times.

Prinz et al. (2011) JCP 134, 174105



Molecular simulations (3)

Reversibility

Simulations fulfill the detailed-balance condition:

n(x) p(x,y,7) = u(y) p(y, x;7)

w(x) = Z(B)"" exp (—BH(X))

At equilibrium the probability of jumping from any x
to any y is the same as jumping from y to x.

Prinz et al. (2011) JCP 134, 174105



An illustration of the
transition density
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Figure courtesy of JH Prinz



Assumptions about the full
adynamics

Markovian

P(zirr € Al zyy, ..., 0 =) = P(@4r € A| 2 = )

Factorization of the dynamics
Into conditional probabilities

Chapman-Kolmogorov property

Doy trs (X, A) = /Q P (T, YD1 (y, A) dy

Direct combination of conditional probabilities with different lag-times

Initial state

Final state
a2 9% | 1% | 2% | 1%
@b | 5% | 95% | 0% | 0%
@D | 1% | 0% | 97% | 2%
2 | 1% | 0% | 2% | or%




Assumptions about the full
dynamics

Irreducibility

All states of the state space can be reached from any other state in a finite time.
Ensures unique stationary distribution.

Ergodicity

No states are disconnected
No cyclic dynamics.
Ensures time and ensemble average properties are equal.

Reversibility

No net-probability flux at equilibrium. => no energy production/absorption => mass conservation.
Not strictly necessary for Markov models



Ensemble view of dynamics

Pr
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A propagator is an operator which transports
probability densities in time

prie(x) = [Prpil(x) = | aupe(, x)pi(y)

Figure courtesy of JH Prinz



-Xample dynamics
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Propagator depends on lag
time
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Propagator depends on lag
time
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Propagator depends on lag
time

T=2200
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So why Is this”



Implied time-scales

Eigenvalues of the propagator

Chapman-Kolmogorov Implies exponential lag-time dependence
Ni(k-7)= )Jf(T)

timescales
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Figure courtesy of JH Prinz



Vieta-stabllity

* We can approximate the propagator by a finite
number of processes with non-zero Eigenvalues

* |f we have a gap in the Eigenvalue spectrum, we
can choose the lag-time in a manner such that we
fulfill this assumption

* WWhen we do this, processes faster than the lag-
time ‘have decayed’ or ‘are not resolved.
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Estimation



Discretization of €
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Figure courtesy of JH Prinz



Count matrix

C;i(1)| A B C D
A | 9963 | 37 0 0

Figure courtesy of JH Prinz



Maximum likelihood estimator

We can express the probability of the observed data - discrete trajectory -
given a transition probability matrix of an MSM

P(x1,...,2¢ | P) = prk_l,:vk

The aim is then to find the P which maximizes this expression -
That is, the Maximum likelihood estimator.



Analytical solution for Non-
reversiple case

e \We enforce the constraint that the transition
orobability matrix is row-stochastic:

> pij=1, Vi
J

* One can show the estimator is simply:

_ Gy
D j Cij

Dij

Prinz et al. (2011) JCP 134, 174105



Reversible estimator

* Enforces the detailed balance condition.
 No exact analytical solution:
* Fixed-point iteration algorithm available.
* Approximate solutions.

* |mplemented in deeptime



Bayesian inference of MSMs

e [he less simulation data we have, the more

ambiguous the solution of the likelihood problem
will be.

* Consequently, if we limit ourselves to the MLE, we
are ignorant as to how robust our inferred MSM is.

* One way to quantify the uncertainty of MSMs is
through Bayesian inference



Bayesian inference of MSMs

LIkelihood from before



Bayesian inference of MSMs

LIkelihood from before

P(x;,...,x: | P) =p(C | P) x H p;f;.j

1,7=1
Introduction of prior information

p(P | C) o< p(C| P)p(P)

The prior can encode useful constraints: row-stochasticity,
reversibility, fixed stationary distribution, sparsity etc



Bayesian inference of MSMs

Inference is done by MCMC sampling
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Noé (2008) JCP 128, 244103
Trendelkamp-Schroer & Noé (2013) JCP 138, 164113



Alternative estimators



e Allows
simulat

ta
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Transition(-based)
Rewelighting Analysis Methoo

N da
thermodynanr

KINg Into account
a from multiple

IC ensembles.

* [hat means, we can use
data from enhanced
sampling simulations
together with unbiased
simulation data to
generate models more
efficiently.

Number of transitions between configurations in all ensembles

Potential or bias energy of each sample in all ensembles

TRAM

\/

multi-ensemble Markov model (MEMM)
p12
Ensemble 2
v\pil/

Ensemble 1

Wu et al. PNAS 2016, 113(23), E3221-E3230

Implemented in PyEMMA



Augmented Markov models

 Enables integration of
external information into
the estimation of Markov
state models.

* Fx use of experimental
constraints from

oJle]e
such

e A notebook tutoria

nysical experiments

as NMR.

distributed with PyEMMA
2.5 and up.

Simulation ensemble
Biased ensemble — Full observability

Equilibrium distribution 7T

Transition matrix pz 9

<

Maximum Entropy

max Likelihood I

Simulation

Biased ensemble — Full observability
Statistical error

Observed transitions Cgj

Lagrange multipliers )\k

Experimental ensemble
True ensemble — Partial observability

> Equilibrium distribution 7t

True expectation fﬁ?, L

Imax Likelihood

Measurement

True ensemble — Partial observability
Statistical error

Measured expectation O

Olsson et al. PNAS 2017, 114(31), pp. 8265-8270. doi: 10.1073/pnas.1704803114

Implemented in Deeptime




Analysis of our estimate

Pi(1)] A | B | € | D
A (09963 0,003
B 0002209974 |0,0004
C 0,0002 | 0,9919 | 0,0079
D 0,015 | 0,9885

o0 o0

q] 938

Time-scales are always under-estimated

Figure

courtesy of JH Prinz



Increasing the lag-time

COUNT
MATRIX

C;(100)( A B C D
A (9933 | 47 40 0
B 1644 | 8014 | 262 | 80
C 0 40 | 9029 | 939
D 0 0 | 1366 | 8634

original
timescales

o0 o0

379 238

May improve estimates of predicted time-scales

Figure courtesy of JH Prinz
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Projection/discretization error
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Projection/discretization error
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Figure courtesy of JH Prinz



Known problems

* Observations (projections, discretizations) are in
many cases not Markovian

* However, we are often interested in understanding
the full system not just the observation.

* Since we often have a lot of freedom to choose the
porojections and discretization, it Is important to
chose one which is as Markovian as possible.




Valigation



Chapman-Kolmogorov test

Compare the evolution of the data with the model

k
T% (1) ~ T(kT)
v v
Markov model prediction estimation from data
11 I | | T | T |
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General scheme for Markov state model generation

Discretize a suitable projection of your data.
Construct a transition matrix.

Estimate the number of meta-stable states (time-
scale gap)

Perform Chapman-Kolmogorov test.



Analysis

Useful predictions from a MSM



Common properties

Relaxation time-scales

Dominant processes

Stationary distribution (thermodynamics)
Meta-stable sets (more about this later)
Correlation functions (spectroscopic observables)
Mean first passage times

Path probabilities



summary

-+ Markov state models are derived coarse-grained
models of the full original (Markovian) dynamics .

- MSMs may be parameterized (estimated/learned)
from simulation data to compute properties of
Interest.

- MSMs are particularly useful if the projection/
discretization error can be minimized: then the
predicted quantities match the original.



Questions?



